CN110327789A - 一种碳纳米管/纳米纤维导电复合膜及其制备方法 - Google Patents

一种碳纳米管/纳米纤维导电复合膜及其制备方法 Download PDF

Info

Publication number
CN110327789A
CN110327789A CN201910602872.8A CN201910602872A CN110327789A CN 110327789 A CN110327789 A CN 110327789A CN 201910602872 A CN201910602872 A CN 201910602872A CN 110327789 A CN110327789 A CN 110327789A
Authority
CN
China
Prior art keywords
carbon nanotube
membrane
film
nanofiber
supporting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910602872.8A
Other languages
English (en)
Other versions
CN110327789B (zh
Inventor
全燮
杜磊
陈硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201910602872.8A priority Critical patent/CN110327789B/zh
Publication of CN110327789A publication Critical patent/CN110327789A/zh
Application granted granted Critical
Publication of CN110327789B publication Critical patent/CN110327789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明属于膜技术领域,提供了一种碳纳米管/纳米纤维导电复合膜及其制备方法。利用静电纺丝工艺制备的一维纳米纤维无纺布为支撑层,在支撑层交联上碳纳米管作为分离层,构建出具备一维纳米材料交织而成的网状孔结构的导电膜。涉及到的复合膜的膜孔径从微滤到超滤范围可控,膜形态包括平板膜、中空纤维膜、卷式膜可控。涉及到的复合膜主要优点和有益效果在于:制备步骤简单,具有较好的渗透性和机械强度,良好的亲水性和导电性能,易于大规模生产应用。

