CN106945043A - 一种主从式遥操作手术机器人多臂协同控制*** - Google Patents

一种主从式遥操作手术机器人多臂协同控制*** Download PDF

Info

Publication number
CN106945043A
CN106945043A CN201710254171.0A CN201710254171A CN106945043A CN 106945043 A CN106945043 A CN 106945043A CN 201710254171 A CN201710254171 A CN 201710254171A CN 106945043 A CN106945043 A CN 106945043A
Authority
CN
China
Prior art keywords
arm
joint
control system
robot
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710254171.0A
Other languages
English (en)
Other versions
CN106945043B (zh
Inventor
向洋
傅舰艇
熊亮
谢毅
王黎
张敏锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN201710254171.0A priority Critical patent/CN106945043B/zh
Publication of CN106945043A publication Critical patent/CN106945043A/zh
Application granted granted Critical
Publication of CN106945043B publication Critical patent/CN106945043B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

发明公开了一种主从式遥操作手术机器人多臂协同控制***,包括工业PC***和底层控制***,所述工业PC***包括工业PC、以太网、CAN总线适配卡;所述底层控制***包括数字量与模拟量采集卡、伺服驱动器;工业PC利用以太网接受来自其他***的信号,利用CAN总线适配卡连接伺服驱动器控制机械臂运动,利用数字量/模拟量采集卡采集和处理来自多维力传感器的信号。本发明完成了硬件架构的搭建和机械臂运动学算法和多臂协同控制软件开发,实现了手术机器人的多臂协同控制功能。

Description

一种主从式遥操作手术机器人多臂协同控制***
技术领域
本发明属于手术机器人领域,具体涉及一种主从式遥操作手术机器人多臂协同控制***,属于人机交互领域。
背景技术
主从式遥操作手术机器人控制***通常由一个主手操作端和若干个从手执行臂组成。从手执行臂安装于手术台旁边,在其末端可以安装内窥镜以及各种手术器械,通过微小创口到达病人体内病灶处。医生操作主手操作,即可控制从手末端器械完成各种手术操作,为外科医生提供了传统手术的操作环境,可以协助医生完成更精细的手术动作,减少手术时由于疲劳产生的误操作或手部震颤造成的损伤。多臂机器人是髙阶强耦合的复杂非线性***,同时由于工作环境的多变性,对机器人***控制方法的鲁棒性、控制***的实时性提出了很髙要求。基于对单臂机器人的运动学优化求解,无法满足机器人末端受环境约束并需要与环境交互的应用需求。在针对非结构化环境设计的多臂协作机器人比传统的单臂机器人具有更加灵活的特点,能实现人与机器人之间以及各机器人之间的互动功能。目前国外已研制出主从式遥操作手术机器人,但尚不具备力反馈功能及多从臂协同控制功能。
发明内容
有鉴于此,本发明提供一种主从式遥操作手术机器人多臂协同控制***,利用滑模控制***及多运动控制器并行解算,可以实现各机械臂之间的协同作业功能。
本发明的目的是通过这样的技术方案实现的,一种主从式遥操作手术机器人多臂协同控制***,用于对多臂手术机器人进行控制,多臂手术机器人包括主手操作端和从手执行端,主手操作端为7DOF串联式机器人,从手执行端由两个7DOF串联式机械臂和两个6DOF串联式机械臂组成,每个机械臂末端均安装多维力传感器和运动控制器,其特征在于:该控制***包括工业PC***和底层控制***,所述工业PC***包括工业PC、以太网、CAN总线适配卡;所述底层控制***包括数字量与模拟量采集卡、伺服驱动器;工业PC利用以太网接受来自其他***的信号,利用CAN总线适配卡连接伺服驱动器控制机械臂运动,利用数字量/模拟量采集卡采集和处理来自多维力传感器的信号;各机械臂接收主手操作端传递过来的位置控制指令,通过逆运动学解算得到各关节期望位置;通过多维力传感器感知与环境间的接触力及机械臂之间的接触力,经过逆动力学求解得到各关节力和力矩信息,并将接触力反馈至手术机器人主手;通过绝对值位置传感器获取各关节实际位置;由工业PC协调各运动控制器的数据传递及信号传递,完成多机械臂协同控制功能。
进一步,该手术机器人多臂协同控制***包括滑模控制器、自适应模糊逻辑控制器和非线性观测器;所述滑模控制器,用于精确获得***的动力学参数;所述自适应模糊逻辑控制器,用于提高控制精度;所述非线性观测器,用于补偿外部环境对***稳定新和精度的影响。
进一步,所述滑模控制器的控制律为τ=τeqsm,其中τsm为滑模控制项,为机器人的动力学等效模型,M(q)为惯量矩阵,J-1(q)为逆雅可比矩阵,为机器人末端笛卡尔空间加速度,为雅可比矩阵的导数,为关节空间速度,为惯性项和科氏项,G(q)为重力项;选择滑模面其中s为6×1维向量,c为正定对角矩阵,e=qid-qi表示e的导数,qid为关节期望位置,qi为关节实际位置;所述滑模项为k1为6×6的正定对角矩阵;M(q)为惯性矩阵;JT(q)为雅可比矩阵的转秩矩阵,s=[s1,s2,…,si]为模糊逻辑输入量,γ=[γ12,…,γi]为模糊逻辑输出量。
进一步,所述非线性观测器的模型为:
其中K1与K2是正定矩阵,表示外部转矩扰动,表示外部转矩扰动的估计, 为关节速度误差向量,为对关节速度误差的估计量,表示关节加速度误差;M-1表示逆惯量矩阵,C表示惯性项和科氏项,表示关节空间速度,G表示重力项,为关节输入加速度,τ∈R6为关节输入力矩。
由于采用了上述技术方案,本发明具有如下的优点:
本发明完成了硬件架构的搭建和机械臂运动学算法和多臂协同控制软件开发,实现了手术机器人的多臂协同控制功能。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步的详细描述,其中:
图1为本发明主从式手术机器人控制***示意图;
图2为本发明动力学控制策略示意图;
图3为本发明多臂协同作业控制***示意图。
具体实施方式
以下将结合附图,对本发明的优选实施例进行详细的描述;应当理解,优选实施例仅为了说明本发明,而不是为了限制本发明的保护范围。
附图1为本发明的控制***硬件架构,主手操作端和从手执行端,主手操作端为7DOF串联式机器人,从手执行端由两个7DOF串联式机械臂和两个6DOF串联式机械臂组成,每个机械臂末端均安装多维力传感器。所述的机械臂的控制***硬件包括工业PC***和底层控制***。所述工业PC***包括可视化人机界面、工业PC、以太网卡、CAN总线适配卡;所述底层控制***包括多个运动控制器、数字量与模拟量采集卡、伺服驱动器及电机、多维力传感器、绝对式编码器。工业PC利用以太网接受来自其他***的信号,利用CAN总线适配卡连接伺服驱动器控制机械臂运动,利用数字量/模拟量采集卡采集和处理来自多维力传感器与其他传感器的信号。
附图3为本发明的多臂协同作业控制***示意图,各机械臂接收主手操作端传递过来的位置控制指令,通过逆运动学解算得到各关节期望位置;通过多维力传感器感知与环境间的接触力及机械臂之间的接触力,经过逆动力学求解得到各关节力和力矩信息,并将接触力反馈至手术机器人主手;通过绝对值位置传感器获取各关节实际位置;采用滑模控制器对各关节进行控制,实现多臂协同作业控制。
主从式遥操作手术机器人多臂协同控制***包括滑模控制器、自适应模糊逻辑控制器和非线性观测器;所述滑模控制器,用于精确获得***的动力学参数;所述自适应模糊逻辑控制器,用于提高控制精度;所述非线性观测器,用于补偿外部环境对***稳定新和精度的影响。
所述滑模控制器的控制律为τ=τeqsm,其中τsm为滑模控制项,为机器人的动力学等效模型,M(q)为惯量矩阵,J-1(q)为逆雅可比矩阵,为机器人末端笛卡尔空间加速度,为雅可比矩阵的导数,为关节空间速度,为惯性项和科氏项,G(q)为重力项;选择滑模面 表示e的导数,其中s为6×1维向量,c为正定对角矩阵,e=qid-qi,qid为关节期望位置,qi为关节实际位置;滑模项τsm可设计为k1,k2为6×6的正定对角矩阵。
引入模糊逻辑控制策略,模糊逻辑输出量γ只与s有关,γ=FLC(s),FLC(s)为模糊语言决策集的函数,s=[s1,s2,…,si]为模糊逻辑输入量,γ=[γ12,…,γi]为模糊逻辑输出量,定义 表示当前参数,表示初始参数, 表示的估计值,ψki(si)表示模糊基函数,为不确定性补偿项;于是可以将滑模项τsm修正为k1,k2为6×6的正定对角矩阵;M(q)∈R6×6,为惯性矩阵;JT(q)为雅可比矩阵的转秩矩阵,s=[s1,s2,…,si]为模糊逻辑输入量。
所述非线性观测器的模型为:其中K1与K2是正定矩阵,表示外部转矩扰动的估计,表示关节加速度误差, 为关节速度误差向量,为对关节速度误差的估计量,;为加速度,M-1表示逆惯量矩阵,C表示惯性项和科氏项,表示关节速度,G表示重力项,表示外部转矩扰动,τ∈R6为关节输入力矩。
所述非线性观测器的设计方法为,定义位置误差e=q-qd,q表示关节当前位置,qd表示关节目标位置,求一阶导数和二阶导数为qd,为关节角位置、速度与加速度;定义 为关节速度误差向量,为对关节速度误差的估计量;定义 为对外部干扰力矩的估计,为干扰误差的估计;将所述e,的表达式代入动力学方程得到基于迭代算法的非线性观测器设计为其中K1与K2是正定矩阵。
所述的动力学方程为:
其中为关节角位置、速度加速度,M(q)∈R6×6为惯性矩阵,为科氏力和向心力矩阵,G(q)∈R6为重力矩阵,τ∈R6为关节输入力矩,τd∈R6为机械臂所受外力矩,将代入机械臂的关节动力学方程得到将机械臂末端期望位姿代替得到动力学等效方程为
由机械臂的DH参数建立串联机器人的齐次变换矩阵,将机械臂的正运动学方程表示为x(t)=φ(q),x(t)∈R6,q(t)∈R6,其中x(t)为笛卡尔空间中机械臂末端位姿,q(t)为关节空间中各关节位置;对正运动学方程求导得到速度方程为其中,为雅可比矩阵;对速度方程求导得到加速度方程于是
本发明提出了一种主从式遥操作手术机器人多臂协同控制***,按照所述流程搭建控制***硬件并编写控制程序实现了多臂协同作业控制功能。
以上所述仅为本发明的优选实施例,并不用于限制本发明,显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (4)

