CN110181510A - 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法 - Google Patents

一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法 Download PDF

Info

Publication number
CN110181510A
CN110181510A CN201910421917.1A CN201910421917A CN110181510A CN 110181510 A CN110181510 A CN 110181510A CN 201910421917 A CN201910421917 A CN 201910421917A CN 110181510 A CN110181510 A CN 110181510A
Authority
CN
China
Prior art keywords
control
time delay
fuzzy logic
fuzzy
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910421917.1A
Other languages
English (en)
Other versions
CN110181510B (zh
Inventor
王尧尧
彦飞
孟思华
刘卢芳
陈柏
赵锦波
李彬彬
田波
杨扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201910421917.1A priority Critical patent/CN110181510B/zh
Publication of CN110181510A publication Critical patent/CN110181510A/zh
Application granted granted Critical
Publication of CN110181510B publication Critical patent/CN110181510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)
  • Manipulator (AREA)

Abstract

本发明公开一种基于时延估计的机械臂轨迹跟踪控制方法。该方法将自适应时延估计技术与滑模控制算法相结合,并采用模糊逻辑设计时延估计的自适应算法。时延估计技术可以有效估计***未知的动力学特性与外界干扰,并对其进行补偿,可使控制器在不依赖被控对象动力学模型的同时,拥有较好的控制效果。采用模糊逻辑设计的自适应算法较现有自适应算法相比,具有更快的自适应速度,可以更快地跟踪机械臂工作状况的变化和外界干扰的变化,从而进一步提升机械臂的控制效果与作业性能。