Description

一种碳纳米管/纳米纤维导电复合膜及其制备方法
技术领域
本发明涉及到一种碳纳米管/纳米纤维导电复合膜及其制备方法,属于膜技术领域。
背景技术
膜分离技术作为一种高效节能且简单便捷的相分离技术,被广泛应用于水处理领域中的污水深度处理、家庭饮用水净化和资源回收利用等方面。然而,现有分离膜存在着水透过性和分离能力之间的相互矛盾关系、膜污染严重、膜功能单一等问题,严重制约了膜分离技术的进一步发展和应用。
研究发现基于碳纳米管制备的分离膜呈现出一维纳米材料交织成网状的膜结构和相互贯通的膜孔道,具有高孔隙率、低孔弯曲度和高渗透性的优点。且由于碳纳米管具有优秀的导电性能,通过电辅助(静电排斥、电增强吸附和电化学氧化等)-膜过滤耦合工艺,能有效减缓膜污染,缓解膜透过性和分离能力之间的矛盾关系,同时,电辅助工艺有希望赋予碳纳米管分离膜新的功能,能有效缓解膜分离技术现在面临的问题。目前研究基于碳纳米管的分离膜主要有三种:第一种,单纯碳纳米管材料组装的纯碳纳米管膜;第二种,碳纳米管与其它制膜材料(高分子材料、陶瓷膜材料等)混合均匀制备的混合基质膜;第三种,碳纳米管作为分离层,涂覆在支撑层基体上制备的复合膜。然而现有的基于碳纳米管的分离膜都存在一些问题,影响了分离膜的性能和应用。例如:纯碳纳米管膜存在着制备成本高、机械强度差、难以投入应用的问题;混合基质碳纳米管膜中碳纳米管被其它膜材料包覆严重,掩盖了碳纳米管材料本身的优势;碳纳米管复合膜的渗透性能受到支撑层基体的限制,无法发挥出碳纳米管作为一维纳米材料的结构优势。
发明内容
本发明着眼于基于碳纳米管分离膜具有的巨大研究和市场前景,针对现有碳纳米管分离膜制备技术存在的缺点,提供一种简单、高效,易于规模化生产的碳纳米管/纳米纤维复合分离膜。本发明通过采用一维纳米纤维构成的无纺布为支撑层,在支撑层交联上碳纳米管作为分离层,使整个复合膜保留了一维纳米材料交织而成的网状孔结构。
本发明的技术方案:
一种基于碳纳米管/纳米纤维复合分离膜,分为支撑层和功能层两部分,静电纺丝制备的纳米纤维作为支撑层,碳纳米管作为分离层,碳纳米管覆盖在纳米纤维表面,碳纳米管经过交联剂1和交联剂2共同交联固定;其中碳纳米管和纳米纤维均为一维线性材料,两种线性材料构建三维网状孔结构分离膜,且通过线性材料互相交错缠绕增强支撑层与分离层之间相互作用,构成稳定的膜结构。
方案所述的支撑层材料可以为合成聚合物高分子、天然高分子、无机物醇盐,陶瓷前驱体等包括但不限于此,适宜于静电纺丝的材料均可用来制备纳米纤维支撑层。
交联剂1和交联剂2:聚丙烯酰胺和丁二酸、聚乙烯醇和戊二醛、聚乙烯醇和戊二酸、酚醛树脂与乙二酸。
膜形态包括平板膜、中空纤维膜、卷式膜三种。
一种基于碳纳米管/纳米纤维复合分离膜的制备方法,步骤如下:
第一步,纳米纤维支撑层的制备
(1)将作为支撑层的纺丝材料溶于对应的溶剂中,配制成质量分数在10%-20%之间的纺丝液,进行静电纺丝;将纺丝液通过微量进样泵缓慢注射,液滴在静电场作用下,向接收装置迁移拉伸成纳米纤维,调控静电纺丝电压密度1kV/cm,纺丝距离在10cm-20cm范围,根据浓度调控纺丝时间在4-20h,从接收装置上得到相应纳米纤维支撑层;
其中,根据膜形态不同,具体操作如下:
平板膜:采用滚轮纳米纤维收集器或平板纳米纤维收集器接收静电纺丝制备纳米纤维,待收集完毕直接从收集器表面取下热压成型平板支撑层;
中空纤维膜:采用动态连续的细丝收集器,在静电纺丝成丝过程中,控制连续的细丝收集器以固定速率通过接收纳米纤维区域后,细丝收集器传送至加热室,根据材料耐热性加热稳定收缩纳米纤维;然后将细丝收集器浸入0.1mol/L稀酸液或铜盐溶液5-60min,之后抽离细丝收集器,得到中空纤维支撑层;
卷式膜:采用导电卷式中心管网作为纳米纤维收集器,待收集完毕,将中心管网和纳米纤维一起热压成型,然后通过涂胶将无纺布膜固定,然后冷却至室温得到卷式膜支撑层;
第二步,静电喷涂制备碳纳米管功能层
将混酸酸化后的碳纳米管分散于水中,配制成5-10mg/mL的分散液,混酸为体积比为3:1的95-98wt.%浓硫酸和65-68wt.%浓硝酸;然后在调控电压密度1kV/cm,纺丝距离在10-20cm范围内对纳米纤维支撑层进行静电喷涂;
第三步,碳纳米管/纳米纤维复合膜的交联
将制备成型的复合膜取下,浸泡在交联剂1和交联剂2的混合液中,并加入2M盐酸调节pH至2;取出后去离子水清洗,60℃条件下干燥固化。
本发明的有益效果:
(1)基于全一维纳米材料构建的分离膜,具有网状贯通孔结构的优势,膜孔隙率高、孔曲折度低、有效孔率高,这些优势增强了膜渗透性,本发明比市场上同孔径尺寸的分离膜通量高出2-10倍。
(2)基于极高长径比的一维纳米材料组装构建,本发明的分离膜表现出优秀的柔韧性和机械强度。
(3)分离层与支撑层界面由两种一维线性纳米材料互相交错缠绕增强了支撑层与分离层之间相互作用,起到稳定整体膜结构的作用
(4)通过静电喷涂工艺制备了碳纳米管分离层,分离层具有80%以上的孔隙率,有利于减少传质阻力,提高膜渗透性。
(5)保留了分离层碳纳米管导电的特性,有利于和其它工艺耦合。
(6)采用交联剂固定碳纳米管,保证了分离层的稳定性。
(7)方法灵活可控,可制备多种形态的分离膜且易于大规模生产应用。
附图说明
图1是碳纳米管/纳米纤维复合膜支撑层的扫描电镜图片。
图2是碳纳米管/纳米纤维复合膜分离层的扫描电镜图片。
具体实施方式
下面结合附图对本发明的实施例进行说明,但本发明不仅仅局限于以下实施例。
实施例1:制备碳纳米管/PAN纳米纤维复合平板膜
第一步,静电纺丝制备纳米纤维基底
将作为基底的高分子聚合物聚丙烯腈(PAN)溶于N,N二甲基甲酰胺(DMF)中,配制成质量分数在15%之间的纺丝液,调控电压密度1kV/cm左右,纺丝距离在10-20cm范围,根据浓度调控纺丝时间在10h,从接收装置上得到相应纳米纤维基底,在150℃条件下进行热压,得到平板纳米纤维支撑层。
第二步,静电喷涂制备碳纳米管功能层
将混酸酸化后60-100nm管径的碳纳米管分散于水中,配制成5mg/mL的分散液,然后在调控电压密度1kV/cm左右,纺丝距离在10-20cm范围内对纳米纤维基底进行静电喷涂6h。
第三步,碳纳米管/PAN纳米纤维复合膜的交联
将制备成型的复合膜取下,浸泡1h在质量浓度为聚丙烯酰胺(0.2%)和乙二酸(1%)的混合液中,并加入2M盐酸调节pH至酸性。取出后去离子水清洗,60℃条件下干燥固化。
结果:制备的碳纳米管/PAN纳米纤维复合平板膜支撑层和分离层均呈现出网状贯通孔结构,支撑层孔径在1-2μm范围,复合膜孔径在300nm左右。且因为PAN热稳定性较好,便于较高温度热压收缩纳米纤维,所以基于PAN材料制成的碳纳米管/纳米纤维复合膜具有最优的机械强度和稳定性。
实施例2:制备碳纳米管/PAN纳米纤维复合中空纤维膜
第一步,静电纺丝制备纳米纤维基底
将作为基底的高分子聚合物PAN溶于DMF中,配制成质量分数在15%之间的纺丝液,调控电压密度1kV/cm左右,纺丝距离在10cm范围,以不锈钢细丝收集器为接收装置,根据浓度调控纺丝时间在6h,从接收装置上得到相应纳米纤维中空纤维支撑层。
第二步,静电喷涂制备碳纳米管功能层
将混酸酸化后60-100nm管径的碳纳米管分散于水中,配制成5-10mg/mL的分散液,然后在调控电压密度1kV/cm左右,纺丝距离在10-20cm范围内对纳米纤维基底进行静电喷涂6h。
第三步,碳纳米管/PAN纳米纤维复合膜的交联
将制备成型的复合膜和收集器一起取下,浸泡1h在质量浓度为聚乙烯醇(0.2%)和戊二酸(1%)的混合液中,并加入2M盐酸调节pH至酸性。取出后去离子水清洗,60℃条件下干燥固化。然后将膜和收集器一起置于烘箱,250℃预氧化处理。预氧化后,将膜和收集器一起放在1M的硫酸铜溶液中浸泡10min,将中空纤维膜从细丝收集器上抽出,去离子水清洗干燥得到碳纳米管/PAN纳米纤维复合中空纤维膜。
结果:制备的碳纳米管/PAN纳米纤维复合中空纤维膜支撑层和分离层均呈现出网状贯通孔结构,支撑层孔径在1-2μm范围,复合膜孔径在300nm左右。
实施例3:制备碳纳米管/PVDF纳米纤维复合平板膜
第一步,静电纺丝制备纳米纤维基底
将作为基底的高分子聚合物聚偏氟乙烯(PVDF)溶于DMF和丙酮的混合溶液(体积比为9:1)中,配制成质量分数在18%之间的纺丝液,调控电压密度1kV/cm左右,纺丝距离在10cm范围,根据浓度调控纺丝时间在10h,在80℃条件下进行热压,从接收装置上得到相应平板纳米纤维膜基底。
第二步,静电喷涂制备碳纳米管功能层
将混酸酸化后的10-20nm管径碳纳米管分散于水中,配制成5-10mg/mL的分散液,然后在调控电压密度1kV/cm左右,纺丝距离在10-20cm范围内对纳米纤维基底进行静电喷涂6h。
第三步,碳纳米管/PVDF纳米纤维复合膜的交联
将制备成型的复合膜取下,浸泡1h在质量浓度为酚醛树脂的乙醇溶液中(0.2%),并加入乙二酸调节pH至酸性。取出后乙醇清洗,60℃条件下干燥固化。
结果:制备的碳纳米管/PVDF纳米纤维复合平板膜支撑层和分离层均呈现出网状贯通孔结构,支撑层孔径在400-600nm范围,复合膜孔径在70nm左右。
实施例4:制备碳纳米管/Al2O3纳米纤维复合平板膜
第一步,静电纺丝制备纳米纤维基底
将甲酸和乙酸按照1:1的质量比加入高纯水中,然后加入一定量的Al粉,加热搅拌至Al粉完全溶解,然后用玻璃纤维膜过滤去除残渣,配制成质量分数在10%左右的Al凝胶,然后再加入一定量的聚乙烯吡咯烷酮增加溶液黏度,调控电压密度1kV/cm左右,纺丝距离在10cm范围,根据浓度调控纺丝时间在10h,从接收装置上得到相应纳米纤维膜基底。然后取下基底800℃煅烧,保温两个小时得到Al2O3纳米纤维膜基底。
第二步,静电喷涂制备碳纳米管功能层
将混酸酸化后的60-100nm管径碳纳米管分散于水中,配制成5-10mg/mL的分散液,然后在调控电压密度1kV/cm左右,将煅烧后的Al2O3纳米纤维膜基底固定在接收装置上,纺丝距离在10-20cm范围内对纳米纤维基底进行静电喷涂6h。
第三步,碳纳米管/纳米纤维复合膜的交联
将制备成型的复合膜取下,浸泡1h在质量浓度为酚醛树脂的乙醇溶液中(0.2%),并加入乙二酸调节pH至酸性。取出后乙醇清洗,60℃条件下干燥固化。
结果:制备的碳纳米管/Al2O3纳米纤维复合中空纤维膜支撑层和分离层均呈现出网状贯通孔结构,支撑层孔径在300-500nm范围,复合膜孔径在100nm左右。
实施例5:制备碳纳米管/PAN纳米纤维复合卷式膜
第一步,静电纺丝制备纳米纤维基底
将作为基底的高分子PAN溶于DMF中,配制成质量分数在15%之间的纺丝液,调控电压密度1kV/cm左右,纺丝距离在10-20cm范围,根据浓度调控纺丝时间在10h,以不锈钢卷式管网为接收装置,在纺丝结束后通过涂胶和热压,将无纺布膜固定,然后冷却至室温,得到相应卷式纳米纤维支撑层。
第二步,静电喷涂制备碳纳米管功能层
将混酸酸化后60-100nm管径的碳纳米管分散于水中,配制成5mg/mL的分散液,然后在调控电压密度1kV/cm左右,纺丝距离在10-20cm范围内对纳米纤维基底进行静电喷涂6h。
第三步,碳纳米管/PAN纳米纤维复合膜的交联
将制备成型的复合膜取下,浸泡1h在质量浓度为聚丙烯酰胺(0.2%)和乙二酸(1%)的混合液中,并加入2M盐酸调节pH至酸性。取出后去离子水清洗,60℃条件下干燥固化。
结果:制备的碳纳米管/PAN纳米纤维复合卷式膜呈现出网状贯通孔结构,复合膜孔径在300nm左右。

Claims (4)

1.一种基于碳纳米管/纳米纤维复合分离膜,其特征在于,该基于碳纳米管/纳米纤维复合分离膜分为支撑层和功能层两部分,静电纺丝制备的纳米纤维作为支撑层,碳纳米管作为分离层,碳纳米管覆盖在纳米纤维表面,碳纳米管经过交联剂1和交联剂2共同交联固定;其中碳纳米管和纳米纤维均为一维线性材料,两种线性材料构建三维网状孔结构分离膜,且通过线性材料互相交错缠绕增强支撑层与分离层之间相互作用,构成稳定的膜结构。
2.根据权利要求1所述的基于碳纳米管/纳米纤维复合分离膜,其特征在于,所述的交联剂1和交联剂2:聚丙烯酰胺和丁二酸、聚乙烯醇和戊二醛、聚乙烯醇和戊二酸、酚醛树脂与乙二酸。
3.根据权利要求1或2所述的基于碳纳米管/纳米纤维复合分离膜,其特征在于,所述的基于碳纳米管/纳米纤维复合分离膜的形态包括平板膜、中空纤维膜、卷式膜三种。
4.一种基于碳纳米管/纳米纤维复合分离膜的制备方法,其特征在于,步骤如下:
第一步,纳米纤维支撑层的制备
(1)将作为支撑层的纺丝材料溶于对应的溶剂中,配制成质量分数在10%-20%之间的纺丝液,进行静电纺丝;将纺丝液通过微量进样泵缓慢注射,液滴在静电场作用下,向接收装置迁移拉伸成纳米纤维,调控静电纺丝电压密度1kV/cm,纺丝距离在10cm-20cm范围,根据浓度调控纺丝时间在4-20h,从接收装置上得到相应纳米纤维支撑层;
其中,根据膜形态不同,具体操作如下:
平板膜:采用滚轮纳米纤维收集器或平板纳米纤维收集器接收静电纺丝制备纳米纤维,待收集完毕直接从收集器表面取下热压成型平板支撑层;
中空纤维膜:采用动态连续的细丝收集器,在静电纺丝成丝过程中,控制连续的细丝收集器以固定速率通过接收纳米纤维区域后,细丝收集器传送至加热室,根据材料耐热性加热稳定收缩纳米纤维;然后将细丝收集器浸入0.1mol/L稀酸液或铜盐溶液5-60min,之后抽离细丝收集器,得到中空纤维支撑层;
卷式膜:采用导电卷式中心管网作为纳米纤维收集器,待收集完毕,将中心管网和纳米纤维一起热压成型,然后通过涂胶将无纺布膜固定,然后冷却至室温得到卷式膜支撑层;
第二步,静电喷涂制备碳纳米管功能层
将混酸酸化后的碳纳米管分散于水中,配制成5-10mg/mL的分散液,混酸为体积比为3:1的95-98wt.%浓硫酸和65-68wt.%浓硝酸;然后在调控电压密度1kV/cm,纺丝距离在10-20cm范围内对纳米纤维支撑层进行静电喷涂;
第三步,碳纳米管/纳米纤维复合膜的交联
将制备成型的复合膜取下,浸泡在交联剂1和交联剂2的混合液中,并加入2M盐酸调节pH至2;取出后去离子水清洗,60℃条件下干燥固化。
CN201910602872.8A 2019-07-05 2019-07-05 一种碳纳米管/纳米纤维导电复合膜及其制备方法 Active CN110327789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910602872.8A CN110327789B (zh) 2019-07-05 2019-07-05 一种碳纳米管/纳米纤维导电复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910602872.8A CN110327789B (zh) 2019-07-05 2019-07-05 一种碳纳米管/纳米纤维导电复合膜及其制备方法

Publications (2)

Publication Number Publication Date
CN110327789A true CN110327789A (zh) 2019-10-15
CN110327789B CN110327789B (zh) 2022-02-15

Family

ID=68144318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910602872.8A Active CN110327789B (zh) 2019-07-05 2019-07-05 一种碳纳米管/纳米纤维导电复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN110327789B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021003599A1 (zh) * 2019-07-05 2021-01-14 大连理工大学 一种碳纳米管/纳米纤维导电复合膜及其制备方法
CN112644119A (zh) * 2021-01-20 2021-04-13 河南工程学院 具有自清洁功能的lldpe电磁屏蔽膜的制备方法
CN114212773A (zh) * 2021-12-17 2022-03-22 上海纳米技术及应用国家工程研究中心有限公司 一种碳纳米管膜的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718727B1 (ko) * 2005-12-31 2007-05-15 성균관대학교산학협력단 전기방사법을 이용하여 절연체 위에 탄소나노튜브를 증착하는 방법 및 이에사용되는 전기방사장치
CN101947415A (zh) * 2010-08-13 2011-01-19 东华大学 静电纺丝和静电喷雾方法相结合制备纳米纤维基复合分离膜
CN103316594A (zh) * 2013-07-01 2013-09-25 大连理工大学 一种碳纳米管中空纤维膜的制备方法
CN103481624A (zh) * 2013-08-09 2014-01-01 天津工业大学 一种多层夹心式静电纺聚合物纳米纤维复合膜的制备方法
CN104028112A (zh) * 2014-03-05 2014-09-10 大连理工大学 一种规模化制备碳纳米管中空纤维膜的方法
CN105396466A (zh) * 2015-11-06 2016-03-16 北京化工大学 一种纤维素纳米纤维-氧化石墨烯杂化的复合超滤膜及其制备方法
CN108939945A (zh) * 2018-07-20 2018-12-07 大连理工大学 一种稳定的陶瓷基复合碳膜及其制备方法
CN109569310A (zh) * 2018-12-11 2019-04-05 东华大学 一种用于膜蒸馏的静电纺PcH/CNT纳米纤维膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100718727B1 (ko) * 2005-12-31 2007-05-15 성균관대학교산학협력단 전기방사법을 이용하여 절연체 위에 탄소나노튜브를 증착하는 방법 및 이에사용되는 전기방사장치
CN101947415A (zh) * 2010-08-13 2011-01-19 东华大学 静电纺丝和静电喷雾方法相结合制备纳米纤维基复合分离膜
CN103316594A (zh) * 2013-07-01 2013-09-25 大连理工大学 一种碳纳米管中空纤维膜的制备方法
CN103481624A (zh) * 2013-08-09 2014-01-01 天津工业大学 一种多层夹心式静电纺聚合物纳米纤维复合膜的制备方法
CN104028112A (zh) * 2014-03-05 2014-09-10 大连理工大学 一种规模化制备碳纳米管中空纤维膜的方法
CN105396466A (zh) * 2015-11-06 2016-03-16 北京化工大学 一种纤维素纳米纤维-氧化石墨烯杂化的复合超滤膜及其制备方法
CN108939945A (zh) * 2018-07-20 2018-12-07 大连理工大学 一种稳定的陶瓷基复合碳膜及其制备方法
CN109569310A (zh) * 2018-12-11 2019-04-05 东华大学 一种用于膜蒸馏的静电纺PcH/CNT纳米纤维膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAI ZHIJIANG ET AL.,: "《Improved piezoelectric performances of highly orientated poly(β-hydroxybutyrate) electrospun nanofiber membrane scaffold blended》", 《MATERIALS LETTERS》 *
汪策等: "《空气过滤用静电纺聚苯乙烯/碳纳米管复合纤维膜的制备》", 《材料科学与工程学报》 *
焦昆艳: "丙纶/聚丙烯腈-碳纳米管梯度结构纤维复合膜的构建及过滤性能研究", 《中国优秀博硕学位论文全文数据库(硕士) 工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021003599A1 (zh) * 2019-07-05 2021-01-14 大连理工大学 一种碳纳米管/纳米纤维导电复合膜及其制备方法
CN112644119A (zh) * 2021-01-20 2021-04-13 河南工程学院 具有自清洁功能的lldpe电磁屏蔽膜的制备方法
CN114212773A (zh) * 2021-12-17 2022-03-22 上海纳米技术及应用国家工程研究中心有限公司 一种碳纳米管膜的制备方法

Also Published As

Publication number Publication date
CN110327789B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN110327789A (zh) 一种碳纳米管/纳米纤维导电复合膜及其制备方法
CN106192201B (zh) 一种石墨烯纤维无纺布及其制备方法
CN102580560B (zh) 纳米材料掺杂聚合物膜的制备方法
CN103882559B (zh) 高比表面多孔碳纤维及其制备方法与应用
CN105696197B (zh) 一种c型核壳纳米纤维膜及其偏心轴静电纺丝制备方法
CN107299456A (zh) 一种复合纳米纤维膜及其制备方法和应用
CN102743981B (zh) 一种海藻酸钠渗透汽化杂化膜的制备及其应用
CN101905122B (zh) 一种高负载无机纳米粒子杂化有机膜的自组装方法
CN104805535A (zh) 一种多孔碳纳米纤维的制备方法
CN104028112A (zh) 一种规模化制备碳纳米管中空纤维膜的方法
CN104128099B (zh) 一种基于静电纺和自组装技术的复合纳滤膜及其制备方法
CN108285643A (zh) 一种纤维素纳米纤维/磺化聚醚砜质子交换膜及制备方法
CN111074380B (zh) 一种氧化石墨烯/聚丙烯酸钠的拉伸流体及其在制备石墨烯中的应用
CN109966928B (zh) 一种高通量高强度聚酰胺平板微滤膜的制备方法
CN104963098A (zh) 一种静电纺丝全氟聚合物纳米纤维膜的制备方法
CN109806771B (zh) 一种纳米纤维基复合血液透析膜及其制备方法
CN111013407A (zh) 一种多级过滤亲水性纳米纤维膜及其制造方法
CN108315877A (zh) 一种石墨烯无纺布及其生产制造工艺
CN112999895B (zh) 一种聚偏氟乙烯亲水拉伸膜的制备方法
CN105401335A (zh) 一种聚芳醚酮基微/纳米纤维的制备方法
CN110975651B (zh) 一种多功能高效污水处理膜及其制备方法
CN107021549A (zh) 石墨烯/碳纳米管/碳纳米纤维膜三元复合电容型脱盐电极的制备方法
CN105233704A (zh) 一种高性能复合膜的新型制备方法
CN108654394A (zh) 一种纳米纤维阳离子交换膜及其制备方法与应用
CN112808019A (zh) 一种使用绿色溶剂热致相法制备聚芳醚酮管式膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant