JP2007262447A - 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン - Google Patents

耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン Download PDF

Info

Publication number
JP2007262447A
JP2007262447A JP2006085928A JP2006085928A JP2007262447A JP 2007262447 A JP2007262447 A JP 2007262447A JP 2006085928 A JP2006085928 A JP 2006085928A JP 2006085928 A JP2006085928 A JP 2006085928A JP 2007262447 A JP2007262447 A JP 2007262447A
Authority
JP
Japan
Prior art keywords
layer
aluminum
mcraly
resistant film
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006085928A
Other languages
English (en)
Inventor
Taiji Torigoe
泰治 鳥越
Ikuo Okada
郁生 岡田
Tomosuke Yumura
友亮 湯村
Hidetaka Oguma
英隆 小熊
Toshio Sakon
淑郎 佐近
Yutaka Kawada
裕 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006085928A priority Critical patent/JP2007262447A/ja
Priority to US11/657,122 priority patent/US20070224443A1/en
Priority to CA002576004A priority patent/CA2576004A1/en
Priority to CNA2007100083536A priority patent/CN101045981A/zh
Priority to EP07101348A priority patent/EP1840238A3/en
Publication of JP2007262447A publication Critical patent/JP2007262447A/ja
Priority to US12/755,483 priority patent/US20100196615A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • F02K9/974Nozzle- linings; Ablative coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • C23C10/08Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/26Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions more than one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/134Zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/15Rare earth metals, i.e. Sc, Y, lanthanides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】 長時間使用における耐酸化性並びに延性及び靱性が両立した耐酸化膜及びその形成方法を提供することを目的とする。
【解決手段】 耐熱金属を有する基材上に、溶射又は蒸着によりMCrAlY合金(但し、MはCo及びNiのうちの少なくとも1種の元素を表す)を主として含有するMCrAlY層を形成し、次いで前記MCrAlY層において、前記基材と反対側の面から、該MCrAlY層の厚さ方向の一部にアルミニウムを拡散する。
【選択図】 図1

Description

本発明は、耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービンに関するものである。
近年、省エネルギー対策の一つとして、火力発電の熱効率を高めることが検討されている。発電用ガスタービンの発電効率を向上させるためには、ガス入口温度を上昇させることが有効であり、その温度は1500℃程度とされる場合もある。そして、このように発電装置の高温化を実現するためには、ガスタービンを構成する静翼や動翼、あるいは燃焼器の壁材などを耐熱部材で構成する必要がある。しかし、タービン翼の材料は耐熱金属であるが、それでもこのような高温には耐えられないために、この耐熱金属の基材上に溶射等の成膜方法によってセラミックス層を積層した遮熱コーティング(サーマルバリアコーティング、TBC)を形成して高温から保護することが行われている。このセラミックス層としては、ZrO2系の材料、特にY23で部分安定化又は完全安定化したZrO2であるYSZ(イットリア安定化ジルコニア)が、セラミックス材料の中では比較的低い熱伝導率と比較的高い熱膨張率を有しているためによく用いられている。
ところで、この遮熱コーティングの技術課題としては、遮熱コーティングは基材を構成する耐熱金属と物性値が大きく異なるセラミック層を組み合わせたものであるため、基材とセラミック層との密着機構及びその信頼性に問題がある。特にガスタービン等では起動、停止等の熱サイクルにより、セラミック層の剥離、脱落等の損傷が生じる。そこで、このような問題を解決する方法として、基材とセラミックス層との間に、金属からなるボンドコートを溶射法又は蒸着法により成膜する方法が行われている。この方法で形成される遮熱コーティングにおいて、ボンドコートは主に、セラミックス層からなるトップコートと基材との熱膨張係数の差を小さくして熱応力を緩和し、セラミックス層と基材との密着性を向上している。
このボンドコートには、高温での耐食・耐酸化性に優れたMCrAlY合金系(Mは、Ni、Co及びFeからなる群から選ばれる1種又は2種の元素)が一般に使用され、例えばCoNiCrAlYが使用されている(例えば、特許文献1参照)。
また、トップコートには、遮熱及び熱衝撃の緩和を目的とし、熱伝導率が低く、輻射率の高い安定化されたジルコニアが主に使用され、特にY:ZrO=8:92(質量比)のイットリア安定化ジルコニア(以下、「8YSZ」と表記する)はセラミックスの中では機械的特性が優れているので最も一般的に使用されている。
特許第2977369号公報
上述のように、遮熱コーティングのボンドコートとして使用されるMCrAlY合金は高い耐酸化性を有するが、トップコートに用いられる安定化ジルコニア等のセラミックスは酸素を透過するため、遮熱コーティングの長時間使用に伴い、ボンドコート中にTGO(Thermally Grown Oxide:熱成長酸化物)が生成し、トップコートに剥離方向の内部応力が作用することが知られている。このため、遮熱コーティングの長時間信頼性確保のためには、より高い耐酸化性を有するボンドコートを適用する必要がある。ボンドコートの耐酸化性を高めるためには、MCrAlY合金中のAl含有量を増加する方法が考えられるが、ボンドコート全体が硬くなり延性及び靭性が低下し、亀裂などを誘発する恐れがある。
本発明は、長時間使用における耐酸化性並びに延性及び靱性が両立した耐酸化膜及びその形成方法を提供することを目的とする。また、前記耐酸化膜を備え、長時間信頼性に優れた遮熱コーティング、耐熱部材、及びガスタービンを提供することを目的とする。
本発明にかかる耐酸化膜の形成方法は、耐熱金属を有する基材上に、溶射又は蒸着によりMCrAlY合金(但し、MはCo及びNiのうちの少なくとも1種の元素を表す)を主として含有するMCrAlY層を形成する工程と、前記MCrAlY層において、前記基材と反対側の面から、該MCrAlY層の厚さ方向の一部にアルミニウム又はアルミニウム及びシリコンを拡散する拡散浸透工程とを有する。
この耐酸化膜の形成方法によれば、形成された耐酸化膜において、前記拡散浸透工程によりアルミニウム又はアルミニウム及びシリコンを拡散した部分は耐酸化性が向上する。また、耐酸化膜においてアルミニウム又はアルミニウム及びシリコンが拡散していない部分においては、MCrAlY層の延性及び靱性が維持される。
前記拡散浸透工程において、アルミニウム又はアルミニウム及びシリコンが拡散した拡散層の厚さを、前記MCrAlY層の厚さの1%以上90%以下とすることが好ましい。
拡散層の厚さを前記範囲とすることにより、耐酸化性向上効果並びに延性及び靱性が両立した耐酸化膜を形成することができる。
本発明に係る耐酸化膜は、耐熱金属を有する基材上に形成される、MCrAlY合金(但し、MはCo及びNiのうちの少なくとも1種の元素を表す)を主として含有する耐酸化膜であって、前記基材と反対側の面から、その厚さ方向の一部にアルミニウム又はアルミニウム及びシリコンが拡散された拡散層を有する。
この耐酸化膜は、アルミニウム又はアルミニウム及びシリコンが拡散した部分を有しているので、優れた耐酸化性を有する。また、アルミニウム又はアルミニウム及びシリコンが拡散していない部分は、MCrAlY合金と同等の延性及び靱性を有している。
耐酸化性と延性及び靱性とを両立させる観点から、前記拡散層の厚さは、耐酸化膜の厚さの1%以上90%以下とすることが好ましい。
本発明に係る遮熱コーティングは、前記本発明の耐酸化膜と、該耐酸化膜の前記拡散層側に設けられた、セラミックスを有するトップコートとを備えている。
この遮熱コーティングは、前記耐酸化膜が優れた耐酸化性並びに延性及び靱性を有するボンドコートとして基材とトップコートとを結合しているので、長時間使用してもボンドコート中にTGOが生成しにくく、またボンドコートの基材追従性が良いので、剥離や亀裂を生じにくく、長時間信頼性を有する。
本発明に係る耐熱部材は、耐熱金属を有する基材と、前記拡散層と反対側の面を前記基材側に配して設けられた前記本発明の遮熱コーティングとを備えている。
この耐熱部材は、長時間高温で使用しても、優れた遮熱効果と耐剥離性を維持する。従って、この耐熱部材は耐久性に優れ、長寿命である。
本発明に係るガスタービンは、前記本発明の耐熱部材を備えている。
ガスタービンの動翼や静翼、あるいは燃焼器の内筒や尾筒などの高温部品を本発明の耐熱部材とすることにより、ガスタービンにおける作動流体の温度を高められるので、ガスタービン効率を向上させることができる。また、ガスタービンで使用される冷却用空気流量を低減できるので、ガスタービンの性能が向上する。
本発明によれば、長時間使用における耐酸化性並びに延性及び靱性が両立した耐酸化膜及びその形成方法が提供される。本発明の遮熱コーティングは、剥離や亀裂を生じにくく、長時間信頼性を有する。本発明の耐熱部材は、長時間高温で使用しても、優れた遮熱効果と耐剥離性を維持する。本発明のガスタービンは、作動流体の温度を高められるので、ガスタービン効率を向上させることができ、また、ガスタービンで使用される冷却用空気流量を低減できるので、ガスタービンの性能が向上する。
以下に、本発明の実施形態について、図面を参照して説明する。
(第1の実施形態)
図1から図3は、本発明の実施形態により形成される耐熱部材の概略部分断面図である。
本発明において基材21に用いられる耐熱金属としては、耐熱部材に通常用いられる耐熱合金を採用することができ、特にニッケル基又はコバルト基の耐熱合金を好適に採用することができる。例えば、INCO社のNi基耐熱合金IN738LCは、本発明において基材21の材料として用いることができる。IN738LCの主要化学成分は次のとおりである。
Ni-16Cr-8.5Co-1.75Mo-2.6W-1.75Ta-0.9Nb-3.4Ti-3.4Al (質量%)
上記の基材21上に、MCrAlY合金(但し、MはCo及びNiのうちの少なくとも1種の元素を表す)を主として含有するMCrAlY層が、拡散浸透処理を行う前のボンドコート(耐酸化膜)22(後述)として形成される。このMCrAlY合金としては、通常の遮熱コーティングにおいてボンドコートとして用いられるMCrAlY合金を用いることが可能であり、例えば、CoNiCrAlYの場合は、Co−32Ni−21Cr−8Al−0.5Y(質量%)の組成を有するものを採用することができる。前記MCrAlY層は、所定の組成を有するMCrAlY合金材料を用いて、例えば、減圧プラズマ溶射(LPPS)、高速フレーム溶射(HVOF)、大気圧プラズマ溶射(APS)等、金属材料の溶射に採用される通常の溶射法を行うことにより施工される。形成されたMCrAlY層の厚さ、すなわち本発明により形成されるボンドコート22の厚さは、10μm以上500μm以下の範囲が好ましい。MCrAlY層(ボンドコート22)の厚さが10μm未満では、ボンドコート22の皮膜が不均質となり、部分的にボンドコート22が成膜していないような箇所が生じて、遮熱コーティングの耐酸化性に問題を生じる場合があるので好ましくない。一方、MCrAlY層(ボンドコート22)の厚さが500μmを超えると、ボンドコート22に割れや剥離を生じやすくなると共に、最終的に得られる耐熱部材の形状が変わってしまうことから、耐熱部材の設計性能が変わるので問題となる。
本発明においては、前記MCrAlY層を形成した後に、このMCrAlY層の基材21と反対側の表面から、アルミニウム拡散浸透処理が行われる。この処理により、MCrAlY層中の基材21と反対側に、アルミニウムが高濃度で拡散した拡散層22aが形成され、MCrAlY層は本発明のボンドコート22となる。前記拡散層22aの厚さは、MCrAlY層(ボンドコート22)の厚さの1%以上90%以下の範囲が好ましい。拡散層22aの厚さがボンドコート22の厚さの1%未満では、十分な耐酸化性の向上効果が得られない場合があり、好ましくない。また、拡散層22aの厚さがボンドコート22の厚さの90%を超えると、ボンドコート22のほぼ全体がアルミニウムの拡散層22aとなるため耐酸化性は良いものの、ボンドコート22の延性及び靭性が低下してしまうので好ましくない。
上記アルミニウム拡散浸透処理は、例えば、塩化アルミニウムガス(AlCl)及び水素ガス(H)からなる混合雰囲気中で、700℃以上1100℃以下の温度で2時間以上50時間以下、MCrAlY層が形成された基材21を加熱する処理とすることができ、この処理により、アルミニウムの濃化層(拡散層22a)が形成される。
アルミニウムの拡散層22aにおけるアルミニウム濃度は、耐酸化性の向上効果並びに延性及び靱性の維持を両立させる観点から、20原子%以上80原子%以下程度が好ましい。
本実施形態において、延性に優れるボンドコート22の基材と反対側の表面からアルミニウムを拡散浸透し、この表面近傍のアルミニウム濃度を高めた拡散層22aを形成した上記構成によれば、ボンドコート22の耐酸化性が向上すると共に、ボンドコート22中の基材21側にはアルミニウムが拡散浸透していない、延性に優れる元のボンドコートが存在することから、ボンドコート22の延性も確保できる。
本発明においては、前述のアルミニウム拡散浸透処理に代えて、アルミニウム・シリコン共拡散浸透処理を行ってもよい。アルミニウム・シリコン共拡散浸透処理は、例えば、Al−Si(Al/Si=92/8(モル比))燐酸性水溶液スラリーをMCrAlY層に塗布して350℃程度で乾燥する処理を数回繰り返したのち、アルゴン雰囲気中で700℃以上1100℃以下で2時間以上50時間以下の加熱を行う処理とすることができ、この処理により、アルミニウム及びシリコンの濃化層(拡散層22a)が形成される。
耐酸化性の向上効果並びに延性及び靱性の維持を両立させる観点から、アルミニウム及びシリコンの拡散層22aにおけるアルミニウム濃度は20原子%以上80原子%以下程度が好ましく、シリコン濃度は2原子%以上50原子%以下程度が好ましい。
アルミニウム・シリコン共拡散浸透処理は、上記のようにアルミニウム及びシリコンを同時に拡散浸透させる処理でも、またアルミニウムの拡散浸透とシリコンの拡散浸透とを別々に行う処理であってもよい。しかし、工程数が少なく、低コストである点から、アルミニウム及びシリコンを同時に拡散浸透させる処理が好ましい。
本実施形態において、延性に優れるボンドコート22の基材と反対側の表面からアルミニウム及びシリコンを拡散浸透し、この表面近傍のアルミニウム濃度及びシリコン濃度を高めた拡散層22aを形成した上記構成によれば、ボンドコート22の耐酸化性が向上すると共に、ボンドコート22中の基材21側にはアルミニウム及びシリコンが拡散浸透していない、延性に優れる元のボンドコートが存在することから、ボンドコート22の延性も確保できる。アルミニウム・シリコン拡散浸透処理を施したボンドコート22の酸化速度は、前述のアルミニウム拡散浸透処理を施したボンドコート22の酸化速度と比べて、約10%程度低減する。
なお、アルミニウム拡散浸透処理及びアルミニウム・シリコン拡散浸透処理において、拡散層22aの厚さは、図4に示した拡散浸透処理の放物線則に従う。図4において、各線に付した温度は拡散浸透処理の処理温度を表す。
従って、本発明のアルミニウム拡散浸透処理及びアルミニウム・シリコン拡散浸透処理において、拡散層22aの厚さは、前記放物線則に従って処理条件を選定することにより、上述の範囲となるように制御することができる。
こうして形成されたボンドコート22の拡散層22a側表面に、トップコート24,34,44を成膜し、高い耐酸化性を有した遮熱コーティング25,35,45が形成される。
トップコート24,34,44としては、例えば、ジルコニア系セラミックス又は複合酸化物系セラミックスを採用することができる。
ジルコニア系セラミックスとしては、希土類酸化物を安定化剤として添加したジルコニアが挙げられ、例えば、ZrO・8%Y、ZrO・16%Yb、及びZrO・15.5%Erが挙げられる(但し、百分率で表された数字は、ジルコニア及び希土類酸化物の総量に対する希土類酸化物の質量比を表す)。ZrO・8%Yは、遮熱コーティングのトップコートとして広く用いられている材料である。ZrO・16%Yb及びZrO・15.5%Erは、高温における結晶安定性を向上する効果を有する。
また、複合酸化物系セラミックスとしては、遮熱コーティングのトップコート用に採用又は提案されている各種複合酸化物を採用でき、例えば、SmZr及びGdZrなどのジルコネート化合物が挙げられる。SmZr及びGdZrなどのジルコネート化合物は、低熱伝導率であり、かつ高温安定性に優れている。
トップコート24,34,44は、遮熱コーティングのトップコートの形成のために一般に行われている方法で形成され、例えば、大気圧プラズマ溶射(APS)や電子ビーム物理蒸着(EB−PVD)により形成される。これらの方法により、図1に示すような気孔24Pを有するトップコート24、図2に示すような縦割れ34Cを有するトップコート34、又は図3に示すような柱状晶44Lを有するトップコート44を形成してもよい。
気孔24Pを有するトップコート24は、大気圧プラズマ溶射により形成することができる。この場合、トップコート24は、好ましくは、1%以上30%以下の気孔率(トップコート24内に形成された気孔のトップコート24に対する体積占有率)を有する。気孔の存在により、トップコート24の遮熱特性を向上させることができるとともに、ヤング率が低下することから熱サイクルに伴いトップコート24に高い熱応力が作用した場合にもその応力を緩和することができる。従って、熱サイクル耐久性に優れた遮熱コーティング25とすることができる。
気孔率が1%未満では、緻密であるためヤング率が高くなり、熱応力が高くなった場合に剥離が生じやすくなる。また、気孔率が30%を超えると、ボンドコート22との密着性が不足し、耐久性が低下する場合がある。
トップコートの気孔率は、溶射条件を調節することで容易に制御することができ、適切な気孔率を備えたセラミックス層を形成することができる。調節できる溶射条件としては、溶射電流、プラズマガス流量、溶射距離等が挙げられる。
溶射電流は、例えば、通常の600(A)から400(A)に低下することにより気孔率を5%程度から8%程度にまで増加できる。また、電流を増加することにより気孔率を低下することもできる。
プラズマガス流は、例えば、通常のAr/H量である35/7.4(l/min)から37.3/5.1(l/min)に水素流量割合を増加することにより、気孔率を5%程度から8%程度にまで増加できる。また、水素量を増加すると、気孔率を低下することができる。
溶射距離は、例えば、通常の150mmから210mmに増加させることにより、気孔率を5%程度から8%にまで増加できる。また、溶射距離を短くすることにより、気孔率を低下させることも可能である。更に、これらの組み合わせにより、気孔率を1%程度から最大30%程度の気孔率まで可変することができる。
複数の縦割れ34Cを有するトップコート34もまた、大気圧プラズマ溶射により形成することができる。この縦割れ34Cは、トップコート34の耐剥離性を向上させるためにトップコート34の成膜時に意図的に導入される。
耐熱金属からなる基材21やボンドコート22に比して熱膨張係数の小さいセラミックスからなるトップコート34は、タービンの発停等に伴う熱サイクルが印加された際に、基材21やボンドコート22との熱膨張係数の差による応力が作用するが、トップコート34に作用する応力を、縦割れ34Cがその幅を拡大又は縮小することにより緩和するようになっている。
従って、熱サイクルに伴う膨張収縮による応力はトップコート34自体にはほとんど作用せず、トップコート34の剥離が極めて起こり難くなり、熱サイクル耐久性に優れた遮熱コーティング35が得られる。
本発明によれば、溶射粉末を用いて溶射を行う際に、トップコート34に縦割れ34Cを導入することができる。溶射法による成膜は、粉末を溶融又半溶融状態として基材21上のボンドコート22に噴射し、その後、急速に冷却凝固させることにより行われる。この凝固される際の温度変化を大きくし、成膜されるトップコート34に意図的に凝固割れを生じさせることで、トップコート34に縦割れ34Cを導入できる。
トップコートに生じた亀裂は、従来の構成の遮熱コーティングにおいては、トップコートに剥離を生じさせる原因となっていたが、本発明よるトップコート34に導入された縦割れ34Cは、剥離の原因とはならない。これは、縦割れ34Cと、熱サイクルにより生じたトップコートの亀裂とでは、その周辺の結晶構造が異なることによる。すなわち、熱サイクルにより生じる亀裂は、例えばトップコートがジルコニア系セラミックスである場合は、高温中でZrO2の結晶相がt’相(準安定正方晶相)からt相(正方晶相)及びC相(立方晶)へ変化し、遮熱コーティング材の温度が低下した場合に高温相で安定であるt相が温度の低下によりm相(単斜晶相)及びC相(立方晶)となり、m相が生成される際に体積変化が生じるために形成されるものである。この体積変化により形成された亀裂の周辺部には、m相が観測される。従って、熱サイクルによりm相とt相との相転移が繰り返されるため、亀裂は徐々に進展し、最終的にはトップコートを剥離させる。
これに対して、本発明によりトップコート34に導入される縦割れにおいては、その周辺部にm相がほとんど存在しないため、熱サイクル中にトップコート34内で相転移に伴う体積変化がほとんどなく、熱サイクルに伴う温度変化により縦割れ34Cが進展することはほとんどない。従って、この縦割れ34Cの導入によりトップコート34の寿命が短くなることはないものと考えられる。
縦割れ34Cの延在方向は、膜面の法線方向に対して±40°以内とされることが好ましい。トップコート34の面方向の亀裂は、トップコート34の剥離を引き起こしやすくするため、縦割れ34Cの延在する方向は、可能な限りトップコート34の膜面の法線方向と平行とするのが好ましい。しかし、法線方向に対して±40°以内の傾きであれば、トップコート34の剥離を防止する効果を十分に得ることができる。
縦割れ34Cの延在方向のより好ましい範囲は、トップコート34の膜面の法線方向に対して±20°以下の範囲である。
トップコート34における縦割れ34C同士の間隔(ピッチ)は、耐熱基材上に形成された合計膜の厚さ(但し、ボンドコート22を除く。)の5%以上100%以下とすることが好ましい。例えば、トップコート34の膜厚を0.5mmとするならば、縦割れ34C同士の間隔は、0.025mm以上0.5mm以下の範囲とすることが好ましい。このような間隔でトップコート34に縦割れ34Cを導入することで、耐剥離性に優れたトップコート34を備えた遮熱コーティング35を得ることができる。
ピッチが5%未満であると、下地のボンドコート22と接着面積が小さくなり、密着力が不足して剥離しやすくなる場合がある。間隔が100%を超えると、亀裂先端での剥離方向への特異応力が増大して剥離を誘発する場合がある。
縦割れ34Cを備えたトップコートは、例えば、溶射法又は電子ビーム物理蒸着法によるトップコート34の成膜時に形成することができる。
溶射法により縦割れ34Cを備えたトップコート34を形成する場合、溶射距離(溶射ガンと基材21上のボンドコート22との距離)を従来ジルコニア層の成膜に用いられていた溶射距離の1/4程度から2/3程度にまで近づけるか、あるいは、溶射距離は従来と同程度とし、溶射ガンに入力する電力を従来用いられていた電力の2倍程度から25倍程度にまで高めることによりトップコート34に縦割れ34Cを導入することができる。すなわち、溶射によりボンドコート22を有する基材21に飛来する溶融又は半溶融状態の粒子の温度を高くすることで、基材21上で急冷凝固される際の温度勾配を大きくし、凝固時の収縮により縦割れ34Cを導入することができる。この方法によれば、溶射距離及び/又は溶射ガンへの入力電力を調整することで、容易に縦割れ34Cの間隔や頻度(縦割れ34Cの面積密度)を制御することができ、所望の特性を備えたトップコート34を形成することができる。これにより、優れた耐剥離性、熱サイクル耐久性を備えた遮熱コーティング35を容易に形成することができる。
電子ビーム物理蒸着法により縦割れ34Cを備えたトップコート34を形成する場合、例えば、アルデンヌ社製電子ビーム蒸着装置(例えば、TUBA150)を用いて、所定のトップコート34原料からなるインゴットをターゲット材料に用い、電子ビーム出力50kW、雰囲気10−4torrの減圧環境、耐熱基材温度1,000℃の代表的条件で、縦割れ34Cを備えたトップコート34を容易に形成することができる。
柱状晶44Lを有するトップコート44は、電子ビーム物理蒸着により形成することができる。
柱状晶44Lは、ボンドコート22表面上で核生成した結晶が優先結晶成長方向に、単結晶状態で成長したもので、耐熱金属からなる基材21に歪が作用した場合にも、柱状晶44Lの結晶が互いに分離することから、トップコート44及びこれを含む遮熱コーティング45は高い耐久性を示す。
本実施形態においては、本発明の耐酸化膜を、耐熱金属を有する基材21とセラミックスを有するトップコート24,34,44とを結合するボンドコート22とし、トップコート24,34,44及びボンドコート22によって遮熱コーティング25,35,45を構成する形態について説明したが、本発明はこれに限定されず、製造される部材が、温度が比較的高くない場所で使用され、遮熱コーティングが不要である場合には、トップコート24,34,44は形成せず、本実施形態で説明したボンドコート22を耐酸化被覆として使用することも可能である。
(試験例)
基材上に厚さ約100μmのCoNiCrAlY層をプラズマ溶射法で形成したものを供試体として、アルミニウム拡散浸透処理、及びアルミニウム・シリコン共拡散浸透処理の効果を調べた。前記CoNiCrAlY層に拡散浸透処理を施さない供試体を供試体1、第1の実施形態で例示したアルミニウム拡散浸透処理を施し、厚さ約50μmの拡散層を形成した供試体を供試体2、第1の実施形態で例示したアルミニウム・シリコン拡散浸透処理を施し、厚さ約50μmの拡散層を形成した供試体を供試体3とした。
それぞれの供試体を、大気中、1000℃で3000時間加熱し、CoNiCrAlY層が酸化して形成された酸化スケールの厚さを測定した。供試体1から供試体3における酸化スケールの厚さは、それぞれ12μm、6μm、及び4μmであった。
本発明のアルミニウム拡散浸透処理及びアルミニウム・シリコン共拡散浸透処理を施した供試体2及び供試体3は、拡散浸透処理を施さなかった供試体1と比べ、酸化スケールの厚さが小さく、CoNiCrAlY層の耐酸化性が優れていることが分かった。また、アルミニウム・シリコン共拡散浸透処理を施した供試体3は、酸化スケールの厚さが最も小さく、CoNiCrAlY層の耐酸化性が特に優れていることが分かった。一般的に、TBC(Thermal Barrier Coating)のセラミックスを有するトップコートの剥離にはボンドコートの酸化特性が大きな影響を及ぼすことが知られている。従って、この酸化スケールが厚く成長すると、トップコートが剥離しやすくなる。本願のAl拡散浸透処理、もしくは、Al−Si共拡散浸透処理を行ったボンドコートの場合、通常のボンドコート単体よりも酸化物生成速度が遅く、トップコートを有するTBCの剥離寿命は長寿命となるので、本発明により熱サイクル耐久性に優れ、長寿命である遮熱コーティングを提供することができる。
(第2の実施形態)
本発明により形成された遮熱コーティングは、産業用ガスタービンの動翼や静翼、あるいは燃焼器の内筒や尾筒などの高温部品に適用して有用である。また、産業用ガスタービンに限らず、自動車やジェット機などのエンジンの高温部品の遮熱コーティングとして適用することができる。これらの部材に本発明の遮熱コーティングを被覆することで、熱サイクル耐久性に優れるガスタービン部材や高温部品を構成することができる。
図5と図6は、本発明の遮熱コーティングを適用可能なタービン翼(タービン部材)の構成例を示す斜視図である。図5に示すガスタービン動翼140は、ディスク側に固定されるタブテイル141、プラットフォーム142、翼部143等を備えて構成されている。また、図6に示すガスタービン静翼150は、内シュラウド151、外シュラウド152、翼部153等を備えて構成されており、翼部153にはシールフィン冷却孔154、スリット155等が形成されている。
図5と図6に示すタービン翼140、150を適用可能なガスタービンについて図7を参照して説明する。図7は、本発明に係るガスタービンの部分断面構造を模式的に示す図である。このガスタービン160は、互いに直結された圧縮機161とタービン162とを備える。圧縮機161は、例えば軸流圧縮機として構成されており、大気又は所定のガスを吸込口から作動流体として吸い込んで昇圧させる。この圧縮機161の吐出口には、燃焼器163が接続されており、圧縮機161から吐出された作動流体は、燃焼器163によって所定のタービン入口温度まで加熱される。そして所定温度まで昇温された作動流体がタービン162に供給されるようになっている。図7に示すように、タービン162のケーシング内部には、上述したガスタービン静翼150が、数段(図7では4段)設けられている。また、上述したガスタービン動翼140が、各静翼150と一組の段を形成するように主軸164に取り付けられている。主軸164の一端は、圧縮機161の回転軸165に接続されており、その他端には、図示しない発電機の回転軸が接続されている。
このような構成により、燃焼器163からタービン162のケーシング内に高温高圧の作動流体を供給すれば、ケーシング内で作動流体が膨張することにより、主軸164が回転し、このガスタービン160と接続された図示しない発電機が駆動される。すなわち、ケーシングに固定された各静翼150によって圧力降下させられ、これにより発生した運動エネルギーは、主軸164に取り付けられた各動翼140を介して回転トルクに変換される。そして、発生した回転トルクは、回転軸165に伝達され、発電機が駆動される。
耐熱金属を有する基材上に本発明の遮熱コーティングを形成してなる耐熱部材を、これらのタービン翼に用いれば、遮熱効果と、耐剥離性に優れたタービン翼となるので、より高い温度環境で使用することができ、また耐久性に優れ、長寿命のタービン翼を実現することができる。また、より高い温度環境において適用可能であることは、作動流体の温度を高められることを意味し、これによりガスタービン効率を向上させることも可能となる。また、本発明の耐熱部材は、遮熱性に優れるため、ガスタービンで使用される冷却用空気流量を低減でき、ガスタービンの性能向上に寄与できる。
本発明の耐熱部材は、ガスタービンに限らず、ディーゼルエンジンのピストンクラウンや、ジェットエンジン部品等にも適用可能である。
本発明の耐熱部材の一例を表す概略部分断面図である。 本発明の耐熱部材の一例を表す概略部分断面図である。 本発明の耐熱部材の一例を表す概略部分断面図である。 拡散浸透処理の放物線則を示すグラフである。 本発明の耐熱部材として形成されるタービン部材の一例である動翼を示す斜視図である。 本発明の耐熱部材として形成されるタービン部材の一例である静翼を示す斜視図である。 図5と図6に示すガスタービン部材を備えたガスタービンの一例を示す部分断面図である。
符号の説明
21 基材
22 ボンドコート
22a 拡散層
24 トップコート
24P 気孔
25 遮熱コーティング
34 トップコート
34C 縦割れ
35 遮熱コーティング
44 トップコート
44L 柱状晶
45 遮熱コーティング
140 動翼(タービン部材)
141 タブテイル
142 プラットフォーム
143 翼部
150 静翼(タービン部材)
151 内シュラウド
152 外シュラウド
153 翼部
154 冷却孔
155 スリット
160 ガスタービン
161 圧縮機
162 タービン
163 燃焼器
164 主軸
165 回転軸

Claims (9)

  1. 耐熱金属を有する基材上に、溶射又は蒸着によりMCrAlY合金(但し、MはCo及びNiのうちの少なくとも1種の元素を表す)を主として含有するMCrAlY層を形成する工程と、
    前記MCrAlY層において、前記基材と反対側の面から、該MCrAlY層の厚さ方向の一部にアルミニウムを拡散する拡散浸透工程とを有する耐酸化膜の形成方法。
  2. 耐熱金属を有する基材上に、溶射又は蒸着によりMCrAlY合金(但し、MはCo及びNiのうちの少なくとも1種の元素を表す)を主として含有するMCrAlY層を形成する工程と、
    前記MCrAlY層において、前記基材と反対側の面から、該MCrAlY層の厚さ方向の一部にアルミニウム及びシリコンを拡散する拡散浸透工程とを有する耐酸化膜の形成方法。
  3. 前記拡散浸透工程において、アルミニウム又はアルミニウム及びシリコンが拡散した層の厚さを、前記MCrAlY層の厚さの1%以上90%以下とする、請求項1又は2に記載の耐酸化膜の形成方法。
  4. 耐熱金属を有する基材上に形成される、MCrAlY合金(但し、MはCo及びNiのうちの少なくとも1種の元素を表す)を主として含有する耐酸化膜であって、
    前記基材と反対側の面から、その厚さ方向の一部にアルミニウムが拡散された拡散層を有する耐酸化膜。
  5. 耐熱金属を有する基材上に形成される、MCrAlY合金(但し、MはCo及びNiのうちの少なくとも1種の元素を表す)を主として含有する耐酸化膜であって、
    前記基材と反対側の面から、その厚さ方向の一部にアルミニウム及びシリコンが拡散された拡散層を有する耐酸化膜。
  6. 前記拡散層の厚さが耐酸化膜の厚さの1%以上90%以下である、請求項4又は5に記載の耐酸化膜。
  7. 請求項4から請求項6のいずれかに記載の耐酸化膜と、
    該耐酸化膜の前記拡散層側に設けられた、セラミックスを有するトップコートとを備えた遮熱コーティング。
  8. 耐熱金属を有する基材と、
    前記拡散層と反対側の面を前記基材側に配して設けられた請求項7に記載の遮熱コーティングとを備えた耐熱部材。
  9. 請求項8に記載の耐熱部材を備えたガスタービン。
JP2006085928A 2006-03-27 2006-03-27 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン Pending JP2007262447A (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006085928A JP2007262447A (ja) 2006-03-27 2006-03-27 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン
US11/657,122 US20070224443A1 (en) 2006-03-27 2007-01-24 Oxidation-resistant coating and formation method thereof, thermal barrier coating, heat-resistant member, and gas turbine
CA002576004A CA2576004A1 (en) 2006-03-27 2007-01-26 Oxidation-resistant coating and formation method thereof, thermal barrier coating, heat-resistant member, and gas turbine
CNA2007100083536A CN101045981A (zh) 2006-03-27 2007-01-29 耐氧化膜及其形成方法、隔热涂层、耐热构件和燃气轮机
EP07101348A EP1840238A3 (en) 2006-03-27 2007-01-29 Oxidation-resistant coating and formation method thereof, thermal barrier coating, heat-resistant member, and gas turbine
US12/755,483 US20100196615A1 (en) 2006-03-27 2010-04-07 Method for forming an oxidation-resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085928A JP2007262447A (ja) 2006-03-27 2006-03-27 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン

Publications (1)

Publication Number Publication Date
JP2007262447A true JP2007262447A (ja) 2007-10-11

Family

ID=37946250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085928A Pending JP2007262447A (ja) 2006-03-27 2006-03-27 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン

Country Status (5)

Country Link
US (2) US20070224443A1 (ja)
EP (1) EP1840238A3 (ja)
JP (1) JP2007262447A (ja)
CN (1) CN101045981A (ja)
CA (1) CA2576004A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237046A (ja) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd 試験片製造方法及びコーティング層の物性値測定方法
JP2011512454A (ja) * 2007-12-24 2011-04-21 ゼネラル・エレクトリック・カンパニイ コーティングを有する超合金物品
JP2012514692A (ja) * 2009-01-08 2012-06-28 シーメンス アクティエンゲゼルシャフト 異なるクロムおよびアルミニウム含量を有するMCrAlX層
JP2014205906A (ja) * 2013-03-19 2014-10-30 ゼネラル・エレクトリック・カンパニイ 処理した被覆物品及び被覆物品の処理方法
KR101511248B1 (ko) 2013-11-14 2015-04-10 한전케이피에스 주식회사 수직균열이 내재된 고밀도 열차폐코팅 구조 및 그 제조방법
JPWO2016076305A1 (ja) * 2014-11-11 2017-07-06 三菱日立パワーシステムズ株式会社 遮熱コーティング、および、タービン部材
JP2021521338A (ja) * 2018-04-24 2021-08-26 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン MCrAl−Xコーティング層を含むコーティング

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959213B2 (ja) * 2006-03-31 2012-06-20 三菱重工業株式会社 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
US8808852B2 (en) * 2007-07-11 2014-08-19 United Technologies Corporation Process for controlling fatigue debit of a coated article
FR2947871B1 (fr) * 2009-07-09 2011-11-25 Snecma Barriere anti-condensation sur circuit regeneratif
CN102158319B (zh) * 2010-02-12 2015-12-16 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
US20120148769A1 (en) * 2010-12-13 2012-06-14 General Electric Company Method of fabricating a component using a two-layer structural coating
US9022743B2 (en) * 2011-11-30 2015-05-05 United Technologies Corporation Segmented thermally insulating coating
DE102015213555A1 (de) * 2015-07-20 2017-03-09 MTU Aero Engines AG Dichtrippenpanzerung und Verfahren zur Herstellung derselben
US10519854B2 (en) 2015-11-20 2019-12-31 Tenneco Inc. Thermally insulated engine components and method of making using a ceramic coating
US10578050B2 (en) 2015-11-20 2020-03-03 Tenneco Inc. Thermally insulated steel piston crown and method of making using a ceramic coating
CN105420658A (zh) * 2015-11-25 2016-03-23 沈阳黎明航空发动机(集团)有限责任公司 一种涡轮叶片用复合涂层及其制备方法
CN105463453B (zh) * 2015-11-25 2018-09-14 沈阳黎明航空发动机(集团)有限责任公司 一种界面稳定的热障涂层及其制备方法
US10052724B2 (en) * 2016-03-02 2018-08-21 General Electric Company Braze composition, brazing process, and brazed article
US10428727B2 (en) * 2017-04-14 2019-10-01 Ford Motor Company Bonding strength enhancement for ceramic coating on high temperature alloy
US20190072365A1 (en) * 2017-09-05 2019-03-07 The Boeing Company Compositionally-graded metal-ceramic structure and method for manufacturing the same
EP3470543A1 (en) * 2017-10-12 2019-04-17 General Electric Company Coated component and method of preparing a coated component
US20190300999A1 (en) * 2018-04-02 2019-10-03 Tokyo Electron Limited Method of forming metallic film
US11092019B2 (en) 2018-10-12 2021-08-17 General Electric Company Coated component and method of preparing a coated component
CN114525477B (zh) * 2022-02-26 2023-08-22 辽宁科技大学 一种CoCrNiAlY多层高温防护涂层及其增重控制方法、制备方法
CN117568737B (zh) * 2024-01-12 2024-05-28 北矿新材科技有限公司 具有高抗热震和高磨耗性的涂层及其制备方法、发动机和飞行器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524928A (en) * 1978-08-07 1980-02-22 Howmet Turbine Components Forming of covering on metal base
JPH09509697A (ja) * 1994-02-28 1997-09-30 サーマテック インターナショナル インコーポレイテッド プラチナ濃縮ケイ素変性耐蝕性アルミニウム被覆
JPH10183373A (ja) * 1996-12-19 1998-07-14 Mitsubishi Heavy Ind Ltd 高耐食性翼及びその製造方法
JPH11172463A (ja) * 1997-08-14 1999-06-29 Howmet Res Corp 超合金のアルミ化物拡散コーティングシステム
JP2977369B2 (ja) * 1992-05-19 1999-11-15 三菱重工業株式会社 動・静翼表面層
JP2001115250A (ja) * 1999-08-23 2001-04-24 General Electric Co <Ge> 基材に皮膜を施工する方法
JP2002517608A (ja) * 1998-06-03 2002-06-18 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー 断熱層用接着層の製造方法
JP2003293164A (ja) * 2002-03-29 2003-10-15 Tocalo Co Ltd Ni基高温強度部材およびその製造方法
JP2004323891A (ja) * 2003-04-23 2004-11-18 Okayama Prefecture 鉄鋼表面の改質方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874901A (en) * 1973-04-23 1975-04-01 Gen Electric Coating system for superalloys
US4101715A (en) * 1977-06-09 1978-07-18 General Electric Company High integrity CoCrAl(Y) coated nickel-base superalloys
US4371570A (en) * 1980-02-11 1983-02-01 United Technologies Corporation Hot corrosion resistant coatings
US6555179B1 (en) * 1998-01-14 2003-04-29 General Electric Company Aluminizing process for plasma-sprayed bond coat of a thermal barrier coating system
WO2000009777A1 (en) * 1998-08-17 2000-02-24 Coltec Industries Inc. Vapor phase co-deposition coating for superalloy applications
US6585864B1 (en) * 2000-06-08 2003-07-01 Surface Engineered Products Corporation Coating system for high temperature stainless steel
JP2002371803A (ja) * 2001-06-13 2002-12-26 Mitsubishi Heavy Ind Ltd 動翼用耐摩耗層の形成方法、耐摩耗層及びその再生方法
US7270852B2 (en) * 2003-08-04 2007-09-18 General Electric Company Aluminizing slurry compositions free of hexavalent chromium, and related methods and articles
US6979498B2 (en) * 2003-11-25 2005-12-27 General Electric Company Strengthened bond coats for thermal barrier coatings
US7070866B2 (en) * 2004-05-27 2006-07-04 General Electric Company Nickel aluminide coating with improved oxide stability
DE102004045049A1 (de) 2004-09-15 2006-03-16 Man Turbo Ag Verfahren zum Aufbringen einer Schutzschicht

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524928A (en) * 1978-08-07 1980-02-22 Howmet Turbine Components Forming of covering on metal base
JP2977369B2 (ja) * 1992-05-19 1999-11-15 三菱重工業株式会社 動・静翼表面層
JPH09509697A (ja) * 1994-02-28 1997-09-30 サーマテック インターナショナル インコーポレイテッド プラチナ濃縮ケイ素変性耐蝕性アルミニウム被覆
JPH10183373A (ja) * 1996-12-19 1998-07-14 Mitsubishi Heavy Ind Ltd 高耐食性翼及びその製造方法
JPH11172463A (ja) * 1997-08-14 1999-06-29 Howmet Res Corp 超合金のアルミ化物拡散コーティングシステム
JP2002517608A (ja) * 1998-06-03 2002-06-18 エムテーウー・アエロ・エンジンズ・ゲーエムベーハー 断熱層用接着層の製造方法
JP2001115250A (ja) * 1999-08-23 2001-04-24 General Electric Co <Ge> 基材に皮膜を施工する方法
JP2003293164A (ja) * 2002-03-29 2003-10-15 Tocalo Co Ltd Ni基高温強度部材およびその製造方法
JP2004323891A (ja) * 2003-04-23 2004-11-18 Okayama Prefecture 鉄鋼表面の改質方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512454A (ja) * 2007-12-24 2011-04-21 ゼネラル・エレクトリック・カンパニイ コーティングを有する超合金物品
JP2012514692A (ja) * 2009-01-08 2012-06-28 シーメンス アクティエンゲゼルシャフト 異なるクロムおよびアルミニウム含量を有するMCrAlX層
JP2010237046A (ja) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd 試験片製造方法及びコーティング層の物性値測定方法
JP2014205906A (ja) * 2013-03-19 2014-10-30 ゼネラル・エレクトリック・カンパニイ 処理した被覆物品及び被覆物品の処理方法
KR101511248B1 (ko) 2013-11-14 2015-04-10 한전케이피에스 주식회사 수직균열이 내재된 고밀도 열차폐코팅 구조 및 그 제조방법
JPWO2016076305A1 (ja) * 2014-11-11 2017-07-06 三菱日立パワーシステムズ株式会社 遮熱コーティング、および、タービン部材
JP2021521338A (ja) * 2018-04-24 2021-08-26 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン MCrAl−Xコーティング層を含むコーティング
US11661657B2 (en) 2018-04-24 2023-05-30 Oerlikon Surface Solutions Ag, Pfäffikon Coating comprising MCrAl-X coating layer
JP7479598B2 (ja) 2018-04-24 2024-05-09 エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン MCrAl-Xコーティング層を含むコーティング

Also Published As

Publication number Publication date
CA2576004A1 (en) 2007-09-27
EP1840238A3 (en) 2008-06-25
EP1840238A2 (en) 2007-10-03
US20100196615A1 (en) 2010-08-05
CN101045981A (zh) 2007-10-03
US20070224443A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP2007262447A (ja) 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン
JP4166977B2 (ja) 耐高温腐食合金材、遮熱コーティング材、タービン部材、及びガスタービン
JP4959213B2 (ja) 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
JP4969094B2 (ja) 遮熱コーティング部材及びその製造並びにガスタービン
EP3074619B1 (en) Method of providing a self-healing coating
JP5082563B2 (ja) 遮熱被覆を有する耐熱部材
JP4959789B2 (ja) タービン構成部品及びタングステンブロンズ構造セラミックコーティング材
JPH1088368A (ja) 遮熱コーティング部材およびその作製方法
RU2464175C2 (ru) Керамический порошок, керамический слой и многослойная система с пирохлорной фазой и оксидами
JP2003160852A (ja) 遮熱コーティング材、その製造方法、タービン部材及びガスタービン
JP4031631B2 (ja) 遮熱コーティング材及びガスタービン部材並びにガスタービン
US7993704B2 (en) Protective coating systems for gas turbine engine applications and methods for fabricating the same
JP2006281783A (ja) 層組織
KR20110119800A (ko) 파이로클로르 상을 갖는 2층의 다공성 층 시스템
JP6386740B2 (ja) セラミック粉末及びそのための方法
KR20030011690A (ko) 열차단 코팅
JP2021191899A (ja) 基材上に高温保護層を接合するための付着促進層、並びにそれの製造方法
JP2000144365A (ja) 遮熱コーティング部材、遮熱コーティング部材の製造方法、および遮熱コーティング部材を用いた高温ガスタービン
JP4388466B2 (ja) ガスタービン、遮熱コーティング材、その製造方法及びタービン部材
JP4166978B2 (ja) 耐高温腐食合金材、遮熱コーティング材、タービン部材、及びガスタービン
JP2010242223A (ja) 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
GB2516123A (en) Part comprising a coating over a metal substrate made of a superalloy, said coating including a metal sublayer
JP5320352B2 (ja) 遮熱コーティング部材及びその製造方法ならびに遮熱コート材料、ガスタービン及び焼結体
JP5164250B2 (ja) 遮熱コーティング部材とその製造方法
EP2423347A1 (en) Method for forming a thermal barrier coating and a turbine component with the thermal barrier coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005