Description

一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法
技术领域
本发明属于机器人***控制技术领域,特别是对一类机械臂的轨迹跟踪控制方法。
背景技术
机械臂对于提高生产自动化程度、提升国家制造业水平具有重要的意义,目前,机械臂被广泛的应用于生产、科研、服务等各个领域,发挥了重要的作用。而机械臂属于多刚体***,其动力性特性较为复杂,而机械臂的加工与制造往往存在一定的误差,故基于动力学模型的控制方法难于运用于生产实践之中。而不基于动力学模型的控制方法需克服机器人所有的动力学特性与外界干扰,难于实现较为较高的控制精度。因此,国内外学者提出了时延估计控制理论,这一控制方法可以利用机器人***前一时刻的状态估计***当前的未知动力学特性与外界干扰,从而有效提升机器人控制器的控制性能。利用时延估计控制理论,国内外学者设计了多种控制器。
Gun Rae Cho等人针对机械臂的控制器设计展开了研究,基于时延估计技术和内部模式控制技术提出了一种增强型的控制器,该控制器含有一个内部模式补偿控制器以提升其鲁棒性,并以时延估计的方法克服摩擦力的影响,而时延估计是一种克服摩擦力影响的有效方法[Cho G R,Chang P H,Park S H.Robust Trajectory Control of RobotManipulators Using Time Delay Estimation and Internal Model Concept[C]//European Control Conference Cdc-ecc 05IEEE Conference on Decision&Control.IEEE,2005]。Pyung Hun Chang等人针对非线性目标阻抗控制提出了一种控制算法,该控制算法将一个非线性的阻抗项加入传统的线性目标阻抗之中以减少期望的能量值,他们采用一种基于时延估计的阻抗控制方法实现期望的目标阻抗,实现了一自由度机械臂在摩擦力影响下的阻抗控制[Chang P H,Jin M.Nonlinear target impedancedesign and its use in robot compliant motion control with time delayestimation[C]//Conference of the IEEE Industrial Electronics Society.IEEE,2006.]。华南理工大学的刘海涛等人针对工业机器人***的控制器设计,结合时延估计控制方法,设计出一种鲁棒时延估计跟踪控制算法,这种控制算法不依赖于***的动力学模型,无需机器人逆动力学的在线运算;采用时延估计技术补偿了***大部分的未知动力学特性与外界干扰,提升了***的鲁棒性与控制性能[刘海涛,张铁.基于时延估计和鲁棒H_∞控制的工业机器人跟踪控制[J].华南理工大学学报(自然科学版),2012(01):77-81.]。Junyoung Lee等人设计了一款基于滑模控制方法与时延估计理论的控制器,该控制器可以估计机器人未知的动力学特性,如参数变化和外干扰等,具有较好的控制效果[Lee J,Chang P H,Jin M.Adaptive Integral Sliding Mode Control With Time-DelayEstimation for Robot Manipulators[J].IEEE Transactions on IndustrialElectronics,2017,64(8):6796-6804.]。Yassine Kali等人提出了一种超扭曲滑模控制算法。该控制算法使用了时延估计技术,以在获得较高控制精度的同时,对于***不确定性和未知外干扰具有一定的鲁棒性[Kali Y,Saad M,Benjelloun K,et al.Super-twistingalgorithm with time delay estimation for uncertain robot manipulators[J].Nonlinear Dynamics,2018,93(2):557-569.]。
时延估计技术可应用于多种控制器的设计之中,可实现较好的控制效果。然而,当机器人的工作环境、工作任务发生变化时,就需要对时延估计的相关参数进行调整,否则可能导致***震颤或控制性能不足。为此,Yaoyao Wang等人设计了自适应时延估计控制算法,并将其与滑模控制技术结合设计出了一款新型控制器[Wang Y,Yan F,Chen J,et al.ANew Adaptive Time-Delay Control Scheme for Cable-Driven Manipulators[J].IEEETransactions on Industrial Informatics,2018:1-1.],以自动调节时延估计的相关参数适应机械臂的不用工作状况。然而,当机械臂所受外界干扰或机械臂的工作状况变化较快时,该自适应算法相应较慢,不能适应快速变化外干扰力矩和机械臂工作状况。
为提高自适应算法的响应速度,为进一步提升现有控制方法的工程实用性,保证***在不同工作状况下的控制品质,亟需设计有效地的自适应控制方案,解决以上所述问题。
发明内容
本发明的目的是提供一种更加有效的自适应控制算法,目的为提升机械臂的控制效果并满足工程实际应用需求。
为解决上述问题,本发明提出一种基于时延估计的机械臂轨迹跟踪控制方法,所跟踪的轨迹除有限点外均具有连续、有界的两阶导数,并采用模糊逻辑设计自适应控制器,采用的技术方案如下:
一种基于时延估计的机械臂轨迹跟踪控制方法,用以控制n自由度串联机械臂,其中n为正整数,其特征在于,包含以下步骤:
(1)建立n自由度机械臂动力学方程:
式中,为机器人关节的位置矢量,为机器人关节的位置矢量关于时间的一阶导数,为机器人关节的位置矢量关于时间的二阶导数,是惯性矩阵,为向心力和哥氏力矢量,是重力矢量,是库伦摩擦力与粘性摩擦力矢量,为外干扰力矢量,为机器人各关节控制器广义输出向量;
(2)将步骤(1)中给出的机械臂动力学方程改写成如下形式:
其中为自适应控制参数,
(3)采用时延估计的方法获得步骤(2)中的H的近似值,并用该近似值代替真实值计算控制信号:
式中H(t-η)表示t-η时刻的H值,τm,(t-η)表示t-η时刻的τm值;
(4)采用滑模控制方法设计控制器,定义滑模面为:
式中λ为常数控制参数,e为控制误差,为e对于时间的导数,其中控制误差由下给出:
e=θd
式中θd为所跟踪的期望轨迹;机器人各关节控制器为:
式中为所跟踪轨迹的两阶导数。
本发明的优势:本发明的控制算法采用了时延估计技术,因此可以同时具备不依赖***模型和控制效果较好的优点。另外相对于现有的基于自适应时延估计技术的控制方法,本发明所提出的自适应算法可以拥有更快的响应速度,可以更好地跟踪外界条件和机械臂工作状况的变化,并最终提升机械臂跟踪期望轨迹的作业性能。
附图说明
图1为本发明实施步骤(6)中滑模面的隶属度函数;
图2为本发明实施步骤(6)中控制误差的隶属度函数;
图3为本发明实施步骤(7)中控制力矩的输出函数;
图4为本发明实施例中仿真采用的二自由度机械臂;
图5为具体实施本发明所述算法和常规基于时延估计技术控制算法的关节1轨迹跟踪控制效果对比仿真图;
图6为具体实施本发明所述算法和常规基于时延估计技术控制算法的关节2轨迹跟踪控制效果对比仿真图;
图7为具体实施本发明所述算法和常规基于时延估计技术控制算法的关节1轨迹跟踪误差对比仿真图;
图8为具体实施本发明所述算法和常规基于时延估计技术控制算法的关节2轨迹跟踪误差对比仿真图;
图9为具体实施本发明所述算法和常规基于时延估计技术控制算法的关节1时延估计增益对比仿真图;
图10为具体实施本发明所述算法和常规基于时延估计技术控制算法的关节2时延估计增益对比仿真图;
具体实施方式
下面结合附图进一步说明本发明,以下实例仅用于描述本发明而不用于限制本发明的使用范围,各领域工程技术人员对本发明的各种等价变换均包含在本发明所要求的权利范围内。具体实施步骤如下:
本发明公开一种基于时延估计的机械臂轨迹跟踪控制方法,用以控制n自由度串联机械臂,其中n为正整数,该控制方法包含以下步骤:
(1)建立n自由度机械臂动力学方程:
式中,为机器人关节的位置矢量,为机器人关节的位置矢量关于时间的一阶导数,为机器人关节的位置矢量关于时间的二阶导数,是惯性矩阵,为向心力和哥氏力矢量,是重力矢量,是库伦摩擦力与粘性摩擦力矢量,为外干扰力矢量,为机器人各关节控制器广义输出向量。
(2)将步骤(1)中给出的机械臂动力学方程改写成如下形式:
其中为自适应控制参数,
(3)考虑到步骤(2)中的H较为复杂,采用时延估计的方法获得其近似值,并用该近似值代替真实值计算控制信号:
式中H(t-η)表示t-η时刻的H值,τm,(t-η)表示t-η时刻的τm值,
(4)采用滑模控制方法设计控制器,定义滑模面为:
式中λ为常数控制参数,e为控制误差,为e对于时间的导数,其中控制误差由下给出:
e=θd
式中θd为所跟踪的期望轨迹。机器人各关节控制器设计为:
式中为所跟踪轨迹的两阶导数,如在个别时刻不满足连续、有界的条件,在这些时刻应使用0作为的值。
在步骤(4)中,采用模糊逻辑设计的自适应算法,采用Mamdani型模糊逻辑***进行设计,用滑模面与控制误差作为模糊逻辑***的输入,关于时间的导数如下
式中a>0,δM>0均为常数,a和δM都是控制器的设计参数,b为模糊逻辑***的输出,sat(x)的计算方法如下:
步骤(4)中,模糊逻辑***的输出b通过以下步骤获取:
(4.1)根据一定的隶属度函数对输入进行模糊化。采用三角形隶属度函数对输入变量进行模糊化,滑模面与控制误差的隶属度函数如图1和图2所示。由图所示,s和e均分为小、中、大三个等级,分别用S、M、B表示。s的三个隶属度函数分别记作LS(s)、LM(s)、LB(s),分别对应滑模面的小、中、大三个等级;同样,e的三个隶属度函数分别记作LS(e)、LM(e)、LB(e),分别对应控制误差的小、中、大三个等级。s1、s2、s3和e1、e2、e3为隶属度函数的设计参数,应根据机械臂的特性与实际需求进行取值。
(4.2)设计模糊规则并根据模糊规则进行模糊推理;为计算M的自适应值,设计如下的模糊规则:
S1=LS(e)×LS(s)
S2=LM(e)×LS(s)
S3=LS(e)×LM(s)
Sout=max(S1,S2,S3)
Mout=LM(e)×LM(s)
Bout=max(LB(e),LB(s))
式中max()表示取括号中各元素的最大值;将模糊逻辑的三个输出函数分别记为S、M、B;S、M、B三个输出函数的函数值分别乘以Sout、Mout、Bout,再将得到的结果相加即得模糊输出结果,模糊输出结果为自变量为u的函数,记为F(u)。
(4.3)将模糊输出结果进行解模糊化,即为模糊逻辑***的输出,用b表示,具体计算方式如下所示:
将b代入模糊逻辑设计的自适应算法即可计算出的自适应值,再将计算得的自适应值代入步骤(4)即可计算出机器人各关节控制器的控制力矩。
对所发明的控制器与自适应算法进行稳定性分析。
由步骤(2)至(4)中的公式可得:
记ε为时延估计的误差,则有
从采用模糊逻辑设计的自适应算法中可以得出下式一直成立:
记k为一个常数,由下式给出:
选取如下所示的李雅普诺夫函数
上述李雅普诺夫函数关于时间的导数如下
根据式(2)和步骤(4)中的滑模面将式(6)进一步化为:
根据步骤(4.1)至(4.3)中的模糊逻辑设计与计算过程,可得M为一个有上界的正数,将其上界记作Mmax,将式(7)化为
当s2≥a的时候,式(8)可以进一步化为
从式(4)中可以看出k是一个正数,而M也是一个正数,将k的定义代入式(9)可得
上式可以进一步化为
这说明当s2≥a时***是渐进稳定的,s会不断收敛到w,w由下式给出
w=k·Mmin -1|ε| (12)
当以下条件成立时,时延估计误差有界:
其中是矩阵x的第i个特征值,因此,只要适当设置的变化范围,就可以保证,时延估计的误差ε有界,并进一步得出w是有界的;当|s|≥△时,一直成立,因此,机械臂轨迹的跟踪误差是有界的。设则下式成立
|s|≤△ (14)
本发明选取的滑模面为线性滑模面,只要适当选取λ的值,式(14)即可确保机械臂的轨迹的跟踪误差有界。
为验证所发明控制方法的有效性,我们将其与常规的基于时延估计技术的滑模控制器进行对比仿真研究。仿真平台为win7x64位操作***下的Matlab软件,版本为R2016b,仿真对象为二自由度机械臂,如图4所示。仿真采用ode4固定步长求解器,步长设置为0.001s,仿真总时长为16s。
为使表述更为简洁,采用以下简记:si=sin(θi),ci=cos(θi),cij=cos(θij)。仿真所用二自由度机械臂的动力学模型为:
式中
机械臂的具体参数如以下表1所示。
表1
控制器参数如以下表2所示,表2中的为固定增益时延估计的控制参数值,自适应时延估计的由模糊逻辑计算得出。
表2
仿真结果如图5-10所示。θ1和θ2分别表示关节1和关节2的转角,e1和e2分别表示关节1和关节2的控制误差,M1和M2分别表示关节1和关节2的M值。从仿真结果中可以看出,本发明所提出的自适应时延估计控制算法具有较好的控制性能,且时延估计的M值具有很好的自适应能力,可以有效适应机械臂的不同工作状况。

Claims (6)

1.一种基于时延估计的机械臂轨迹跟踪控制方法,用以控制n自由度串联机械臂,其中n为正整数,其特征在于,包含以下步骤:
(1)建立n自由度机械臂动力学方程:
式中,为机器人关节的位置矢量,为机器人关节的位置矢量关于时间的一阶导数,为机器人关节的位置矢量关于时间的二阶导数,是惯性矩阵,为向心力和哥氏力矢量,是重力矢量,是库伦摩擦力与粘性摩擦力矢量,为外干扰力矢量,为机器人各关节控制器广义输出向量;
(2)将步骤(1)中给出的机械臂动力学方程改写成如下形式:
其中为自适应控制参数,
(3)采用时延估计的方法获得步骤(2)中的H的近似值,并用该近似值代替真实值计算控制信号:
式中H(t-η)表示t-η时刻的H值,τm,(t-η)表示t-η时刻的τm值;
(4)采用滑模控制方法设计控制器,定义滑模面为:
式中λ为常数控制参数,e为控制误差,为e对于时间的导数,其中控制误差由下给出:
e=θd
式中θd为所跟踪的期望轨迹;机器人各关节控制器为:
式中为所跟踪轨迹的两阶导数。
2.根据权利要求1所述的控制方法,其特征在于:步骤(4)中,采用模糊逻辑设计自适应控制参数的自适应算法,关于时间的导数如下
式中a>0,δM>0均为常数,a和δM都是控制器的设计参数,b为模糊逻辑***的输出;sat(x)的计算方法如下:
3.根据权利要求2所述的控制方法,其特征在于:步骤(4)中,模糊逻辑***的输出b通过以下步骤获取:
(4.1)根据一定的隶属度函数对输入进行模糊化;采用三角形隶属度函数对输入变量进行模糊化,将s和e均分为小、中、大三个等级,分别用S、M、B表示;s的三个隶属度函数分别记作LS(s)、LM(s)、LB(s),分别对应滑模面的小、中、大三个等级;同样,e的三个隶属度函数分别记作LS(e)、LM(e)、LB(e),分别对应控制误差的小、中、大三个等级;s1、s2、s3和e1、e2、e3为隶属度函数的设计参数,应根据机械臂的特性与实际需求进行取值;
(4.2)设计模糊规则并根据模糊规则进行模糊推理;为计算M的自适应值,
设计如下的模糊规则:
S1=LS(e)×LS(s)
S2=LM(e)×LS(s)
S3=LS(e)×LM(s)
Sout=max(S1,S2,S3)
Mout=LM(e)×LM(s)
Bout=max(LB(e),LB(s))
式中max()表示取括号中各元素的最大值;将模糊逻辑的三个输出函数分别记为S、M、B;S、M、B三个输出函数的函数值分别乘以Sout、Mout、Bout,再将得到的结果相加即得模糊输出结果,模糊输出结果为自变量为u的函数,记为F(u);
(4.3)将模糊输出结果进行解模糊化,即为模糊逻辑***的输出,用b表示:
4.根据权利要求1所述的控制方法,其特征在于:所述总外干扰包括参数不确定项、负载不确定项、外部干扰。
5.根据权利要求1所述的控制方法,其特征在于:步骤(4)中,如在个别时刻不满足连续、有界的条件,在这些时刻使用0作为的值。
6.根据权利要求1所述的控制方法,其特征在于:步骤(5)中,采用Mamdani型模糊逻辑***设计的自适应算法,用滑模面与控制误差作为模糊逻辑***的输入。
CN201910421917.1A 2019-05-21 2019-05-21 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法 Active CN110181510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910421917.1A CN110181510B (zh) 2019-05-21 2019-05-21 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910421917.1A CN110181510B (zh) 2019-05-21 2019-05-21 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法

Publications (2)

Publication Number Publication Date
CN110181510A true CN110181510A (zh) 2019-08-30
CN110181510B CN110181510B (zh) 2021-12-21

Family

ID=67716965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910421917.1A Active CN110181510B (zh) 2019-05-21 2019-05-21 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法

Country Status (1)

Country Link
CN (1) CN110181510B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240191A (zh) * 2020-01-16 2020-06-05 西北工业大学 变时延条件下机器人***的自适应模糊阶次稳定操控方法
CN111716360A (zh) * 2020-06-30 2020-09-29 河北工业大学 一种基于模糊逻辑的柔性关节机械臂采样控制方法及装置
CN112936270A (zh) * 2021-02-04 2021-06-11 合肥工业大学 一种基于神经网络的机械臂内模控制方法
CN113927592A (zh) * 2021-08-24 2022-01-14 盐城工学院 一种基于自适应降阶滑模算法的机械臂力位混合控制方法
CN114516054A (zh) * 2022-03-24 2022-05-20 南京航空航天大学 一种机械臂时延估计控制方法
CN114851196A (zh) * 2022-05-09 2022-08-05 哈尔滨工业大学(深圳) 基于模糊自适应全局滑模的机械臂轨迹跟踪控制方法
CN115609592A (zh) * 2022-11-22 2023-01-17 季华实验室 一种机械臂自适应跟踪控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108511A2 (en) * 1982-11-04 1984-05-16 EMI Limited Improvements in or relating to robot control systems
CN103538068A (zh) * 2013-10-12 2014-01-29 江南大学 Scara机器人模糊滑模轨迹跟踪控制方法
CN106154829A (zh) * 2016-08-23 2016-11-23 南京航空航天大学 一种基于离散时延估计的机械手轨迹跟踪控制方法
CN106708082A (zh) * 2017-03-21 2017-05-24 中国人民解放军海军航空工程学院 基于模糊控制的飞行器俯仰通道姿态指令快速跟踪方法
CN106945043A (zh) * 2017-04-18 2017-07-14 中国科学院重庆绿色智能技术研究院 一种主从式遥操作手术机器人多臂协同控制***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108511A2 (en) * 1982-11-04 1984-05-16 EMI Limited Improvements in or relating to robot control systems
CN103538068A (zh) * 2013-10-12 2014-01-29 江南大学 Scara机器人模糊滑模轨迹跟踪控制方法
CN106154829A (zh) * 2016-08-23 2016-11-23 南京航空航天大学 一种基于离散时延估计的机械手轨迹跟踪控制方法
CN106708082A (zh) * 2017-03-21 2017-05-24 中国人民解放军海军航空工程学院 基于模糊控制的飞行器俯仰通道姿态指令快速跟踪方法
CN106945043A (zh) * 2017-04-18 2017-07-14 中国科学院重庆绿色智能技术研究院 一种主从式遥操作手术机器人多臂协同控制***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杨兴明等: "一类欠驱动***的全局改进积分模糊滑模控制", 《合肥工业大学学报(自然科学版)》 *
王尧尧: "自治水下运载器-机械手***协调控制研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
靳宝全: "《基于模糊滑模的电液位置伺服控制***》", 30 April 2011, 国防工业出版社 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240191A (zh) * 2020-01-16 2020-06-05 西北工业大学 变时延条件下机器人***的自适应模糊阶次稳定操控方法
CN111240191B (zh) * 2020-01-16 2022-09-02 西北工业大学 变时延条件下机器人***的自适应模糊阶次稳定操控方法
CN111716360A (zh) * 2020-06-30 2020-09-29 河北工业大学 一种基于模糊逻辑的柔性关节机械臂采样控制方法及装置
CN111716360B (zh) * 2020-06-30 2021-05-18 河北工业大学 一种基于模糊逻辑的柔性关节机械臂采样控制方法及装置
CN112936270A (zh) * 2021-02-04 2021-06-11 合肥工业大学 一种基于神经网络的机械臂内模控制方法
CN113927592A (zh) * 2021-08-24 2022-01-14 盐城工学院 一种基于自适应降阶滑模算法的机械臂力位混合控制方法
CN114516054A (zh) * 2022-03-24 2022-05-20 南京航空航天大学 一种机械臂时延估计控制方法
CN114851196A (zh) * 2022-05-09 2022-08-05 哈尔滨工业大学(深圳) 基于模糊自适应全局滑模的机械臂轨迹跟踪控制方法
CN114851196B (zh) * 2022-05-09 2023-03-10 哈尔滨工业大学(深圳) 基于模糊自适应全局滑模的机械臂轨迹跟踪控制方法
CN115609592A (zh) * 2022-11-22 2023-01-17 季华实验室 一种机械臂自适应跟踪控制方法

Also Published As

Publication number Publication date
CN110181510B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
CN110181510A (zh) 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法
CN106406085B (zh) 基于跨尺度模型的空间机械臂轨迹跟踪控制方法
Yang et al. Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint
CN108942924A (zh) 基于多层神经网络的模型不确定性机械臂运动控制方法
Eom et al. Robust swing-up and balancing control using a nonlinear disturbance observer for the pendubot system with dynamic friction
CN106959610B (zh) 桥式吊车***apd-smc控制器、桥式吊车***及控制方法
CN108555913A (zh) 基于无源性的移动机械臂位置/力的自抗扰控制方法
CN107263483B (zh) 二自由度关节机器人轨迹的协调控制方法
Zeng et al. Learning from adaptive neural network output feedback control of a unicycle-type mobile robot
CN105652667B (zh) 一种模型不确定双关节机械手的高精度轨迹跟踪控制方法
CN106100469B (zh) 基于自适应的电机伺服***鲁棒位置控制器的实现方法
Zhang et al. Disturbance‐observer‐based antiswing control of underactuated crane systems via terminal sliding mode
Lu et al. Adaptive self-constructing fuzzy neural network controller for hardware implementation of an inverted pendulum system
Chi et al. Hybrid tracking control of 2-DOF SCARA robot via port-controlled hamiltonian and backstepping
Chang et al. Research on manipulator tracking control algorithm based on RBF neural network
CN106154829B (zh) 一种基于离散时延估计的机械手轨迹跟踪控制方法
Chwa et al. Online trajectory planning of robot arms for interception of fast maneuvering object under torque and velocity constraints
Kizir et al. Fuzzy control of a real time inverted pendulum system
Chen Research of the Electro-hydraulic Servo System Based on RBF Fuzzy Neural Network Controller.
Guo et al. The robot arm control based on rbf with incremental pid and sliding mode robustness
Dabbagh et al. Nonlinear two-wheeled self-balancing robot control using LQR and LQG controllers
Sang et al. Double Inverted Pendulum control based on three-loop PID and improved BP Neural network
CN113715024A (zh) 一种多自由度上肢康复机器人的位置跟踪控制方法
Zhang et al. An adaptive neural network control method for robotic manipulators trajectory tracking
Jing et al. Adaptive control for robotic manipulators base on RBF neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant