CN110327913A - A kind of nano-sheet tungsten oxide/graphene oxide Core-shell structure material and the preparation method and application thereof - Google Patents
A kind of nano-sheet tungsten oxide/graphene oxide Core-shell structure material and the preparation method and application thereof Download PDFInfo
- Publication number
- CN110327913A CN110327913A CN201910706959.XA CN201910706959A CN110327913A CN 110327913 A CN110327913 A CN 110327913A CN 201910706959 A CN201910706959 A CN 201910706959A CN 110327913 A CN110327913 A CN 110327913A
- Authority
- CN
- China
- Prior art keywords
- graphene oxide
- nano
- shell structure
- core
- structure material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 57
- 239000011258 core-shell material Substances 0.000 title claims abstract description 41
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 229910001930 tungsten oxide Inorganic materials 0.000 title claims abstract description 40
- 239000000463 material Substances 0.000 title claims abstract description 36
- 239000002135 nanosheet Substances 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000011259 mixed solution Substances 0.000 claims abstract description 31
- 239000000243 solution Substances 0.000 claims abstract description 21
- 239000011812 mixed powder Substances 0.000 claims abstract description 16
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims abstract description 16
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 13
- 239000002356 single layer Substances 0.000 claims abstract description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 10
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims abstract description 8
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 8
- 239000011775 sodium fluoride Substances 0.000 claims abstract description 8
- 235000013024 sodium fluoride Nutrition 0.000 claims abstract description 8
- 238000007146 photocatalysis Methods 0.000 claims abstract description 7
- 230000001699 photocatalysis Effects 0.000 claims abstract description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 6
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001425 magnesium ion Inorganic materials 0.000 claims abstract description 6
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 6
- 239000011734 sodium Substances 0.000 claims abstract description 6
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000005119 centrifugation Methods 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 3
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims 1
- 150000001336 alkenes Chemical class 0.000 claims 1
- 238000005253 cladding Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 229960000935 dehydrated alcohol Drugs 0.000 claims 1
- 238000004090 dissolution Methods 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 15
- 239000007864 aqueous solution Substances 0.000 abstract description 7
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 239000011858 nanopowder Substances 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 238000011049 filling Methods 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011257 shell material Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
- B01J35/397—Egg shell like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
- B01J35/398—Egg yolk like
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种纳米片状氧化钨/氧化石墨烯核壳结构材料及其制备方法与应用。将钨粉和氟化钠混合均匀得到混合粉体A;取H2O2和HNO3混合均匀得混合溶液B;向混合溶液B中加入氧化石墨烯水溶液得混合溶液C;将混合粉体A缓慢加入混合溶液C中得溶液E;将溶液E置于水热反应釜内进行水热反应,冷却,洗涤、收集、烘干,即得到纳米片状氧化钨/氧化石墨烯核壳结构材料。该核壳结构材料为方形单层薄片状结构,内层核为方形氧化钨纳米片,外层为氧化石墨烯,其中氧化钨单层薄片的厚度为10~30nm,长宽为100~250nm,外层氧化石墨烯的包覆厚度为5~20nm。应用于钠/锂/镁离子电池、超级电容器及光催化领域,表现出了优异的性能。A nano-flaky tungsten oxide/graphene oxide core-shell structure material and its preparation method and application. Mix tungsten powder and sodium fluoride uniformly to obtain mixed powder A; take H 2 O 2 and HNO 3 and mix uniformly to obtain mixed solution B; add graphene oxide aqueous solution to mixed solution B to obtain mixed solution C; mix mixed powder A Slowly add mixed solution C to obtain solution E; put solution E in a hydrothermal reaction kettle for hydrothermal reaction, cool, wash, collect, and dry to obtain nano-flaky tungsten oxide/graphene oxide core-shell structure material. The core-shell structure material is a square single-layer flake structure, the inner core is a square tungsten oxide nanosheet, and the outer layer is graphene oxide. The thickness of the tungsten oxide single-layer flake is 10-30nm, and the length and width are 100-250nm. The coating thickness of the outer graphene oxide is 5-20nm. It is used in the fields of sodium/lithium/magnesium ion batteries, supercapacitors and photocatalysis, showing excellent performance.
Description
技术领域technical field
本发明涉及一种核壳结构纳米片层材料的制备方法,具体涉及一种一种原位合成纳米片状氧化钨/氧化石墨烯核壳结构材料的制备方法。The invention relates to a preparation method of a core-shell structure nano-sheet material, in particular to a preparation method of in-situ synthesis of a nano-sheet-like tungsten oxide/graphene oxide core-shell structure material.
背景技术Background technique
三氧化钨是稳定的n型半导体材料,被广泛应用于光催化和电化学催化等方面。近年来,随着锂/钠离子电池研究的深入,三氧化钨也被广泛应用在电化学储能方面,主要作为锂/钠离子电池的负极材料被研究。然而,纳米三氧化钨存在电荷转移速率慢、表面反应活性位少以及容易发生光生电子空穴对易复合等缺陷,极大地限制了它的适用领域。氧化石墨烯作为新型二维碳材料,具有大的比表面积,优越的导电性、良好的力学性能以及高的化学和热稳定性,在电化学领域被广泛应用。Tungsten trioxide is a stable n-type semiconductor material, which is widely used in photocatalysis and electrochemical catalysis. In recent years, with the in-depth study of lithium/sodium ion batteries, tungsten trioxide has also been widely used in electrochemical energy storage, mainly as the negative electrode material of lithium/sodium ion batteries. However, nano-tungsten trioxide has defects such as slow charge transfer rate, few reactive sites on the surface, and easy recombination of photogenerated electron-hole pairs, which greatly limits its application field. Graphene oxide, as a new type of two-dimensional carbon material, has a large specific surface area, superior electrical conductivity, good mechanical properties, and high chemical and thermal stability, and is widely used in the field of electrochemistry.
近年来,三氧化钨/氧化石墨烯复合材料作为电池负极材料受到了研究者们的广泛研究,但是到目前为止,关于以三氧化钨为核、氧化石墨烯为壳的二维纳米复合材料的报道几乎没有。In recent years, tungsten trioxide/graphene oxide composite materials have been extensively studied by researchers as battery anode materials, but so far, there are no studies on two-dimensional nanocomposites with tungsten trioxide as the core and graphene oxide as the shell. Reports were barely there.
发明内容Contents of the invention
本发明的目的在于提供一种操作简单,且反应温度低、反应周期短的原位合成纳米片状氧化钨/氧化石墨烯核壳结构材料的制备方法,制得的氧化钨/氧化石墨烯核壳结构材料结构单一,纯度高。The object of the present invention is to provide a method for preparing in-situ synthesis of nano-flaky tungsten oxide/graphene oxide core-shell structure material with simple operation, low reaction temperature and short reaction period, and the prepared tungsten oxide/graphene oxide core The shell structure material has a single structure and high purity.
为了实现上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
1)将钨粉和氟化钠按10:1~10:3的质量比混合均匀得到混合粉体A;1) Mix tungsten powder and sodium fluoride uniformly at a mass ratio of 10:1 to 10:3 to obtain mixed powder A;
2)分别取5~15ml质量浓度为30%的H2O2和5~15ml质量浓度为69%的HNO3混合均匀得混合溶液B; 2 ) Take 5-15ml of H2O2 with a mass concentration of 30% and 5-15ml of HNO3 with a mass concentration of 69% and mix them uniformly to obtain a mixed solution B;
3)向混合溶液B中加入2~6ml质量浓度为0.05%~0.15%的氧化石墨烯水溶液,得混合溶液C;3) Add 2 to 6 ml of graphene oxide aqueous solution with a mass concentration of 0.05% to 0.15% into the mixed solution B to obtain a mixed solution C;
4)取1~8g混合粉体A缓慢加入混合溶液C中,搅拌待其充分溶解后得溶液E;4) Take 1-8g of mixed powder A and slowly add it to mixed solution C, stir until it is fully dissolved to obtain solution E;
5)将溶液E置于水热反应釜内于120~200℃进行水热反应,反应结束后,冷却,洗涤、收集、烘干,即得到纳米片状氧化钨/氧化石墨烯核壳结构材料。5) Put solution E in a hydrothermal reaction kettle for hydrothermal reaction at 120-200°C. After the reaction, cool, wash, collect, and dry to obtain nano-flaky tungsten oxide/graphene oxide core-shell structure material .
所述钨粉的尺寸2~3μm。The size of the tungsten powder is 2-3 μm.
所述氧化石墨烯为微米级单层氧化石墨烯结构。The graphene oxide is a micron-scale single-layer graphene oxide structure.
所述的搅拌为磁力搅拌或超声分散。The stirring is magnetic stirring or ultrasonic dispersion.
所述溶液E置于水热反应釜内的填充比为35~75%。The filling ratio of the solution E in the hydrothermal reactor is 35-75%.
所述反应时间为20~35h。The reaction time is 20-35 hours.
所述洗涤采用无水乙醇离心洗涤3~5次,所述收集为离心收集。The washing is performed by centrifugal washing with absolute ethanol for 3 to 5 times, and the collection is centrifugal collection.
所述烘干温度为50~80℃,时间为12~16h。The drying temperature is 50-80° C., and the drying time is 12-16 hours.
由以上制备方法制成的核壳结构材料为方形单层薄片状结构,内层核为方形氧化钨纳米片,外层为氧化石墨烯,其中氧化钨单层薄片的厚度为10~30nm,长宽为100~250nm,外层氧化石墨烯的包覆厚度为5~20nm。The core-shell structure material made by the above preparation method is a square single-layer flake structure, the inner core is a square tungsten oxide nanosheet, the outer layer is graphene oxide, and the thickness of the tungsten oxide single-layer flake is 10-30nm, long The width is 100-250 nm, and the coating thickness of the outer graphene oxide is 5-20 nm.
由以上制备方法制成的纳米片状氧化钨/氧化石墨烯核壳结构材料应用于钠/锂/镁离子电池、超级电容器及光催化领域。The nano-flaky tungsten oxide/graphene oxide core-shell structure material prepared by the above preparation method is applied in the fields of sodium/lithium/magnesium ion batteries, supercapacitors and photocatalysis.
相对于现有技术,本发明至少具有以下有益效果:Compared with the prior art, the present invention has at least the following beneficial effects:
本发明采用原位一步合成氧化钨/氧化石墨烯核壳结构纳米粉体,该方法不需要大型设备和苛刻的反应条件,无需形貌控制剂,原料易得,成本低,产率高,无需后期处理,对环境友好,可以适合大规模生产。The present invention adopts in-situ one-step synthesis of tungsten oxide/graphene oxide core-shell nanopowder. Post-processing is environmentally friendly and can be suitable for mass production.
且通过该方法制备的氧化钨/氧化石墨烯核壳结构纳米粉体,具有以氧化钨为核、氧化石墨烯为壳的核壳结构。该核壳结构的纳米粉体应用于钠/锂/镁离子电池以及光催化领域,表现出了优异的性能。And the tungsten oxide/graphene oxide core-shell nanopowder prepared by the method has a core-shell structure with tungsten oxide as the core and graphene oxide as the shell. The nanopowder with the core-shell structure is applied in the fields of sodium/lithium/magnesium ion batteries and photocatalysis, and exhibits excellent performance.
附图说明Description of drawings
图1为本发明实施例1制备的纳米片状氧化钨/氧化石墨烯核壳结构材料粉体的X-射线衍射(XRD)图谱;Fig. 1 is the X-ray diffraction (XRD) pattern of the nano-flaky tungsten oxide/graphene oxide core-shell structure material powder prepared in Example 1 of the present invention;
图2和图3为本发明实施例1制备的纳米片状氧化钨/氧化石墨烯核壳结构材料粉体的扫描电子显微镜(SEM)照片和透射电子显微镜(TEM)照片。2 and 3 are scanning electron microscope (SEM) photos and transmission electron microscope (TEM) photos of the nanosheet tungsten oxide/graphene oxide core-shell structure material powder prepared in Example 1 of the present invention.
具体实施方式Detailed ways
下面结合附图及实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
实施例1:Example 1:
1)将2~3μm钨粉和氟化钠按10:1的质量比混合均匀得到混合粉体A;1) Mix 2-3 μm tungsten powder and sodium fluoride uniformly at a mass ratio of 10:1 to obtain mixed powder A;
2)分别取5ml质量浓度为30%的H2O2和5ml质量浓度为69%的HNO3混合均匀得混合溶液B; 2 ) Take 5ml of H2O2 with a mass concentration of 30 % and 5ml of HNO3 with a mass concentration of 69% and mix them uniformly to obtain a mixed solution B;
3)向混合溶液B中加入2ml质量浓度为0.05%的微米级单层结构的氧化石墨烯水溶液,得混合溶液C;3) adding 2ml of graphene oxide aqueous solution with a mass concentration of 0.05% in the mixed solution B to obtain a mixed solution C;
4)取1g混合粉体A缓慢加入混合溶液C中,磁力搅拌待其充分溶解后得溶液E;4) Take 1g of mixed powder A and slowly add it to mixed solution C, and magnetically stir until it is fully dissolved to obtain solution E;
5)按35%的填充比将溶液E置于水热反应釜内于160℃水热反应22h,反应结束后,冷却,采用无水乙醇离心洗涤3次、离心收集、于50℃烘干12h,即得到纳米片状氧化钨/氧化石墨烯核壳结构材料。5) Put solution E in a hydrothermal reaction kettle at 160°C for 22 hours at a filling ratio of 35%. After the reaction, cool down, wash with absolute ethanol for 3 times, collect by centrifugation, and dry at 50°C for 12 hours. , that is, a nano-flaky tungsten oxide/graphene oxide core-shell structure material is obtained.
通过该方法原位合成的核壳结构材料为方形单层薄片状结构,内层核为方形氧化钨纳米片,外层为氧化石墨烯,其中氧化钨单层薄片的厚度为10~30nm,长宽为100~250nm,外层氧化石墨烯的包覆厚度为5~20nm。该核壳材料应用于钠/锂/镁离子电池以及光催化领域。尤其是当其应用于钠离子电池时,表现出了优异的电化学性能。The core-shell structure material synthesized in situ by this method is a square single-layer flake structure, the inner core is a square tungsten oxide nanosheet, and the outer layer is graphene oxide. The width is 100-250 nm, and the coating thickness of the outer graphene oxide is 5-20 nm. The core-shell material is applied in the fields of sodium/lithium/magnesium ion batteries and photocatalysis. Especially when it is applied to Na-ion batteries, it exhibits excellent electrochemical performance.
从图1中可以看出,所制备的复合材料为三氧化钨和氧化石墨烯的复合材料。It can be seen from Figure 1 that the prepared composite material is a composite material of tungsten trioxide and graphene oxide.
从图2中可以清楚的看到所制备纳米粉体为大小均匀的单层片状结构,其尺寸为100-200nm,厚度约为20-30nm。It can be clearly seen from Fig. 2 that the prepared nanopowder is a uniform single-layer sheet structure with a size of 100-200nm and a thickness of about 20-30nm.
从图3中可以进一步看到,所制备的纳米单层片长宽为100nm左右的氧化钨,外层均匀包覆厚度约为15nm的氧化石墨烯层。进一步证实了所制备的材料为核壳结构。It can be further seen from FIG. 3 that the prepared nano single-layer sheet is tungsten oxide with a length and width of about 100 nm, and the outer layer is evenly coated with a graphene oxide layer with a thickness of about 15 nm. It is further confirmed that the prepared material has a core-shell structure.
实施例2:Example 2:
1)将2~3μm钨粉和氟化钠按10:1.5的质量比混合均匀得到混合粉体A;1) Mix 2-3 μm tungsten powder and sodium fluoride uniformly at a mass ratio of 10:1.5 to obtain mixed powder A;
2)分别取8ml质量浓度为30%的H2O2和8ml质量浓度为69%的HNO3混合均匀得混合溶液B; 2 ) Take 8ml of H2O2 with a mass concentration of 30 % and 8ml of HNO3 with a mass concentration of 69% and mix them uniformly to obtain a mixed solution B;
3)向混合溶液B中加入2.5ml质量浓度为0.1%的微米级单层结构的氧化石墨烯水溶液,得混合溶液C;3) Adding 2.5ml of graphene oxide aqueous solution with a micron-scale single-layer structure with a mass concentration of 0.1% to the mixed solution B to obtain a mixed solution C;
4)取2.5g混合粉体A缓慢加入混合溶液C中,超声分散待其充分溶解后得溶液E;4) Take 2.5g of mixed powder A and slowly add it to mixed solution C, and ultrasonically disperse it until it is fully dissolved to obtain solution E;
5)按75%的填充比将溶液E置于水热反应釜内于180℃水热反应24h,反应结束后,冷却,采用无水乙醇离心洗涤3次、离心收集、于60℃烘干14h,即得到纳米片状氧化钨/氧化石墨烯核壳结构材料。5) Put the solution E in a hydrothermal reaction kettle at 180°C for 24 hours at a filling ratio of 75%. After the reaction, cool down, wash with absolute ethanol for 3 times, collect by centrifugation, and dry at 60°C for 14 hours. , that is, a nano-flaky tungsten oxide/graphene oxide core-shell structure material is obtained.
实施例3:Example 3:
1)将2~3μm钨粉和氟化钠按10:3的质量比混合均匀得到混合粉体A;1) Mix 2-3 μm tungsten powder and sodium fluoride uniformly at a mass ratio of 10:3 to obtain mixed powder A;
2)分别取10ml质量浓度为30%的H2O2和10ml质量浓度为69%的HNO3混合均匀得混合溶液B; 2 ) Take 10ml of H2O2 with a mass concentration of 30 % and 10ml of HNO3 with a mass concentration of 69% and mix them uniformly to obtain a mixed solution B;
3)向混合溶液B中加入4ml质量浓度为0.13%的微米级单层结构的氧化石墨烯水溶液,得混合溶液C;3) Adding 4ml of graphene oxide aqueous solution with a mass concentration of 0.13% in the mixed solution B to obtain a mixed solution C;
4)取5.2g混合粉体A缓慢加入混合溶液C中,磁力搅拌待其充分溶解后得溶液E;4) Take 5.2g of mixed powder A and slowly add it to mixed solution C, and magnetically stir until it is fully dissolved to obtain solution E;
5)按35%的填充比将溶液E置于水热反应釜内于160℃水热反应30h,反应结束后,冷却,采用无水乙醇离心洗涤5次、离心收集、于80℃烘干16h,即得到纳米片状氧化钨/氧化石墨烯核壳结构材料。5) Put the solution E in a hydrothermal reaction kettle at a filling ratio of 35% and conduct a hydrothermal reaction at 160°C for 30 hours. After the reaction, cool down, wash with absolute ethanol for 5 times, collect by centrifugation, and dry at 80°C for 16 hours. , that is, a nano-flaky tungsten oxide/graphene oxide core-shell structure material is obtained.
实施41:Implementation 41:
1)将2~3μm钨粉和氟化钠按10:2的质量比混合均匀得到混合粉体A;1) Mix 2-3 μm tungsten powder and sodium fluoride uniformly at a mass ratio of 10:2 to obtain mixed powder A;
2)分别取15ml质量浓度为30%的H2O2和12ml质量浓度为69%的HNO3混合均匀得混合溶液B; 2 ) Take 15ml of H2O2 with a mass concentration of 30 % and 12ml of HNO3 with a mass concentration of 69% and mix them uniformly to obtain a mixed solution B;
3)向混合溶液B中加入5ml质量浓度为0.08%的微米级单层结构的氧化石墨烯水溶液,得混合溶液C;3) Adding 5ml of graphene oxide aqueous solution with a mass concentration of 0.08% in the mixed solution B to obtain a mixed solution C;
4)取8g混合粉体A缓慢加入混合溶液C中,超声分散待其充分溶解后得溶液E;4) Take 8g of mixed powder A and slowly add it to mixed solution C, and ultrasonically disperse it until it is fully dissolved to obtain solution E;
5)按50%的填充比将溶液E置于水热反应釜内于120℃水热反应35h,反应结束后,冷却,采用无水乙醇离心洗涤4次、离心收集、于70℃烘干13h,即得到纳米片状氧化钨/氧化石墨烯核壳结构材料。5) Put solution E in a hydrothermal reaction kettle at 120°C for 35 hours at a filling ratio of 50%. After the reaction, cool down, wash with absolute ethanol for 4 times, collect by centrifugation, and dry at 70°C for 13 hours. , that is, a nano-flaky tungsten oxide/graphene oxide core-shell structure material is obtained.
实施例5:Example 5:
1)将2~3μm钨粉和氟化钠按10:2.5的质量比混合均匀得到混合粉体A;1) Mix 2-3 μm tungsten powder and sodium fluoride uniformly at a mass ratio of 10:2.5 to obtain mixed powder A;
2)分别取12ml质量浓度为30%的H2O2和15ml质量浓度为69%的HNO3混合均匀得混合溶液B; 2 ) Take 12ml of H2O2 with a mass concentration of 30 % and 15ml of HNO3 with a mass concentration of 69% and mix them uniformly to obtain a mixed solution B;
3)向混合溶液B中加入6ml质量浓度为0.15%的微米级单层结构的氧化石墨烯水溶液,得混合溶液C;3) Adding 6ml of graphene oxide aqueous solution with a mass concentration of 0.15% in the mixed solution B to obtain a mixed solution C;
4)取6g混合粉体A缓慢加入混合溶液C中,超声分散待其充分溶解后得溶液E;4) Take 6g of mixed powder A and slowly add it to mixed solution C, and ultrasonically disperse it until it is fully dissolved to obtain solution E;
5)按60%的填充比将溶液E置于水热反应釜内于200℃水热反应20h,反应结束后,冷却,采用无水乙醇离心洗涤5次、离心收集、于80℃烘干12h,即得到纳米片状氧化钨/氧化石墨烯核壳结构材料。5) Put solution E in a hydrothermal reaction kettle at 200°C for 20 hours at a filling ratio of 60%. After the reaction, cool down, wash with absolute ethanol for 5 times, collect by centrifugation, and dry at 80°C for 12 hours. , that is, a nano-flaky tungsten oxide/graphene oxide core-shell structure material is obtained.
相对于现有技术,本发明至少具有以下有益效果:Compared with the prior art, the present invention has at least the following beneficial effects:
本发明采用原位一步合成氧化钨/氧化石墨烯核壳结构纳米粉体,该方法不需要大型设备和苛刻的反应条件,无需形貌控制剂,原料易得,成本低,产率高,无需后期处理,对环境友好,可以适合大规模生产。The present invention adopts in-situ one-step synthesis of tungsten oxide/graphene oxide core-shell nanopowder. Post-processing is environmentally friendly and can be suitable for mass production.
且通过该方法制备的氧化钨/氧化石墨烯核壳结构纳米粉体,具有以氧化钨为核、氧化石墨烯为壳的核壳结构。该核壳结构的纳米粉体应用于钠/锂/镁离子电池以及光催化领域,表现出了优异的性能。And the tungsten oxide/graphene oxide core-shell nanopowder prepared by the method has a core-shell structure with tungsten oxide as the core and graphene oxide as the shell. The nanopowder with the core-shell structure is applied in the fields of sodium/lithium/magnesium ion batteries and photocatalysis, and exhibits excellent performance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910706959.XA CN110327913B (en) | 2019-08-01 | 2019-08-01 | A kind of nano-flaky tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910706959.XA CN110327913B (en) | 2019-08-01 | 2019-08-01 | A kind of nano-flaky tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110327913A true CN110327913A (en) | 2019-10-15 |
CN110327913B CN110327913B (en) | 2022-05-10 |
Family
ID=68148375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910706959.XA Active CN110327913B (en) | 2019-08-01 | 2019-08-01 | A kind of nano-flaky tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110327913B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111974377A (en) * | 2020-09-01 | 2020-11-24 | 陕西科技大学 | High-activity high-stability tungsten oxide hydrogen production catalyst with carbon-coated defects and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101805023A (en) * | 2010-04-01 | 2010-08-18 | 中国科学院宁波材料技术与工程研究所 | Method for preparing tungstic oxide nano-sheets |
CN106872063A (en) * | 2017-01-17 | 2017-06-20 | 中国电子科技集团公司第四十九研究所 | A kind of preparation method and application of tubulose tungsten oxide graphene composite material |
CN108855047A (en) * | 2018-08-29 | 2018-11-23 | 河南师范大学 | A kind of flower-shaped tungstic acid/graphene composite photocatalyst and preparation method thereof |
-
2019
- 2019-08-01 CN CN201910706959.XA patent/CN110327913B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101805023A (en) * | 2010-04-01 | 2010-08-18 | 中国科学院宁波材料技术与工程研究所 | Method for preparing tungstic oxide nano-sheets |
CN106872063A (en) * | 2017-01-17 | 2017-06-20 | 中国电子科技集团公司第四十九研究所 | A kind of preparation method and application of tubulose tungsten oxide graphene composite material |
CN108855047A (en) * | 2018-08-29 | 2018-11-23 | 河南师范大学 | A kind of flower-shaped tungstic acid/graphene composite photocatalyst and preparation method thereof |
Non-Patent Citations (6)
Title |
---|
JINGJING GUO ET AL.: "Synthesis of WO3@Graphene composite for enhanced photocatalytic oxygen evolution from water", 《RSC ADVANCES》 * |
付长璟编: "《石墨烯的制备、结构及应用》", 30 June 2017, 哈尔滨工业大学出版社 * |
李嘉胤: "氧化钨水合物微/纳米材料的可控合成及其性能研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 * |
谷一冉: "纳米三氧化钨的制备及其光催化性能研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 * |
黄猛: "石墨烯基复合材料的合成及相关电化学性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
黎先财等: "H2O2氧化-水热结晶法合成纳米WO3的研究", 《稀有金属》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111974377A (en) * | 2020-09-01 | 2020-11-24 | 陕西科技大学 | High-activity high-stability tungsten oxide hydrogen production catalyst with carbon-coated defects and preparation method thereof |
CN111974377B (en) * | 2020-09-01 | 2022-11-18 | 陕西科技大学 | High-activity high-stability tungsten oxide hydrogen production catalyst with carbon-coated defects and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110327913B (en) | 2022-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103094563B (en) | Graphene and MoS2 nano-composite with three-dimensional structure and preparation method and application | |
CN104835654B (en) | A three-dimensional nitrogen-doped graphene/molybdenum disulfide composite and its preparation method | |
CN106099053B (en) | A kind of molybdenum sulfide/molybdenum selenide composite material and its preparation and application | |
CN103950992B (en) | The method of the transition metal oxide nano-slice of graphenic surface growing upright | |
CN106129344A (en) | A kind of tin ash/Titanium dioxide spherical granule and the preparation method of graphene nano belt composite | |
CN102044666A (en) | Method for preparing lithium iron phosphate composite material for lithium cells | |
CN105470486A (en) | Preparation method of granular tin dioxide/two-dimensional nano titanium carbide composite material | |
CN103700829B (en) | Titanium dioxide (B)-Graphene is from the preparation method of winding nano composite material | |
CN108899504A (en) | A kind of antimony-carbon nanotube-carbon composite, preparation method and application | |
CN105047427B (en) | Ultracapacitor combination electrode material and preparation method thereof and ultracapacitor | |
CN103219168A (en) | A kind of Li4Ti5O12/graphene composite electrode material and preparation method thereof | |
CN106082313A (en) | The preparation method of bar-shaped tin ash/two-dimensional nano titanium carbide composite | |
CN102509628A (en) | Nano Ni(OH)2 and Co(OH)2 composite material and preparation method for supercapacitor | |
CN110156081A (en) | A kind of preparation method of porous sheet-like TiNb2O7 nanocrystal for negative electrode of lithium ion battery | |
CN106384675A (en) | Carbon nitride/cobalt sulfide super capacitor electrode material, preparation method thereof, and application thereof | |
CN109956500A (en) | A kind of preparation method of nano-flower-like molybdenum disulfide material for negative electrode of lithium-sodium battery | |
CN108155028B (en) | Preparation method of flower-like molybdenum disulfide high-performance supercapacitor electrode | |
CN106698527A (en) | Hydrothermal method for preparing nanometer nickel cobaltate by taking ethylene glycol and water as solvent system | |
CN106450219A (en) | Multi-dimensional assembled three-dimensional vanadium trioxide/carbon composite nano material as well as preparation method and application thereof | |
CN106328382B (en) | Carbon ball/the MoS of " Huang-shell " structure2Composite material and preparation method | |
CN110491684B (en) | Acicular flower cobalt-nickel double metal hydroxide composite material and its preparation method and application | |
CN106992284B (en) | Redox graphene-ferrous metasilicate-ferroso-ferric oxide sandwich structure compound and its preparation method and application | |
CN110327913A (en) | A kind of nano-sheet tungsten oxide/graphene oxide Core-shell structure material and the preparation method and application thereof | |
CN113506860A (en) | Carbon nanotube-in-tube @ selenium composite material and preparation method and application thereof | |
CN107170978A (en) | A kind of carbon coating titanium dioxide mesomorphic nano composite material and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |