CN110284097B - 环境障涂层及其涂覆方法与应用 - Google Patents

环境障涂层及其涂覆方法与应用 Download PDF

Info

Publication number
CN110284097B
CN110284097B CN201910744227.XA CN201910744227A CN110284097B CN 110284097 B CN110284097 B CN 110284097B CN 201910744227 A CN201910744227 A CN 201910744227A CN 110284097 B CN110284097 B CN 110284097B
Authority
CN
China
Prior art keywords
rare earth
coating
layer
environmental barrier
aluminum film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910744227.XA
Other languages
English (en)
Other versions
CN110284097A (zh
Inventor
张小锋
王超
刘敏
邓春明
牛少鹏
邓子谦
毛杰
邓畅光
张吉阜
杨焜
徐丽萍
宋进兵
陈志坤
曾威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials of Guangdong Academy of Sciences
Original Assignee
Guangdong Institute of New Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of New Materials filed Critical Guangdong Institute of New Materials
Priority to CN201910744227.XA priority Critical patent/CN110284097B/zh
Publication of CN110284097A publication Critical patent/CN110284097A/zh
Priority to US16/734,847 priority patent/US20210047722A1/en
Application granted granted Critical
Publication of CN110284097B publication Critical patent/CN110284097B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Abstract

本发明涉及陶瓷涂层表面处理技术领域,公开了环境障涂层的涂覆方法,包括:在稀土硅酸盐陶瓷层的表面涂覆铝膜层;对铝膜层进行热处理以至少在稀土硅酸盐陶瓷层朝向铝膜层的一面的孔隙内形成稀土铝酸盐物相。该方法由于在稀土硅酸盐的表面设置铝膜层,然后进行热处理,使得熔融铝进入稀土硅酸盐陶瓷层表面的孔隙中将孔隙填充,且熔融铝与稀土硅酸盐陶瓷层热环境下分解生成的稀土氧化物和二氧化硅反应生成更加致密和耐水的稀土铝酸盐,有效提高了环境障涂层的服役性能延长了服役时间。还公开了通过上述方法制得的环境障涂层。该涂层服役性能好,服役时间长。

Description

环境障涂层及其涂覆方法与应用
技术领域
本发明涉及陶瓷涂层表面处理技术领域,具体而言,涉及环境障涂层及其涂覆方法与的应用。
背景技术
新一代高推重比航空发动机的发展,必然导致航空发动机中燃气温度的提高,相应造成高压涡轮热端部件表面温度的提高。高推重比航空发动机热端部件表面温度将达到1400℃以上,远远超过了现有高温合金材料所能承受的温度范围。SiC陶瓷基复合材料具有耐高温(长期使用温度最高达到1650℃)、低密度、高强度、高模量、抗氧化、抗烧蚀、对裂纹不敏感等特点,成为可以取代高温合金的最有潜力的热结构材料。该材料可以使航空发动机大幅度减重,减少燃气和冷却空气量,提高推重比。在航空发动机上,SiC陶瓷基复合材料主要应用于热端部件,如尾喷管、燃烧室/加力燃烧室、涡轮等,该材料可以提高工作温度达到200~500℃,结构减重30%~50%,已成为航空发动机提高推重比的关键热结构材料之一。在发动机工作环境下,高温、腐蚀介质、燃气冲刷以及复杂应力环境等多因素交互作用,SiC陶瓷基复合材料表面稳定性急剧恶化,成为制约其应用于航空发动机热端部件的主要因素之一。环境障涂层(Environmental Barrier Coatings,EBCs)可以有效解决这一难题,成为SiC陶瓷基复合材料应用于高推重比航空发动机热端部件的关键技术。
环境障涂层的功能就是在发动机恶劣环境中对基体材料起到保护作用,阻止或减小发动机环境对高温结构材料性能的影响。要达到这一目的,环境障涂层材料本身必须具备以下几个特点:(1)由于涂层材料直接接触外界高温环境,因此,涂层材料应该具有较高的熔点;(2)涂层材料体系与基体材料之间应该具有良好的机械结合力,保证涂层体系与基体以及涂层体系内部各层之间不发生剥落;(3)涂层材料应具有良好的表面稳定性以及较低的氧渗透能力,以避免其与环境气体发生反应并尽可能抑制氧气与基体材料发生接触;(4)涂层材料应与基体材料具有相近的热膨胀系数(Coefficient of Thermal Expansion,CTE),如果热膨胀系数相差较大,那么在使用过程中就会产生应力,造成分层和裂纹的产生;(5)涂层材料在高温条件下不能发生相变,因为相变通常会导致体积的变化,进而导致涂层开裂甚至剥落;(6)涂层材料应该具有较好的化学稳定性和耐腐蚀性,避免生成不稳定相并且能够抵抗发动机恶劣环境的腐蚀;(7)涂层要致密、均匀、缺陷少,在保证具有抗氧化、耐腐蚀能力的前提下,密度应该尽可能低,不影响基体材料的整体性能。
基于环境障涂层材料须具备的特点,NASA在二十世纪六十年代开展了环境障涂层的研究,到目前为止,环境障涂层材料的研究主要经历了阶段。早期的环境障涂层主要着眼于提高涂层的抗熔盐腐蚀性能。氧化物陶瓷相对于非氧化物陶瓷有较好的高温抗腐蚀性和长期稳定性,是硅基非氧化物陶瓷表面环境障涂层材料的首选。莫来石(Mullite,3Al2O3-2SiO2)因其和硅基陶瓷材料有相近的热膨胀系数、良好的化学相容性以及自身优异的抗腐蚀性能首先进入人们的视野。第一代环境障涂层主要是指在硅基陶瓷表面用大气等离子喷涂(Air Plasma Spraying,APS)方法沉积的莫来石涂层。早期的第一代莫来石环境障涂层的主要问题是涂层在使用过程中会产生较多的裂纹,使得腐蚀性物质能够沿着裂纹渗入和基体接触,造成基体的破坏。NASA的Glen研究中心的研究小组分析了环境障涂层中裂纹产生的机理,发现采用常规APS方法制备莫来石环境障涂层时,在莫来石固化凝结过程中由于温降速率较大,使得涂层中存在较多的亚稳态的莫来石。涂层在较高温度的使用过程中,这些亚稳态的莫来石要转化成自由能较低的稳态的莫来石。两者的密度不同,在转变过程中就会产生热应力,从而造成裂纹的发生。针对早期环境障涂层存在的不足,NASA的研究小组改进了用APS方法制备涂层的工艺。在制备莫来石环境障涂层过程中对基体进行加热,提高基体温度,降低涂层固化凝结过程中的温降,从而有效地控制了涂层中亚稳态莫来石的含量。其研究表明,用改进的APS方法制备的环境障涂层相对于用常规APS方法制备的环境障涂层在使用过程中产生的裂纹数量得到了显著的降低。改进的莫来石环境障涂层粘着力得到了增强,涂层中的裂纹得到了有效控制,但带有莫来石环境障涂层的硅基非氧化物陶瓷表面稳定性仍然不足。二十世纪九十年代,随着SiO2和水蒸汽反应生成挥发性的Si(OH)4的机理被人们认识,环境障涂层研究的重心才从提高陶瓷基体的抗熔盐腐蚀性能转移到提高其抗水蒸汽侵蚀能力上来,这就要求涂层表面首先必须具备抗水蒸汽侵蚀能力。莫来石具有较高的SiO2活度(约0.4),如前所述,SiO2和水蒸气反应生成挥发性的Si(OH)4被高速运动的气流带走,使得涂层表面只留下疏松的Al2O3层,疏松的Al2O3层剥落造成涂层的失效。因此,莫来石环境障涂层的抗水蒸汽侵蚀能力不好,良好的环境障涂层在莫来石涂层外表面还应该有一层陶瓷面层。Y2O3部分稳定的ZrO2(Yttria-Stabilized Zirconia,YSZ)因在发动机环境下的热障涂层中的良好应用而首先被尝试。莫来石+YSZ体系的环境障涂层在最初的服役过程中显著降低了SiO2的挥发,但这种保护作用的持久性不足,当涂层在1300℃含水蒸汽环境下服役达到100h左右时,涂层会发生加速氧化失效。分析表明,这种加速氧化失效和涂层在服役过程中产生的裂纹有很大关系。YSZ的热膨胀系数较高,大约是莫来石的两倍,在冷、热循环过程中就不可避免的产生热应力,从而萌生裂纹,当裂纹贯穿整个YSZ层和莫来石层时,水蒸汽就会沿着裂纹扩散和基体接触,加速基体的氧化。第一代环境障涂层由于涂层材料自身的长期稳定性不足和在使用过程中会产生裂纹,远没有达到能够在发动机环境下应用的水平。
NASA在第一代环境障涂层的基础上开发了第二代环境障涂层。第二代环境障涂层采用莫来石作为中间层,而采用BSAS(BaO1-x-SrOx-Al2O3-SiO2,0≤x≤1)作为环境障涂层面层。BSAS相对于莫来石具有较低的SiO2活度(<0.1),减少了涂层在发动机环境中的挥发,同时BSAS还具有较低的热膨胀系数及弹性模量,和莫来石匹配较好,涂层在热循环过程中产生的热应力较小,抑制了裂纹的产生。第二代环境障涂层较第一代环境障涂层的另一改进是在涂覆莫来石层前先在硅基陶瓷表面涂覆一层硅,硅层的存在增强了涂层和基体的结合力。第二代环境障涂层较第一代环境障涂层最显著的优点是大大提高了涂层对基体保护的持久性,在实践中获得了良好应用。涂有第二代环境障涂层的SiC晶须增强SiC陶瓷使用在涡轮发动机外壳内衬中(最高温度1250℃),使用寿命较没有环境障涂层时提高了3倍多。第二代环境障涂层存在的不足是其最高使用温度较低。在更高的使用温度下,虽然BSAS中的SiO2活度较莫来石低,但涂层表面稳定性仍然满足不了发动机设计的要求。1400℃下,在总压为6个标准大气压,气体流速为24m/s的燃气环境中,BSAS涂层1000h退化的尺寸范围为70μm左右。且BSAS和SiO2高温下的化学相容性不好。在1200℃下,BSAS和SiO2反应生成玻璃相,在更高温度下玻璃相的生成速度更快。这些玻璃相的熔化温度区间较低,大约在1300℃左右。由于玻璃相的存在,降低了涂层的结合力,就有可能造成涂层的早期失效。有学者认为保证BSAS作为面层的环境障涂层能安全工作1000h以上的最高温度在1300~1400℃之间。BSAS作为面层的环境障涂层能够稳定工作的最高温度显然没有充分挖掘出硅基陶瓷的潜能,NASA的目标是制备表面能够承受1482℃,而涂层、基体界面温度能够控制在1316℃以下的环境障涂层。因此,寻找能在更高温度下使用的环境障涂层面层的工作仍在继续。这样的涂层表面在1482℃下发动机工作环境中要具有较低的蒸气压,同时在1400℃或更高温度下和中间层的莫来石应该有较好的热物理性能匹配及化学相容性。
基于第二代EBCs的缺点,研究学者正在开展第三代环境障涂层研究。稀土硅酸盐相对于BSAS具有较低的SiO2活度,在航空发动机工作环境下的挥发性小于BSAS,是有可能取代BSAS在更高温度下使用的环境障涂层面层候选材料。稀土硅酸盐中,Lu2SiO5、Sc2SiO5、Yb2SiO5等在航空发动机工作温度范围内没有相变发生,满足环境障涂层对相结构稳定性的要求。稀土硅酸盐本身和硅基陶瓷结合不好,不能直接涂覆在硅基陶瓷表面,需要先涂覆一层莫来石作为中间层,因此稀土硅酸盐要作为环境障涂层面层材料还要满足和中间莫来石层的化学相容性要求。Lu2Si2O7、Lu2SiO5、Yb2SiO5等和莫来石的化学相容性较好,不会生成中间相。总结以上分析,Lu2Si2O7、Lu2SiO5、Yb2SiO5无论是在发动机环境中的表面稳定性还是和中间层的化学相容性都要好于BSAS,因此适宜作为更高温度下的环境障涂层面层材料。目前这些稀土硅酸盐环境障涂层服役性能以及服役时间有待进一步提高。
鉴于此,特提出本申请。
发明内容
本发明的提供一种环境障涂层及其涂覆方法,旨在进一步提高以稀土硅酸盐陶瓷层作为隔离层的环境障涂层的服役性能以及服役寿命。
本发明是这样实现的:
第一方面,本发明实施例提供一种环境障涂层的涂覆方法,包括:
在稀土硅酸盐陶瓷层的表面涂覆铝膜层;
对铝膜层进行热处理以至少在稀土硅酸盐陶瓷层朝向铝膜层的一面的孔隙内形成稀土铝酸盐物相。
在可选的实施方式中,对铝膜层进行热处理以在稀土硅酸盐陶瓷层朝向铝膜层的一面的孔隙内形成稀土铝酸盐物相,且在稀土硅酸盐陶瓷层朝向铝膜层的一面形成稀土铝酸盐物相层。
在可选的实施方式中,铝膜层的厚度为2~5μm。
在可选的实施方式中,铝膜层的喷涂方法为磁控溅射法;
在可选的实施方式中,磁控溅射法的操作参数为:磁控靶电流3~6A,偏压150~250V。
在可选的实施方式中,稀土硅酸盐陶瓷层包括Lu2Si2O7、Lu2SiO5、Yb2SiO5以及Yb2SiO5陶瓷层。
优选地,稀土硅酸盐陶瓷层为Yb2SiO5陶瓷层,对沉积有铝膜层的表面进行热处理后形成Yb3Al5O12涂层。
在可选的实施方式中,热处理条件为700~800℃保温2~4h,然后升温至1300~1350℃保温20~24h。
在可选的实施方式中,热处理为真空热处理,氧气分压小于2×10-3Pa。
在可选的实施方式中,升温速率为5~30℃/min。
在可选的实施方式中,在Yb2SiO5陶瓷层的表面喷涂铝膜层之前还包括:
在莫来石层表面涂覆稀土硅酸盐陶瓷层;
优选地,采用大气等离子喷涂或等离子喷涂-物理气相沉积法在莫来石层的表面涂覆稀土硅酸盐陶瓷层;
优选地,莫来石层的厚度为50~80μm;稀土硅酸盐陶瓷层的厚度为80~100μm。
在可选的实施方式中,在莫来石层表面涂覆稀土硅酸盐陶瓷层前还包括:在硅层表面涂覆莫来石层,
优选地,硅层的厚度为40~60μm;
优选地,采用大气等离子喷涂或等离子喷涂-物理气相沉积法在硅层表面涂覆莫来石层;
优选地,在硅层表面涂覆莫来石层之前还包括:在基体表面涂覆硅层;更优选地,采用大气等离子喷涂或等离子喷涂-物理气相沉积法在基体表面涂覆硅层;
优选地,基体为碳化硅基复合材料基体。
第二方面,本发明实施例提供一种环境障涂层,采用如前述实施方式任一项的环境障涂层的涂覆方法涂覆得到。
第三方面,本发明实施例提供如前述实施方式的环境障涂层在航空航天领域的应用。
本发明具有以下有益效果:
本发明通过上述设计得到的环境障涂层的涂覆方法,由于在稀土硅酸盐的表面设置铝膜层,然后进行热处理,使得熔融铝进入稀土硅酸盐陶瓷层表面的孔隙中将孔隙填充,且熔融铝与稀土硅酸盐陶瓷层热环境下分解生成的稀土氧化物和二氧化硅反应生成更加致密和耐水的稀土铝酸盐物相,有效提高了环境障涂层的服役性能延长了服役时间。
本发明通过上述设计得到的环境障涂层,由于采用本发明提供的方法制得,因此其服役性能好,服役寿命长。其应用于航空航天领域时,能显著提高航空航天设备的使用性能和寿命。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1制备环境障涂层过程中,涂覆铝膜后,未热处理之前涂层剖切面的SEM图;
图2为实施例1制得的环境障涂层剖切面的SEM图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
以下对本发明实施例提供的环境障涂层及其涂覆方法与应用进行具体说明。
发明人发现,现有的稀土硅酸盐环境障涂层之所以性能有待进一步提高主要原因在于:
稀土硅酸盐环境障涂层涂覆成型过程中,稀土硅酸盐容易在热喷涂沉积过程中分解为稀土氧化物和SiO2,分解产生的这两种物质水氧腐蚀性能较低;而采用热喷涂制备环境障涂层时,由于热影响的作用,涂层表面存在不同程度的微小裂纹,这些微裂纹使得涂层在服役过程中容易形成水氧通道,导致涂层提前失效;以及在热循环过程中会产生裂纹,而致使稀土元素涂层服役时间难以进一步提高。
一种环境障涂层的涂覆方法,包括:
S1、依次在基体表面设置硅层、莫来石层和稀土硅酸盐陶瓷层。
采用热喷涂方法在碳化硅基复合材料表面制备硅层、莫来石层和稀土硅酸盐陶瓷层。热喷涂方法可以是大气等离子喷涂或等离子喷涂-物理气相沉积法。
硅层作为粘接层,将作为基体的碳化硅基复合材料和莫来石粘接牢固。
莫来石具有与硅基陶瓷材料有相近的热膨胀系数、良好的化学相容性以及自身优异的抗腐蚀性。因此以莫来石作为中间层。
稀土硅酸盐具有较好的表面稳定性。依次设置硅层、莫来石层和稀土硅酸盐层得到的涂层是目前现有技术中使用广泛且性能较佳的环境涂层。
采用常用的大气等离子喷涂或等离子喷涂-物理气相沉积法在基体表面依次设置硅层、莫来石层以及稀土硅酸盐陶瓷层。需要说明的是,设置上述涂层的方法并不局限于大气等离子喷涂或等离子喷涂-物理气相沉积法,现有的设置避障涂层的其他方法也同样适用。
然而,稀土硅酸盐一般通过固相反应烧结法制备,由稀土氧化物和SiO2在高温下烧结反应而得到。在喷涂过程中,局部等离子体温度大大高于其熔点,导致部分稀土硅酸盐分解,尽管后续对涂层热处理使分解的产物再次反应生成稀土硅酸盐,但并不能反应完全,仍有部分氧化产物残留,在高温水氧环境下与水蒸气反应形成化合物蒸发,使涂层产生多孔结构以及在热循环过程中产生裂纹,破坏涂层服役性能。
本申请中所指稀土硅酸盐优选地为常见应用于环境障涂层中的稀土硅酸盐,具体包括Lu2Si2O7、Lu2SiO5、Yb2SiO5
为了克服稀土硅酸盐陶瓷层因制备过程产生的缺陷,进一步提高环境障涂层的性能。在稀土硅酸盐陶瓷层的表面进行以下操作。
S2、在稀土硅酸盐陶瓷层的表面涂覆铝膜层。
在设置稀土硅酸盐陶瓷层后,采用磁控溅射法在其表面涂覆铝膜层。
具体地,为了使得涂层涂覆均匀且牢固。磁控溅射法的操作参数为:磁控靶电流3~6A,偏压150~250V。
S3、对铝膜层进行热处理以至少在稀土硅酸盐陶瓷层朝向铝膜层的一面的孔隙内形成稀土铝酸盐物相。
稀土硅酸盐陶瓷层表面存在一定的微裂纹,在热处理下,熔融铝向涂层内部渗透,对近表面的涂层裂纹进行封孔处理。另外,环境障涂层表面熔覆的Al膜和裂纹中渗透的Al将与环境障涂层中的稀土氧化物物象和SiO2物相发生反应,熔融Al首先与SiO2发生反应形成Al2O3相,随后Al2O3相继续与稀土氧化物发生反应形成稀土铝酸盐物相,通过上述步骤,使得至少在稀土硅酸盐涂层表面的孔隙内获得更加致密和耐水氧腐蚀的稀土铝酸盐物相。
优选地,合理调整热处理条件以在稀土硅酸盐陶瓷层朝向铝膜层的一面的孔隙内形成稀土铝酸盐物相,且在稀土硅酸盐陶瓷层朝向铝膜层的一面形成稀土铝酸盐物相层。除了在孔隙内形成稀土铝酸盐物相以外,还在稀土硅酸盐陶瓷层表面形成致密和耐水氧腐蚀性的稀土铝酸盐物相层,以更进一步提高环境障涂层的性能。
优选地,在本发明的优选实施例中,稀土硅酸盐优选为Yb2SiO5,对沉积有铝膜层的表面进行热处理后形成Yb3Al5O12涂层。Lu2Si2O7、Lu2SiO5、Yb2SiO5
Yb3Al5O12为正十二面体石榴石型晶体结构,且一般在等轴晶系中结晶,和Yb2SiO5有良好的热匹配性(Yb3Al5O12热膨胀系数为7.5×10-6K-1,Yb2SiO5热膨胀系数为7~8×10- 6K-1),同时具有较高的强度和断裂韧性及低的导热系数(理论导热系数~1.22w/m·k)。Yb3Al5O12受限于其材料特性,容易在热喷涂过程中产生较大的应力裂纹,使涂层存在较大的缺陷。而在本申请中,以铝膜层为反应材料,利用Yb2SiO5陶瓷层的分解产物,采用真空热处理的方式原位合成得到Yb3Al5O12,既有效解决了原本Yb2SiO5陶瓷层在喷涂过程中产生的缺陷,又避免了直接设置Yb3Al5O12保护层在制备过程中产生的较大应力裂纹,不仅能够在现有以Yb2SiO5陶瓷层作为表层的环境障涂层的基础上提高环境障涂层的服役性能和服役时间,还能使得Yb3Al5O12在高温防护领域发挥优势。
优选的,为了保证制得的环境障涂层的综合性能更好。硅层的厚度为40~60μm,莫来石层的厚度为50~80μm,Yb2SiO5陶瓷层的厚度为80~100μm。
优选地,为了保证制得的Yb3Al5O12涂层的厚度更适合环境障涂层,保证充足的熔融铝能在真空热处理中渗透入Yb2SiO5陶瓷层的裂纹和孔隙中,铝膜层的厚度为2~5μm。
优选地,已知纯铝的熔点约667℃,为保证热处理能够得到Yb3Al5O12相,真空热处理条件为700~800℃保温2~4h,然后升温至1300~1350℃保温20~24h。700-800℃时保温2-4h使Al膜重新熔融充分渗入涂层孔隙当中并均匀铺展在涂层上(时间过短Al不能充分渗入孔隙和铺展),与此同时,Al也会预氧化反应生成Al2O3。随后加热到Al2O3与Yb2O3的反应温度(1300-1350℃)原位反应生成Yb3Al5O12,使Yb3Al5O12保护层可以均匀覆盖在涂层之上。
优选地,为了避免空气干扰反应,热处理为真空热处理,氧气分压小于2×10-3Pa。当然在本发明的其他实施例中,热处理还可以是在惰性气体气氛下进行,同样能够达到避免空气参与反应的效果。
更优选的,升温速率为5~30℃/min。升温速率保证在一定范围内,既保证加热效率,又避免过快导致涂层内产生的较大热应力,引入缺陷,破坏原涂层的力学性能。
本发明实施例提供的环境障涂层,采用本发明实施例提供的环境障涂层的涂覆方法涂覆得到。该涂层耐水氧腐蚀性能好,服役时间长。该涂层适合应用于航空航天领域,当该涂层作为航空发动机的涂层时,能大大提高航空发动机的服役寿命。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用大气等离子喷涂在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为50μm、50μm、80μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度3μm的铝膜层,其中磁控溅射的条件是:磁控靶电流3A,偏压150V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:800℃保温2h、1300℃保温24h,升温速率为5℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实施例2
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用等离子喷涂-物理气相沉积在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为50μm、50μm、80μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度3μm的铝膜层,其中磁控溅射的条件是:磁控靶电流3A,偏压150V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:700℃保温2h、1300℃保温24h,升/降温速率为10℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实施例3
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用等离子喷涂-物理气相沉积在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为50μm、50μm、80μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度2μm的铝膜层,其中磁控溅射的条件是:磁控靶电流3A,偏压150V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:700℃保温2h、1350℃保温20h,升温速率为10℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实施例4
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用大气等离子喷涂在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为50μm、50μm、80μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度2μm的铝膜层,其中磁控溅射的条件是:磁控靶电流3A,偏压250V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:800℃保温2h、1350℃保温20h,升温速率为5℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实施例5
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用等离子喷涂-物理气相沉积在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为50μm、50μm、80μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度5μm的铝膜层,其中磁控溅射的条件是:磁控靶电流4A,偏压230V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:800℃保温4h、1350℃保温24h,升温速率为10℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实施例6
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用大气等离子喷涂在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为50μm、50μm、80μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度5μm的铝膜层,其中磁控溅射的条件是:磁控靶电流4A,偏压200V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:800℃保温4h、1350℃保温24h,升温速率为5℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实施例7
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用大气等离子喷涂在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为40μm、80μm、100μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度4μm的铝膜层,其中磁控溅射的条件是:磁控靶电流5A,偏压170V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:750℃保温3h、1320℃保温22h,升温速率为30℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实施例8
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用大气等离子喷涂在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为60μm、70μm、90μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度4μm的铝膜层,其中磁控溅射的条件是:磁控靶电流4A,偏压170V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:720℃保温3h、1320℃保温23h,升温速率为20℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实施例9
本实施例提供的环境障涂层的涂覆方法,操作步骤如下:
采用大气等离子喷涂在碳化硅基复合材料表面制备Si、莫来石、Yb2SiO5涂层,涂层厚度依次为60μm、60μm、90μm;采用磁控溅射在Yb2SiO5涂层表面制备厚度3μm的铝膜层,其中磁控溅射的条件是:磁控靶电流4A,偏压170V;对沉积有铝膜层的环境障涂层进行热处理,热处理的条件是:720℃保温3h、1320℃保温23h,升温速率为25℃/min,真空氧分压小于2×10-3Pa。冷却至室温后在基体表面得到环境障涂层。
实验例1
对实施例1制备过程中涂覆铝膜层,未进行真空热处理前的涂层进行剖切,对截面进行抛光后进行扫描电镜拍照,得到微观结构图如图1所示。
对实施例1制得的涂层进行剖切,将对截面进行抛光后进行扫描电镜拍照,得到微观结构图如图2所示。
从图1中能够看出,Yb2SiO5陶瓷层内存在孔隙。
从图2中能够看出,经热处理后Yb2SiO5陶瓷层表面的孔隙被Yb3Al5O12填满。
综上所述,本发明提供的环境障涂层的涂覆方法,由于在稀土硅酸盐的表面设置铝膜层,然后进行热处理,使得熔融铝进入稀土硅酸盐陶瓷层表面的孔隙中将孔隙填充,且熔融铝与稀土硅酸盐陶瓷层热环境下分解生成的稀土氧化物和二氧化硅反应生成更加致密和耐水的稀土铝酸盐,有效提高了环境障涂层的服役性能延长了服役时间。
而进一步地,热处理除了使得稀土硅酸盐陶瓷层表面的孔隙内生成稀土铝酸盐物相以外,还使得稀土硅酸盐陶瓷层表面形成稀土铝酸盐物相层,可进一步提高环境障涂层的性能。
而进一步地,稀土硅酸盐为Yb2SiO5时,以合适的温度进行热处理生成与Yb2SiO5有良好热匹配性的Yb3Al5O12,Yb3Al5O12层具有较高的强度和断裂韧性及低的导热系数,可使得得到的环境障涂层具有高致密、抗水氧腐蚀能力优异的特点,采用铝膜层热处理反应生成Yb3Al5O12涂层,有效避免了热喷涂过程中产生较大的应力裂纹的缺陷,使Yb3Al5O12涂层在高温防护涂层领域得到有效利用。
本发明提供的环境障涂层,由于采用本发明提供的方法制得,其表面具有致密和耐水的稀土铝酸盐物相层,且含有稀土硅酸盐陶瓷层向外的一面的孔隙也被填充,因此该环境障涂层具有好的服役性能和长的使用寿命。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

1.一种环境障涂层的涂覆方法,其特征在于,包括:
依次在基体表面设置硅层、莫来石层和稀土硅酸盐陶瓷层,所述稀土硅酸盐陶瓷层采用热喷涂形成;
在热喷涂形成的稀土硅酸盐陶瓷层的表面涂覆铝膜层;
对所述铝膜层进行热处理以至少在所述稀土硅酸盐陶瓷层朝向所述铝膜层的一面的孔隙内形成稀土铝酸盐物相,热处理条件为700~800℃保温2~4h,然后升温至1300~1350℃保温20~24h,所述热处理为真空热处理。
2.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,对所述铝膜层进行热处理以在所述稀土硅酸盐陶瓷层朝向所述铝膜层的一面的孔隙内形成稀土铝酸盐物相,且在所述稀土硅酸盐陶瓷层朝向所述铝膜层的一面形成稀土铝酸盐物相层。
3.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,所述铝膜层的厚度为2~5μm。
4.根据权利要求3所述的环境障涂层的涂覆方法,其特征在于,铝膜层的涂覆方法为磁控溅射法。
5.根据权利要求4所述的环境障涂层的涂覆方法,其特征在于,磁控溅射法的操作参数为:磁控靶电流3~6A,偏压150~250V。
6.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,所述稀土硅酸盐陶瓷层包括Lu2Si2O7、Lu2SiO5、Yb2SiO5以及Yb2SiO5陶瓷层。
7.根据权利要求6所述的环境障涂层的涂覆方法,其特征在于,所述稀土硅酸盐陶瓷层为Yb2SiO5陶瓷层,对沉积有所述铝膜层的表面进行热处理后形成Yb3Al5O12涂层。
8.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,真空热处理的氧气分压小于2×10-3Pa。
9.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,热处理时,升温速率为5~30℃/min。
10.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,采用大气等离子喷涂或等离子喷涂-物理气相沉积法在莫来石层的表面涂覆稀土硅酸盐陶瓷层。
11.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,所述莫来石层的厚度为50~80μm;所述稀土硅酸盐陶瓷层的厚度为80~100μm。
12.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,所述硅层的厚度为40~60μm。
13.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,采用大气等离子喷涂或等离子喷涂-物理气相沉积法在硅层表面涂覆莫来石层。
14.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,采用大气等离子喷涂或等离子喷涂-物理气相沉积法在基体表面涂覆硅层。
15.根据权利要求1所述的环境障涂层的涂覆方法,其特征在于,基体为碳化硅基复合材料基体。
16.一种环境障涂层,其特征在于,采用如权利要求1~15任一项所述的环境障涂层的涂覆方法涂覆得到。
17.如权利要求16所述的环境障涂层在航空航天领域的应用。
CN201910744227.XA 2019-08-13 2019-08-13 环境障涂层及其涂覆方法与应用 Active CN110284097B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910744227.XA CN110284097B (zh) 2019-08-13 2019-08-13 环境障涂层及其涂覆方法与应用
US16/734,847 US20210047722A1 (en) 2019-08-13 2020-01-06 Method for coating thermal/environmental barrier coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910744227.XA CN110284097B (zh) 2019-08-13 2019-08-13 环境障涂层及其涂覆方法与应用

Publications (2)

Publication Number Publication Date
CN110284097A CN110284097A (zh) 2019-09-27
CN110284097B true CN110284097B (zh) 2021-04-09

Family

ID=68025157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910744227.XA Active CN110284097B (zh) 2019-08-13 2019-08-13 环境障涂层及其涂覆方法与应用

Country Status (2)

Country Link
US (1) US20210047722A1 (zh)
CN (1) CN110284097B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112645699B (zh) * 2020-12-24 2022-08-19 中国航发北京航空材料研究院 晶须协同max相增韧的稀土硅酸盐材料及其制备方法
US11859287B2 (en) * 2021-07-27 2024-01-02 Honeywell International Inc. Protective coating systems for gas turbine engine applications and methods for fabricating the same
CN115386823B (zh) * 2022-08-03 2024-03-08 中国科学院上海硅酸盐研究所 一种抗高温水蒸气腐蚀和cmas腐蚀的环境障碍涂层及其制备方法
CN115386838B (zh) * 2022-09-05 2024-02-02 广东省科学院新材料研究所 航空发动机涂层其制备方法和应用、航空发动机、航空器
CN116444295B (zh) * 2023-04-28 2024-02-02 西安交通大学 一种内含缓释稳定剂的Si基涂层的料浆烧结制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805212A (zh) * 2010-03-25 2010-08-18 西北工业大学 在碳/碳复合材料表面制备碳化硅-焦硅酸镱复合涂层的方法
EP2287135A2 (en) * 2009-07-31 2011-02-23 General Electric Company Solvent based environmental barrier coatings for high temperature ceramic components
CN102264670A (zh) * 2008-12-24 2011-11-30 斯奈克玛动力部件公司 用于含硅的耐火基底的环境阻挡层
CN102985389A (zh) * 2010-04-28 2013-03-20 法商圣高拜欧洲实验及研究中心 含有包覆莫来石微粒的耐火粉末
CN104988454A (zh) * 2015-07-09 2015-10-21 北京航空航天大学 一种抗熔融cmas腐蚀的稀土铝酸盐热障涂层及其制备方法
CN104988455A (zh) * 2015-07-09 2015-10-21 北京航空航天大学 一种抗cmas腐蚀的热障涂层陶瓷层的大气等离子喷涂制备方法
CN105039894A (zh) * 2015-07-09 2015-11-11 北京航空航天大学 一种抗cmas的陶瓷层及其料浆法制备方法
CN105263887A (zh) * 2013-06-13 2016-01-20 海瑞克里兹 用于包含硅的耐火衬底的环境屏障
CN106747670A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于多元碳与陶瓷基复合材料的环境障涂层及其制备方法
CN107428623A (zh) * 2013-09-20 2017-12-01 Hrl实验室有限责任公司 用于陶瓷衬底的热和环境障壁涂层
CN107815633A (zh) * 2016-09-13 2018-03-20 中国科学院金属研究所 一种高性能热障涂层及其陶瓷层
CN108486569A (zh) * 2018-03-19 2018-09-04 广东省新材料研究所 一种耐腐蚀环境障涂层及其制备方法与应用、发动机
CN108950463A (zh) * 2018-08-24 2018-12-07 中国航空制造技术研究院 一种高温环境障碍涂层结构及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357994B2 (en) * 2005-06-14 2008-04-15 General Electric Company Thermal/environmental barrier coating system for silicon-containing materials
US9062564B2 (en) * 2009-07-31 2015-06-23 General Electric Company Solvent based slurry compositions for making environmental barrier coatings and environmental barrier coatings comprising the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264670A (zh) * 2008-12-24 2011-11-30 斯奈克玛动力部件公司 用于含硅的耐火基底的环境阻挡层
EP2287135A2 (en) * 2009-07-31 2011-02-23 General Electric Company Solvent based environmental barrier coatings for high temperature ceramic components
CN101805212A (zh) * 2010-03-25 2010-08-18 西北工业大学 在碳/碳复合材料表面制备碳化硅-焦硅酸镱复合涂层的方法
CN102985389A (zh) * 2010-04-28 2013-03-20 法商圣高拜欧洲实验及研究中心 含有包覆莫来石微粒的耐火粉末
CN105263887A (zh) * 2013-06-13 2016-01-20 海瑞克里兹 用于包含硅的耐火衬底的环境屏障
CN107428623A (zh) * 2013-09-20 2017-12-01 Hrl实验室有限责任公司 用于陶瓷衬底的热和环境障壁涂层
CN105039894A (zh) * 2015-07-09 2015-11-11 北京航空航天大学 一种抗cmas的陶瓷层及其料浆法制备方法
CN104988455A (zh) * 2015-07-09 2015-10-21 北京航空航天大学 一种抗cmas腐蚀的热障涂层陶瓷层的大气等离子喷涂制备方法
CN104988454A (zh) * 2015-07-09 2015-10-21 北京航空航天大学 一种抗熔融cmas腐蚀的稀土铝酸盐热障涂层及其制备方法
CN106747670A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于多元碳与陶瓷基复合材料的环境障涂层及其制备方法
CN107815633A (zh) * 2016-09-13 2018-03-20 中国科学院金属研究所 一种高性能热障涂层及其陶瓷层
CN108486569A (zh) * 2018-03-19 2018-09-04 广东省新材料研究所 一种耐腐蚀环境障涂层及其制备方法与应用、发动机
CN108950463A (zh) * 2018-08-24 2018-12-07 中国航空制造技术研究院 一种高温环境障碍涂层结构及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CMAS corrosion and thermal cycle of Al-modified PS-PVD environmental barrier coating;Xiaofeng Zhang等;《CERAMICS INTERNATIONAL》;20180930;第44卷(第13期);第15959-15964页 *
Theoretical Investigation on Mechanical and Thermal Properties of a Promising Thermal Barrier Material: Yb3Al5O12;Yanchun Zhou;《J. Mater. Sci. Technol.》;20140625;第30卷(第7期);第631-638页 *
新型热障涂层陶瓷隔热层材料;薛召露等;《航空材料学报》;20180404;第38卷(第2期);第10-20页 *

Also Published As

Publication number Publication date
CN110284097A (zh) 2019-09-27
US20210047722A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
CN110284097B (zh) 环境障涂层及其涂覆方法与应用
JP5436761B2 (ja) 炭化ケイ素系繊維強化セラミックス複合材料の耐環境コーティング構造
US6733908B1 (en) Multilayer article having stabilized zirconia outer layer and chemical barrier layer
JP4877880B2 (ja) 優先的に酸素と反応する層を含むセラミック材
US6759151B1 (en) Multilayer article characterized by low coefficient of thermal expansion outer layer
US7910172B2 (en) Method for fabricating a component having an environmental barrier coating
US7429424B2 (en) Sintering resistant, low conductivity, high stability thermal barrier coating/environmental barrier coating system for a ceramic-matrix composite (CMC) article to improve high temperature capability
JP5759383B2 (ja) セラミック基材部品のためのcmas低減性能を与える耐環境コーティング
US20090324930A1 (en) Protective coatings for silicon based substrates with improved adhesion
JP5671476B2 (ja) セラミック基材部品のためのcmas低減性能を与える耐環境コーティング
JP5524238B2 (ja) セラミック基材部品のためのcmas低減性能を与える耐環境コーティング
CN1935746A (zh) 具有含铪阻隔层的硅基基材
JP3136385B2 (ja) 耐熱耐酸化性高強度部材及びその製造方法
US6582779B2 (en) Silicon nitride components with protective coating
JP2007262447A (ja) 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン
CN113365963B (zh) 用于保护ebc和cmc层的涂层及其热喷涂方法
Zhang et al. Cyclic oxidation performances of new environmental barrier coatings of HfO2-SiO2/Yb2Si2O7 coated SiC at 1375° C and 1475° C in the air environment
JP2019507828A (ja) 基材上に高温保護層を接合するための付着促進層、並びにそれの製造方法
JP4690709B2 (ja) 耐熱材料およびその製造方法
JPS61174385A (ja) セラミツク被覆耐熱部材及びその製造方法
JP4178239B2 (ja) 高密着性酸化物皮膜及びその製造方法
JP2005002409A (ja) セラミックス被覆部材とその製造方法およびセラミックス被覆部材を用いた遮熱コーティング高温部品
US20050074561A1 (en) Method for forming film
CN113755784B (zh) 一种基于超声振动辅助激光改性自愈合热障涂层的制备方法
JP2007106644A (ja) セラミックス部材およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 510000 363 Changxin Road, Tianhe District, Guangzhou, Guangdong.

Patentee after: Institute of new materials, Guangdong Academy of Sciences

Address before: 510000 363 Changxin Road, Tianhe District, Guangzhou, Guangdong.

Patentee before: GUANGDONG INSTITUTE OF NEW MATERIALS