CN110265225B - 制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法 - Google Patents

制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法 Download PDF

Info

Publication number
CN110265225B
CN110265225B CN201910436829.9A CN201910436829A CN110265225B CN 110265225 B CN110265225 B CN 110265225B CN 201910436829 A CN201910436829 A CN 201910436829A CN 110265225 B CN110265225 B CN 110265225B
Authority
CN
China
Prior art keywords
doped
porous carbon
nacl
composite material
dimensional porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910436829.9A
Other languages
English (en)
Other versions
CN110265225A (zh
Inventor
何春年
陈伯超
赵乃勤
师春生
马丽颖
何芳
刘恩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910436829.9A priority Critical patent/CN110265225B/zh
Publication of CN110265225A publication Critical patent/CN110265225A/zh
Application granted granted Critical
Publication of CN110265225B publication Critical patent/CN110265225B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供一种制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法,包括以下步骤:1)制备前驱体:选用氯化铁、七钼酸铵、柠檬酸铵和氯化钠为原料,将以上原料混合溶解在去离子水中,将所得的均一混合溶液利用喷雾干燥机喷雾成球,从而制得前驱体;2)制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料:将步骤1制得的前驱体在管式炉中煅烧,再冷却至室温,得到煅烧产物,去除NaCl得到氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料。

Description

制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗 粒复合材料的方法
技术领域
本发明涉及一种使用工业化生产技术(喷雾干燥法)制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒的方法,属于纳米材料制备技术领域。
背景技术
氮掺杂的三维多孔碳微球具有着优异的理化性质,例如:大的比表面积、高的机械强度、优良的导电性和导热性等,因而其可以应用在诸多领域,特别是在电化学领域,丰富的孔结构和掺杂的氮原子使得该多孔碳微球可被作为负载基体负载多种纳米金属颗粒或金属基纳米材料,制备的该种复合材料可作为高性能电极材料应用在多种领域,譬如:钠离子电池及锂离子电池正负极材料、超电容、锂-硫电池、锂金属电池以及电催化析氢和吸氧等。
当前,水热、溶剂热结合模板技术是制备多孔球形碳负载金属及其化合物的主流方法。但水热和溶剂热结合模板技术生产成本较高,过程较为复杂,产量较低,不适合大规模工业化生产制备。同时,将多种金属基材料共同负载在氮掺杂的多孔碳微球上更是很难实现。这些都严重限制了其在电化学领域的实际应用和性能的提高。所以大批量和高纯度的制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒同样依然是一个难题。
发明内容
本发明的目的是提供一种简易制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒的方法;该方法过程简单,成本低廉,得到的氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料形貌均匀一致、产量大,适合大规模工业化生产。本发明解决上述技术问题的技术方案是,
一种制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法,包括以下步骤:
1)制备前驱体
选用氯化铁(FeCl3)、七钼酸铵((NH4)6Mo7O24·4H2O)、柠檬酸铵(C6H5O7(NH4)3)和氯化钠(NaCl)为原料,将以上原料混合溶解在去离子水中,将所得的均一混合溶液利用喷雾干燥机喷雾成球,从而制得前驱体,记为NaCl@FeCl3-C6H5O7(NH4)3-(NH4)6Mo7O24·4H2O。
2)制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料
将步骤1制得的前驱体在管式炉中高纯氩气气氛下以8℃/min升温至780~790℃,保温大于等于2h,再冷却至室温,得到煅烧产物,记为Fe/Mo2C/Mo2N@N-3DC@NaCl,再将Fe/Mo2C/Mo2N@N-3DC@NaCl去除NaCl得到Fe/Mo2C/Mo2N@N-3DC,即得到氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料。
步骤1)中,按照Fe3+:Mo:C:Na+的物质量之比为(0.2-0.5):(2-3):(25-35):100的关系,将原料混合溶解在去离子水中。
与现有技术相比,本发明方法具有以下优势:(1)利用NaCl(可回收再利用)作为模板,使用廉价的FeCl3、C6H5O7(NH4)3和(NH4)6Mo7O24·4H2O作为原料,大大节约了成本;(2)所制备的氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料纯度高,产量大,可控性好,且制备过程和设备简单,易于未来大规模工业化实际生产应用。
附图说明
图1为本发明制备的经水洗去除NaCl后Fe/Mo2C/Mo2N@N-3DC的XRD图谱;
图2为本发明制备的前驱体NaCl@FeCl3-C6H5O7(NH4)3-(NH4)6Mo7O24·4H2O的SEM图像;
图3为本发明所制备的煅烧产物Fe/Mo2C/Mo2N@N-3DC@NaCl的SEM图像;
图4为本发明所制备的经水洗去除NaCl后Fe/Mo2C/Mo2N@N-3DC的SEM图像;
图5为本发明所制备的经水洗去除NaCl后Fe/Mo2C/Mo2N@N-3DC(为Mo2C)的TEM图像。
图6为本发明所制备的经水洗去除NaCl后Fe/Mo2C/Mo2N@N-3DC(为Mo2N)的TEM图像。
图7为本发明所制备的经水洗去除NaCl后Fe/Mo2C/Mo2N@N-3DC(为Fe)的TEM图像。
图8为本发明所制备的经水洗去除NaCl后Fe/Mo2C/Mo2N@N-3DC(为Fe)的HRTEM图像。
本发明未述及之处适用于现有技术。
以下给出本发明制备方法的具体实施例。这些实施例仅用于详细说明本发明制备方法,并不限制本申请权利要求的保护范围。
实施例1
按照Fe3+:Mo:C:Na+的物质量之比为0.5:2:30:100的关系,将0.19g的FeCl3,2.9g的C6H5O7(NH4)3,0.842g的(NH4)6Mo7O24·4H2O和15g的NaCl溶于115mL去离子水,在室温下搅拌8h以保证C6H5O7(NH4)3与金属盐充分络合。将所得均一溶液通过喷雾干燥机进行喷雾干燥。在此过程中,被包袱着(NH4)6Mo7O24.4H2O、C6H5O7(NH4)3和FeCl3的NaCl自组装形成空心圆球,圆球的大小成正态分布。由于在高温下,液滴表面的水迅速挥发,液滴内部的水携带着NaCl迁移至表面,在极短的时间内导致其自组装形成空心圆球前驱体NaCl@FeCl3-C6H5O7(NH4)3-(NH4)6Mo7O24·4H2O。将前驱体置于管式炉中,先通氩气以排除空气,然后以8℃/min升温至790℃,保温2h,后冷却至室温,得到煅烧产物Fe/Mo2C/Mo2N@N-3DC@NaCl。将产物用去离子水和无水乙醇洗涤三次,烘干得到样品Fe/Mo2C/Mo2N@N-3DC。
实施例2
按照Fe3+:Mo:C:Na+的物质量之比为0.25:2.5:30:100的关系,将0.097g的FeCl3,2.9g的C6H5O7(NH4)3,1.053g的(NH4)6Mo7O24·4H2O和15g的NaCl溶于115mL去离子水,在室温下搅拌12h以保证C6H5O7(NH4)3与金属盐充分络合。将所得均一溶液通过喷雾干燥机进行喷雾干燥。在此过程中,被包袱着(NH4)6Mo7O24.4H2O、C6H5O7(NH4)3和FeCl3的NaCl自组装形成空心圆球,圆球的大小成正态分布。由于在高温下,液滴表面的水迅速挥发,液滴内部的水携带着NaCl迁移至表面,在极短的时间内导致其自组装形成空心圆球前驱体NaCl@FeCl3-C6H5O7(NH4)3-(NH4)6Mo7O24·4H2O。将前驱体置于管式炉中,先通氩气以排除空气,然后以8℃/min升温至780℃,保温3h,后冷却至室温,得到煅烧产物Fe/Mo2C/Mo2N@N-3DC@NaCl。将产物用去离子水和无水乙醇洗涤三次,烘干得到样品Fe/Mo2C/Mo2N@N-3DC。
实施例3
按照Fe3+:Mo:C:Na+的物质量之比为0.21:1.4:21:100的关系,将0.116g的FeCl3,2.9g的C6H5O7(NH4)3,0.842g的(NH4)6Mo7O24·4H2O和20g的NaCl溶于115mL去离子水,在室温下搅拌6h以保证C6H5O7(NH4)3与金属盐充分络合。将所得均一溶液通过喷雾干燥机进行喷雾干燥。在此过程中,被包袱着(NH4)6Mo7O24.4H2O、C6H5O7(NH4)3和FeCl3的NaCl自组装形成空心圆球,圆球的大小成正态分布。由于在高温下,液滴表面的水迅速挥发,液滴内部的水携带着NaCl迁移至表面,在极短的时间内导致其自组装形成空心圆球前驱体NaCl@FeCl3-C6H5O7(NH4)3-(NH4)6Mo7O24·4H2O。将前驱体置于管式炉中,先通氩气以排除空气,然后以8℃/min升温至785℃,保温2.5h,后冷却至室温,得到煅烧产物Fe/Mo2C/Mo2N@N-3DC@NaCl。将产物用去离子水和无水乙醇洗涤三次,烘干得到样品Fe/Mo2C/Mo2N@N-3DC。

Claims (3)

1.一种制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法,包括以下步骤:
1) 制备前驱体
选用氯化铁FeCl3、七钼酸铵(NH4)6Mo7O24·4H2O、柠檬酸铵C6H5O7(NH4)3和氯化钠NaCl为原料,将以上原料混合溶解在去离子水中,将所得的均一混合溶液利用喷雾干燥机喷雾成球,从而制得前驱体,记为NaCl@FeCl3-C6H5O7(NH4)3-(NH4)6Mo7O24·4H2O;
2) 制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料
将步骤1)制得的前驱体在管式炉中在惰性气氛下升温至780~790℃,保温大于等于2h,再冷却至室温,得到煅烧产物,记为Fe/Mo2C/Mo2N@N-3DC@NaCl,再将Fe/Mo2C/Mo2N@N-3DC@NaCl去除NaCl得到Fe/Mo2C/Mo2N@N-3DC,即得到氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料。
2.根据权利要求1所述的方法,其特征在于,步骤1)中,按照Fe3+:Mo:C:Na+的物质量之比为(0.2-0.5):(2-3):(25-35):100的关系,将原料混合溶解在去离子水中。
3.根据权利要求1所述的方法,其特征在于,步骤2)中,在管式炉中高纯氩气气氛下以8℃/min升温至780~790℃。
CN201910436829.9A 2019-05-23 2019-05-23 制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法 Expired - Fee Related CN110265225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910436829.9A CN110265225B (zh) 2019-05-23 2019-05-23 制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910436829.9A CN110265225B (zh) 2019-05-23 2019-05-23 制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法

Publications (2)

Publication Number Publication Date
CN110265225A CN110265225A (zh) 2019-09-20
CN110265225B true CN110265225B (zh) 2021-03-16

Family

ID=67915260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910436829.9A Expired - Fee Related CN110265225B (zh) 2019-05-23 2019-05-23 制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法

Country Status (1)

Country Link
CN (1) CN110265225B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113070086B (zh) * 2021-03-31 2022-07-26 中南大学 一种氮掺杂碳负载碳化钼纳米复合材料及其制备方法和应用
CN113292052A (zh) * 2021-04-29 2021-08-24 上海师范大学 中空金属氮化物/碳微球复合材料及其制备方法和应用
CN113707884A (zh) * 2021-06-23 2021-11-26 信阳师范学院 一种3D Mo2C-Mo3N2/rGO异质结构材料的原位制备方法及应用
CN114105108B (zh) * 2021-11-23 2023-09-12 西南大学 一种碳量子点辅助制备金属纳米颗粒锚定氮化钼的方法及其产品和应用
CN114790001B (zh) * 2022-05-06 2023-10-03 河南农业大学 一种多酸功能化富氮多孔碳及其制备方法和应用
CN115108536B (zh) * 2022-07-05 2023-06-23 南昌航空大学 一种碳封装氮化钼表面修饰少层硒化钼纳米片储钠材料及其形成方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269566A (zh) * 2014-09-22 2015-01-07 南开大学 一种氮掺杂多孔碳纳米片复合材料的制备方法和应用
CN108002382A (zh) * 2017-11-29 2018-05-08 同济大学 氮掺杂多孔碳负载Fe2O3复合材料的制备方法
CN108183203A (zh) * 2017-12-05 2018-06-19 山西长征动力科技有限公司 多级结构碳化钼/氮掺杂碳复合微球电极材料的制备方法
CN108777294A (zh) * 2018-05-28 2018-11-09 福州大学 一种由纳米片组成的碳支持的多孔球形MoN及其作为负极材料在锂电池中的应用
CN109037664A (zh) * 2018-07-05 2018-12-18 华南理工大学 一种N掺杂的碳包覆的Mo2C/C功能复合材料的制备方法及其在锂硫电池中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269566A (zh) * 2014-09-22 2015-01-07 南开大学 一种氮掺杂多孔碳纳米片复合材料的制备方法和应用
CN108002382A (zh) * 2017-11-29 2018-05-08 同济大学 氮掺杂多孔碳负载Fe2O3复合材料的制备方法
CN108183203A (zh) * 2017-12-05 2018-06-19 山西长征动力科技有限公司 多级结构碳化钼/氮掺杂碳复合微球电极材料的制备方法
CN108777294A (zh) * 2018-05-28 2018-11-09 福州大学 一种由纳米片组成的碳支持的多孔球形MoN及其作为负极材料在锂电池中的应用
CN109037664A (zh) * 2018-07-05 2018-12-18 华南理工大学 一种N掺杂的碳包覆的Mo2C/C功能复合材料的制备方法及其在锂硫电池中的应用

Also Published As

Publication number Publication date
CN110265225A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN110265225B (zh) 制备氮掺杂三维多孔碳微球负载碳化钼/氮化钼和铁纳米颗粒复合材料的方法
CN110336032B (zh) 一种纳米钴负载的氮掺杂三维多孔碳的制备方法及其在锂硫电池中的应用
US10131544B2 (en) Graphene/porous iron oxide nanorod composite and manufacturing method thereof
Zheng et al. Nano electrochemical reactors of Fe 2 O 3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries
Lu et al. Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries
CN103956473B (zh) 一种CuO-Cu2O/石墨烯纳米复合材料及其制备方法
WO2017045273A1 (zh) 一种气凝胶-金属复合材料及其制备方法和应用
CN110247030B (zh) 制备内嵌金属/碳蛋黄壳结构的氮/硫共掺杂碳纳米片围成的三维多孔微球的方法
CN108336308A (zh) 一种锂硫电池正极保护材料及其应用
CN104860306B (zh) 一种高度有序介孔石墨烯材料的制备方法
CN107994225A (zh) 一种多孔硅碳复合负极材料及其制备方法、锂离子电池
CN107032408B (zh) 一种MnO掺杂的四氧化三铁/C分级纳米球结构复合材料及其制备方法
CN107681195B (zh) 纳米石榴石型固体电解质材料的制备方法
Pal et al. Morphology-mediated tailoring of the performance of porous nanostructured Mn 2 O 3 as an anode material
CN106216705A (zh) 一种3d打印用细颗粒单质球形金属粉末的制备方法
CN110071285B (zh) 钠离子电池正极材料及其制备方法与应用
CN106711432B (zh) 一种三维网状结构MoO2纳米材料及其制备和应用
CN106252651A (zh) 一种锂离子电池多孔复合负极材料及其制备方法
CN108202145B (zh) 一种纳米氧化铝/铜复合增强相的制备方法
CN109748282B (zh) 一种低温制备纳米碳化硅的方法
CN109742371B (zh) 一种三维碳网络包覆Ni2P纳米颗粒复合材料的制备方法
Bornamehr et al. Prussian blue and its analogues as functional template materials: control of derived structure compositions and morphologies
CN108788173B (zh) 一种超细氧化钇掺杂钨复合粉末的水热制备方法
Zou et al. Controllable self-catalytic fabrication of carbon nanomaterials mediated by a nickel metal organic framework
CN109081328A (zh) 一种制备氮掺杂三维多孔碳纳米片球的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210316

CF01 Termination of patent right due to non-payment of annual fee