1.一种主从式遥操作手术机器人多臂协同控制***,用于对多臂手术机器人进行控制,多臂手术机器人包括主手操作端和从手执行端,主手操作端为7DOF串联式机器人,从手执行端由两个7DOF串联式机械臂和两个6DOF串联式机械臂组成,每个机械臂末端均安装多维力传感器和运动控制器,其特征在于:该控制***包括工业PC***和底层控制***,所述工业PC***包括工业PC、以太网、CAN总线适配卡;所述底层控制***包括数字量与模拟量采集卡、伺服驱动器;工业PC利用以太网接受来自其他***的信号,利用CAN总线适配卡连接伺服驱动器控制机械臂运动,利用数字量/模拟量采集卡采集和处理来自多维力传感器的信号;
各机械臂接收主手操作端传递过来的位置控制指令,通过逆运动学解算得到各关节期望位置;通过多维力传感器感知与环境间的接触力及机械臂之间的接触力,经过逆动力学求解得到各关节力和力矩信息,并将接触力反馈至手术机器人主手;通过绝对值位置传感器获取各关节实际位置;由工业PC协调各运动控制器的数据传递及信号传递,完成多机械臂协同控制功能。
2.根据权利要求1所述的一种主从式遥操作手术机器人多臂协同控制***,其特征在于:该手术机器人多臂协同控制***包括滑模控制器、自适应模糊逻辑控制器和非线性观测器;所述滑模控制器,用于精确获得***的动力学参数;所述自适应模糊逻辑控制器,用于提高控制精度;所述非线性观测器,用于补偿外部环境对***稳定新和精度的影响。
3.根据权利要求2所述的一种主从式遥操作手术机器人多臂协同控制***,其特征在于:所述滑模控制器的控制律为τ=τeqsm,其中τsm为滑模控制项,为机器人的动力学等效模型,M(q)为惯量矩阵,J-1(q)为逆雅可比矩阵,为机器人末端笛卡尔空间加速度,为雅可比矩阵的导数,为关节空间速度,为惯性项和科氏项,G(q)为重力项;选择滑模面其中s为6×1维向量,c为正定对角矩阵,e=qid-qi表示e的导数,qid为关节期望位置,qi为关节实际位置;所述滑模项为k1为6×6的正定对角矩阵;M(q)为惯性矩阵;JT(q)为雅可比矩阵的转秩矩阵,s=[s1,s2,…,si]为模糊逻辑输入量,γ=[γ12,…,γi]为模糊逻辑输出量。
4.根据权利要求2所述的一种主从式遥操作手术机器人多臂协同控制***,其特征在于:所述非线性观测器的模型为:其中K1与K2是正定矩阵,表示外部转矩扰动,表示外部转矩扰动的估计, 为关节速度误差向量,为对关节速度误差的估计量,表示关节加速度误差;M-1表示逆惯量矩阵,C表示惯性项和科氏项,表示关节空间速度,G表示重力项,为关节输入加速度,τ∈R6为关节输入力矩。
CN201710254171.0A 2017-04-18 2017-04-18 一种主从式遥操作手术机器人多臂协同控制*** Expired - Fee Related CN106945043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710254171.0A CN106945043B (zh) 2017-04-18 2017-04-18 一种主从式遥操作手术机器人多臂协同控制***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710254171.0A CN106945043B (zh) 2017-04-18 2017-04-18 一种主从式遥操作手术机器人多臂协同控制***

Publications (2)

Publication Number Publication Date
CN106945043A true CN106945043A (zh) 2017-07-14
CN106945043B CN106945043B (zh) 2020-05-08

Family

ID=59476291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710254171.0A Expired - Fee Related CN106945043B (zh) 2017-04-18 2017-04-18 一种主从式遥操作手术机器人多臂协同控制***

Country Status (1)

Country Link
CN (1) CN106945043B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108214445A (zh) * 2018-01-24 2018-06-29 哈尔滨工业大学 一种基于ros的主从异构遥操作控制***
CN108406766A (zh) * 2018-02-11 2018-08-17 浙江工业大学 一种基于复合积分滑模的多机械臂***同步控制方法
CN108598965A (zh) * 2018-04-11 2018-09-28 南京理工大学 一种基于力反馈主从控制的带电作业机器人隔离刀闸更换方法
CN108646562A (zh) * 2018-05-15 2018-10-12 浙江工业大学 一种基于交叉耦合的多机械臂***有限时间参数辨识与位置同步控制方法
CN108656111A (zh) * 2018-05-15 2018-10-16 浙江工业大学 一种基于均值耦合的双机械臂***有限时间参数辨识与位置同步控制方法
CN109015634A (zh) * 2018-07-24 2018-12-18 西北工业大学 基于性能函数的多臂遥操作机器人力/位置混合控制方法
CN109358506A (zh) * 2018-10-26 2019-02-19 南京理工大学 一种基于干扰观测器的自适应模糊遥操作控制方法
WO2019041658A1 (zh) * 2017-08-31 2019-03-07 南京埃斯顿机器人工程有限公司 一种机器人外部运动路径控制方法
CN110181510A (zh) * 2019-05-21 2019-08-30 南京航空航天大学 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法
CN110794678A (zh) * 2019-11-05 2020-02-14 燕山大学 一种磁滞非线性受限下的四通道遥操作力反馈控制方法
CN111374778A (zh) * 2018-12-29 2020-07-07 深圳市达科为智能医学有限公司 一种手术机器人拓扑环路控制***
CN111515951A (zh) * 2020-04-29 2020-08-11 江苏集萃华科智能装备科技有限公司 机器人的遥操作***及遥操作控制方法
CN114167725A (zh) * 2021-11-30 2022-03-11 荆楚理工学院 协作机器人轨迹跟踪控制方法及***
CN114378796A (zh) * 2022-03-04 2022-04-22 国网智能科技股份有限公司 主从与自主作业一体化的机械臂***、机器人***及方法
CN115570568A (zh) * 2022-10-11 2023-01-06 江苏高倍智能装备有限公司 一种多机械手协同控制方法及***
CN116214524A (zh) * 2023-05-08 2023-06-06 国网浙江省电力有限公司宁波供电公司 用于油样回收的无人机抓载方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103862459A (zh) * 2012-12-11 2014-06-18 天津工业大学 一种用于机载并联平台的位姿观测器设计方法
CN105319972A (zh) * 2015-11-27 2016-02-10 燕山大学 基于快速终端滑模的遥操作机器人固定时间控制方法
CN106375421A (zh) * 2016-08-30 2017-02-01 上海交通大学 基于远程操控的机器人辅助智能维护***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103862459A (zh) * 2012-12-11 2014-06-18 天津工业大学 一种用于机载并联平台的位姿观测器设计方法
CN105319972A (zh) * 2015-11-27 2016-02-10 燕山大学 基于快速终端滑模的遥操作机器人固定时间控制方法
CN106375421A (zh) * 2016-08-30 2017-02-01 上海交通大学 基于远程操控的机器人辅助智能维护***

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019041658A1 (zh) * 2017-08-31 2019-03-07 南京埃斯顿机器人工程有限公司 一种机器人外部运动路径控制方法
CN108214445B (zh) * 2018-01-24 2020-12-25 哈尔滨工业大学 一种基于ros的主从异构遥操作控制***
CN108214445A (zh) * 2018-01-24 2018-06-29 哈尔滨工业大学 一种基于ros的主从异构遥操作控制***
CN108406766A (zh) * 2018-02-11 2018-08-17 浙江工业大学 一种基于复合积分滑模的多机械臂***同步控制方法
CN108406766B (zh) * 2018-02-11 2020-08-04 浙江工业大学 一种基于复合积分滑模的多机械臂***同步控制方法
CN108598965A (zh) * 2018-04-11 2018-09-28 南京理工大学 一种基于力反馈主从控制的带电作业机器人隔离刀闸更换方法
CN108656111A (zh) * 2018-05-15 2018-10-16 浙江工业大学 一种基于均值耦合的双机械臂***有限时间参数辨识与位置同步控制方法
CN108656111B (zh) * 2018-05-15 2020-12-01 浙江工业大学 双机械臂***有限时间参数辨识与位置同步控制方法
CN108646562A (zh) * 2018-05-15 2018-10-12 浙江工业大学 一种基于交叉耦合的多机械臂***有限时间参数辨识与位置同步控制方法
CN109015634A (zh) * 2018-07-24 2018-12-18 西北工业大学 基于性能函数的多臂遥操作机器人力/位置混合控制方法
CN109358506A (zh) * 2018-10-26 2019-02-19 南京理工大学 一种基于干扰观测器的自适应模糊遥操作控制方法
CN109358506B (zh) * 2018-10-26 2021-07-23 南京理工大学 一种基于干扰观测器的自适应模糊遥操作控制方法
CN111374778A (zh) * 2018-12-29 2020-07-07 深圳市达科为智能医学有限公司 一种手术机器人拓扑环路控制***
CN110181510A (zh) * 2019-05-21 2019-08-30 南京航空航天大学 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法
CN110181510B (zh) * 2019-05-21 2021-12-21 南京航空航天大学 一种基于时延估计与模糊逻辑的机械臂轨迹跟踪控制方法
CN110794678A (zh) * 2019-11-05 2020-02-14 燕山大学 一种磁滞非线性受限下的四通道遥操作力反馈控制方法
CN111515951A (zh) * 2020-04-29 2020-08-11 江苏集萃华科智能装备科技有限公司 机器人的遥操作***及遥操作控制方法
CN114167725A (zh) * 2021-11-30 2022-03-11 荆楚理工学院 协作机器人轨迹跟踪控制方法及***
CN114378796A (zh) * 2022-03-04 2022-04-22 国网智能科技股份有限公司 主从与自主作业一体化的机械臂***、机器人***及方法
CN114378796B (zh) * 2022-03-04 2023-09-05 国网智能科技股份有限公司 主从与自主作业一体化的机械臂***、机器人***及方法
CN115570568A (zh) * 2022-10-11 2023-01-06 江苏高倍智能装备有限公司 一种多机械手协同控制方法及***
CN115570568B (zh) * 2022-10-11 2024-01-30 江苏高倍智能装备有限公司 一种多机械手协同控制方法及***
CN116214524A (zh) * 2023-05-08 2023-06-06 国网浙江省电力有限公司宁波供电公司 用于油样回收的无人机抓载方法、装置及存储介质
CN116214524B (zh) * 2023-05-08 2023-10-03 国网浙江省电力有限公司宁波供电公司 用于油样回收的无人机抓载方法、装置及存储介质

Also Published As

Publication number Publication date
CN106945043B (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
CN106945043A (zh) 一种主从式遥操作手术机器人多臂协同控制***
CN109358506B (zh) 一种基于干扰观测器的自适应模糊遥操作控制方法
CN107053179B (zh) 一种基于模糊强化学习的机械臂柔顺力控制方法
US7859540B2 (en) Reconstruction, retargetting, tracking, and estimation of motion for articulated systems
CN107028663A (zh) 一种新型主从式手术机器人控制方法
WO2007127723A2 (en) Control of robots from human motion descriptors
US11465281B2 (en) Dynamic planning controller
CN106137400B (zh) 用于机械臂的控制***、控制方法及一种手术机器人
CN107627303A (zh) 一种基于眼在手上结构的视觉伺服***的pd‑smc控制方法
CN105772917B (zh) 一种三关节点焊机器人轨迹跟踪控制方法
WO2007076119A2 (en) Reconstruction, retargetting, tracking, and estimation of pose of articulated systems
CN108656112A (zh) 一种面向直接示教的机械臂零力控制实验***
JP2017013167A (ja) ロボットアームの操作システム
CN109015634B (zh) 基于性能函数的多臂遥操作机器人力/位置混合控制方法
CN102922522B (zh) 多自由度电液伺服遥操纵机械手力反馈控制方法
CN115741732B (zh) 一种按摩机器人的交互式路径规划及运动控制方法
Si et al. Adaptive compliant skill learning for contact-rich manipulation with human in the loop
CN114952821A (zh) 机器人运动控制方法、机器人及***
CN110539315B (zh) 基于虚拟现实控制的建筑机器人
Toedtheide et al. A force-sensitive exoskeleton for teleoperation: An application in elderly care robotics
KR101227092B1 (ko) 로봇의 동작 제어 시스템 및 동작 제어 방법
CN109213306B (zh) 一种机器人远程控制平台及其设计方法
JP2017071012A (ja) マスタースレーブ装置
Parvin et al. Human-Machine Interface (HMI) Robotic Arm Controlled by Gyroscopically Acceleration
Zhijiang et al. Virtual reality-based telesurgery via teleprogramming scheme combined with semi-autonomous control

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200508