CN110168883A - 利用pir控制器降低llc转换器的120-hz纹波 - Google Patents

利用pir控制器降低llc转换器的120-hz纹波 Download PDF

Info

Publication number
CN110168883A
CN110168883A CN201880005249.8A CN201880005249A CN110168883A CN 110168883 A CN110168883 A CN 110168883A CN 201880005249 A CN201880005249 A CN 201880005249A CN 110168883 A CN110168883 A CN 110168883A
Authority
CN
China
Prior art keywords
control
output voltage
resonance
quasi
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880005249.8A
Other languages
English (en)
Other versions
CN110168883B (zh
Inventor
陈扬
汪洪亮
刘燕飞
贾汉吉尔·阿夫沙里安
龚冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN110168883A publication Critical patent/CN110168883A/zh
Application granted granted Critical
Publication of CN110168883B publication Critical patent/CN110168883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种LLC转换器,包括:包括初级绕组和次级绕组的变压器、包括初级绕组的谐振级、包括开关且连接到输入电压和谐振级的开关级、连接到次级绕组且提供输出电压的整流级、以及控制器,控制器感测输出电压,并且基于对输出电压的比例积分控制来控制对开关的切换以降低输出电压相对于DC电压的误差,以及基于对输出电压的准谐振控制来控制对开关的切换以降低输出电压相对于具有频率带宽的电压范围的误差。

Description

利用PIR控制器降低LLC转换器的120-HZ纹波
背景技术
技术领域
本发明涉及LLC转换器的控制方法。更具体地,本发明涉及具有120-Hz纹波降低的LLC转换器的控制方法。
现有技术
传统的LLC转换器在输出电压中可能具有120-Hz的纹波,并且在输入电压中可能具有较窄的频率带宽。
已知使用比例积分(PI)控制来控制转换器的输出电压。但是,PI控制不足以解决输出电压中的120-Hz纹波问题。在PI控制中,在DC参考电压的情况下存在零稳态误差。但是,在120-Hz AC参考电压的情况下存在小的稳态误差,因为PI控制带宽对于120-Hz AC参考电压来说不够大。
还已知使用比例谐振(PR)控制来控制转换器的输出电压。PR控制已在一些逆变器应用中使用,例如离网逆变器和并网逆变器。如果转换器提供60-Hz AC电压或电流,那么如果PR控制使用60-Hz AC参考电压,PR控制可以实现零稳态误差。
发明内容
本发明的优选实施例提供了PI和准谐振控制方法和使用这些方法的转换器,其中以简单的设计降低了输出电压中的120-Hz纹波,并且提高了输入电压的频率带宽。PI和准谐振控制方法使用两个参考电压。第一参考电压是诸如12V的DC电压,并且另一参考电压例如是120-HZ AC电压。第一参考电压情况下的PI控制非常好地提供了DC输出电压,并且准谐振控制解决了两倍于电网频率时出现的问题,其中,电网频率具有在57Hz和63Hz之间的小的波动,因此使用准谐振控制。PI控制和准谐振控制的采样周期是不同的。使用不同的采样周期实现了良好的性能,并且减少了计算时间和数字空间。
根据本发明的优选实施例,一种LLC转换器,包括:包括初级绕组和次级绕组的变压器、包括初级绕组的谐振级、包括开关且连接到输入电压和谐振级的开关级、连接到次级绕组且提供输出电压的整流级、以及控制器,控制器感测输出电压,并且基于对输出电压的比例积分控制来控制对开关的切换以降低输出电压相对于DC电压的误差,以及基于对输出电压的准谐振控制来控制对开关的切换以降低输出电压相对于具有频率带宽的电压范围的误差。
优选地,比例积分控制的第一采样周期比准谐振控制的第二采样周期长。优选地,控制器使用脉冲频率调制来控制对开关的切换。
优选地,比例积分控制和准谐振控制都是离散控制。优选地,准谐振控制的传递函数由下式提供:
其中ω是线角频率,ωc是带宽角频率,kr是连续准谐振控制中的谐振增益,α=2ωcTR,kR=krTR 2,θ=ωTR,kR是离散谐振增益,且TR是准谐振控制的第二采样周期。
优选地,电压范围包括具有120Hz频率的电压。优选地,谐振级还包括谐振电感器、谐振电容器和磁化电感器。优选地,开关级包括由控制器控制的第一初级开关和第二初级开关。优选地,整流级包括第一同步整流器和第二同步整流器。优选地,控制器是数字信号控制器。
根据本发明的优选实施例,一种控制LLC转换器的方法,包括:感测LLC转换器的输出电压;以及基于对输出电压的比例积分控制来切换与LLC转换器中所包括的变压器的初级绕组相连接的开关以降低输出电压相对于DC电压的误差,以及基于对输出电压的准谐振控制来切换开关以降低输出电压相对于具有频率带宽的电压范围的误差。
优选地,该方法还包括:针对比例积分控制,以第一采样周期对输出电压进行采样;以及针对准谐振控制,以第二采样周期对输出电压进行采样。优选地,第二采样周期比第一采样周期长。优选地,切换使用脉冲频率调制。
优选地,比例积分控制和准谐振控制都是离散控制。准谐振控制的传递函数由下式提供:
其中ω是线角频率,ωc是带宽角频率,kr是连续准谐振控制器中的谐振增益,α=2ωcTR,kR=krTR 2,θ=ωTR,kR是离散谐振增益,且TR是准谐振控制的采样周期。
优选地,电压范围包括具有120Hz频率的电压。优选地,开关连接到包括谐振电感器、谐振电容器、磁化电感器和初级绕组在内的谐振级。优选地,开关包括连接到初级绕组的第一初级开关和第二初级开关。优选地,该方法还包括:对来自变压器的次级绕组的电压进行整流,以提供输出电压。优选地,使用数字信号控制器控制切换。
根据以下关于附图对本发明的优选实施例的详细描述,本发明的上述和其他特征、元件、特性、步骤和优点将变得更加明显。
附图说明
图1示出了具有准PIR控制的LLC转换器的电路图。
图2示出了图1中所示的LLC转换器在LLC转换器的工作开关频率范围内的增益。
图3是准PIR控制的框图。
图4至图15示出了使用开环控制、PI控制和准PIR控制的实验结果。
图16示出了在图4至图15中进行的实验的输出电压中的120-Hz纹波。
具体实施方式
图1示出了具有准PIR控制的LLC转换器。LLC转换器包括初级侧和次级侧。初级侧是转换器位于DC输入Vin和变压器T之间的一侧。次级侧是转换器位于变压器T和输出电压Vout之间的一侧。LLC转换器包括开关级、谐振级和整流级。
初级电路包括初级开关Q1、Q2、谐振电感器Lr、谐振电容器Cr和电感器Lp。开关级包括初级开关Q1、Q2,谐振级包括谐振电感器Lr、谐振电容器Cr、电感器Lp、和变压器T的初级绕组。可以在初级开关Q1、Q2上并联连接电容器C1、C2。例如,可以使用电容非常小(例如,100pF)的电容器来提高初级开关Q1、Q2的一致性。每个初级开关Q1、Q2的寄生电容随电压和/或电流而变化。电容器C1、C2不是必需的。初级开关Q1、Q2连接到输入电压Vin。谐振电感器Lr、电感器Lp和谐振电容器Cr彼此串联连接,并且连接到输入电压Vin的负端子与初级开关Q1、Q2之间的节点之间。电感器Lp并联连接在变压器T的初级绕组上。谐振电感器Lr、谐振电容器Cr和电感器Lp限定了LLC谐振回路。变压器T的匝数比为N。
次级电路包括同步整流器SR1、SR2和电容器CO。同步整流器SR1、SR2连接到变压器T的次级绕组。整流级包括同步整流器SR1、SR2,并且在输出电压Vout处提供整流输出。在图1中,整流级不包括或不使用二极管提供整流输出,但是可以使用二极管代替同步整流器SR1、SR2。
控制器可以是数字信号控制器(DSC),其结合了微控制器和数字信号处理器(DSP)的特征和功能,并且可用于通过准PIR控制来控制转换器。可对控制器进行配置和/或编程以提供功能并实现下面讨论的方法。也就是说,可对控制器进行配置和/或编程以提供PI控制和准谐振控制,如下面所讨论的。控制器连接到输出电压Vout并且控制开关Q1、Q2的导通时间。
控制器接收与输出电压Vout相对应的模拟信号。如图1所示,模拟信号可以由差分放大器DA提供,差分放大器DA的两个输入连接到两个输出端子。控制器包括模数转换器AD,其将模拟信号转换为信号Vo,信号Vo是与输出电压Vout相对应的数字信号。
信号Vo在PI控制和准谐振控制两者中使用。使用两个不同的采样周期TPI、TR来提供离散PI控制和提供离散谐振控制。例如,如图1所示,如果开关频率在180kHz至240kHz范围内的200kHz附近,则可以将PI控制的采样频率设置为200kHz,即,TPI=1/(200kHz)。对于参考电压为120Hz情况下的准谐振控制,采样点优选地多于100个,这意味着采样频率优选地大于12kHz。在数字控制中很容易实现TPI的整数倍数。因此,将TPI乘以12提供了TR=12/(200kHz)=16.6kHz。在PI控制和谐振控制中的每一个中,使用诸如零阶保持(ZOH)的数模转换器从采样信号Vo生成连续时间信号。将PI控制和谐振控制两者中的连续时间信号与参考Vref进行比较,产生误差信号ePI(k)、eR(k)。
将误差信号ePI(k)提供给离散PI控制器,并且将误差信号eR(k)提供给离散谐振控制器。离散PI控制器和离散谐振控制器提供输出UPI(k)、UR(k),随后它们被组合为输出UPIR(k)。将UPIR(k)提供给电压频率转换器,其输出信号f。将信号f提供给脉冲频率调制(PFM)控制器,其控制开关Q1、Q2的导通时间,以便可以调节输出电压Vout。
下面参考表1中列出的具体参数讨论图1中所示的LLC转换器的准PIR控制。具体参数仅是示例。应理解,在本发明的各种优选实施例中,参数的其他值和范围也是可能的。还应理解,例如,参考参数的“约”包括制造和部件公差。
表1:LLC转换器的参数
磁化电感器Lp 100μH
谐振电感器Lr 12μH
谐振电容器C<sub>r</sub> 36nF
谐振频率f<sub>r</sub> 242kHz
满载电源 300W
变压器匝数比n 17∶1
图2示出了图1中所示的LLC转换器的增益曲线和工作范围。控制器应能够对不同输入电压和不同负载下的输出电压Vout进行调节,包括点A(400V,60W)、点B(360V,60W)、点C(400V,300W)和点D(360V,300W)。
在数字实现中,PI控制器和准谐振控制器优选是离散的。后向欧拉近似是一种简单的离散方法。虽然下面使用后向欧拉近似,但是可以也使用其他近似方法。在等式(1)中示出该近似,其中Ts是采样周期。
PI控制器
PI控制器用于在DC输出电压中实现零稳态误差。但是,PI控制器的增益在120Hz下不够。因此,PI控制不足以解决120-Hz纹波问题,120-Hz纹波问题的解决意味着120-Hz纹波被消除或充分降低。
连续PI控制器的传递函数由等式(2)给出,其中kp、ki是连续比例增益和积分增益。
可以计算连续比例增益kp和连续积分增益ki,或者可以通过仿真来确定两者。例如,Powersim仿真PSIM可用于确定连续比例增益kp和连续积分增益ki
根据等式(1)和(2),离散PI控制器的传递函数由等式(3)给出,其中kI=kiTPI且TPI是离散PI控制器的采样间隔。
因此,输出UPI(k)在等式(4)中示出,其中误差信号ePI(k)和ePI(k-1)分别是信号Vo在当前采样周期和前一采样周期中的离散误差;输出UPI(k)和UPI(k-1)分别是当前采样周期和前一采样周期中的离散PI控制器输出。
UPI(k)=UPI(k-1)+(kp+kI)ePI(k)-kpePI(k-1) (4)
基于仿真和实验测试,PI控制器中的以下常数kp、ki提供了良好的性能,其中在点A、B、C和D处实现了非常小的稳态误差(例如,小于DC输出电压的1%)。
常数kp、ki的值可以是不同的值。
准谐振控制器
与已知的谐振转换器相比,本发明优选实施例的准谐振控制器可以在120Hz附近获得增益,并且在电网电压具有小的波动(例如在57Hz至63Hz)时可以消除纹波。如果增益足够高,则准谐振控制可以遵循参考频率。例如,准谐振控制器可以在2ω=120Hz(114Hz至126Hz的范围内)下实现高增益。
由于准谐振控制器用于降低输出电压中的120-Hz纹波,因此准谐振转换器的采样周期TR可以更长,其减少了准谐振控制器所需的资源量和处理时间。例如,如果电网频率降低到57Hz,则在120Hz下实现无限增益但在114Hz下实现小增益或零增益的谐振控制可能出现问题。相反,准谐振控制在120Hz附近(例如,114Hz至126Hz)的范围内实现高增益,但是在120Hz下无法实现无限增益。
虽然下面仅讨论单个准谐振控制器,但是可以使用多个准谐振控制器。例如,一个准谐振控制器可以解决120-Hz纹波问题,并且另一个准谐振控制器可以解决240-Hz纹波问题。
可以使用两种类型的准谐振控制器。与谐振控制器相比,两个准谐振控制器都可以在期望频率下实现近无限增益,并且可以利用扩展带宽对给定AC信号实现零稳态误差。扩展带宽提高了抵抗电网频率波动的能力。
第一准谐振控制器
第一连续准谐振控制器的传递函数由等式(6)给出,其中ω是线角频率,ωc是带宽角频率,kr是连续准谐振控制器中的谐振增益。
根据等式(1)和(6),第一离散准谐振控制器的传递函数由等式(7)给出,其中α=2ωcTRkR=krTR 2,θ=ωTR,kR是离散谐振增益,且TR是谐振控制器的采样间隔。
因此,输出UR1(k)由等式(8)给出。误差eR1(k)和eR1(k-1)分别是信号Vo在当前采样周期和前一采样周期中的离散误差。输出UR11(k)、UR1(k-1)、UR1(k-2)是第一准谐振控制器在当前采样周期、前一采样周期和前一采样周期之前的采样周期中的输出值。
第二准谐振控制器
第二连续准谐振控制器的传递函数由等式(9)给出,其中ω是线角频率,ωc是带宽角频率,kr是连续准谐振控制器中的谐振增益。等式(6)和(9)之间的差异在于分子2krωcs和kr
根据等式(1)和(9),第二离散准谐振控制器的传递函数由等式(10)给出,其中α=2ωcTR,kR=krTR 2,θ=ωTR,kR是离散谐振增益,且TR是谐振控制器的采样间隔。
因此,输出UR2(k)由等式(11)给出。误差eR2(k)和eR2(k-1)分别是信号Vo在当前采样周期和前一采样周期中的离散误差。输出UR21(k)、UR2(k-1)、UR2(k-2)是第二准谐振控制器在当前采样周期、前一采样周期和前一采样周期之前的采样周期中的输出值。常数k1、k2和k3在(12)中定义。
根据等式(8)和(11),第一和第二准谐振控制器的控制变量不同。第一准谐振控制器的等式(8)包括e(k)和e(k-1)的差,其等效于差分元件。该差分元件可以放大噪声信号。由于第二准谐振控制器的等式(11)不包括e(k)和e(k-1)的差,因此第二准谐振控制器不对噪声信号进行放大,这在一些应用中是优选的。
如上所述,可以将第二准谐振控制器的采样频率设置为16.67kHz。基于仿真和实验测试,可以使用等式(13)中的常数k1、k2和k3。
常数k1、k2、k3的值可以是不同的值。
图3是PI+使用第二准谐振控制器的准谐振(准PIR)控制的框图。输出UPI(k)是离散PI控制器的控制变量,且输出UR(k)是第二离散准谐振控制器的控制变量。由于图3仅示出LLC功能,因此它不包括PFM功能,但是图1和图3可以实现相同或相当的结果。
实验结果
下面,讨论了转换器具有开环控制、PI控制和准PIR控制的实验结果。
在图4至图7中,在点A、B、C和D处进行开环控制实验(即,没有PI控制或谐振控制的实验)。具有10V RMS的120-Hz纹波被添加到输入电压。在开环控制中,开关频率是恒定的,即,UPI(k)+UR(k)=常数。
图4示出了开环控制下点A(400V,60W)处的输入电压、输出电压和输出电压的快速傅里叶变换(FFT)分析。输出电压纹波的120-Hz峰峰值为890mV。
图5示出了开环控制下点B(360V,60W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为880mV。
图6示出了开环控制下点C(400V,300W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为890mV。
图7示出了开环控制下点D(360V,300W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为890mV。
在图8至图11中,在点A、B、C和D处进行PI控制实验。准谐振控制器的输出被禁用(UR(k)=0)。
图8示出了PI控制下点A(400V,60W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为380mV。
图9示出了PI控制下点B(360V,60W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为340mV。
图10示出了PI控制下点C(400V,300W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为380mV。
图11示出了PI控制下点D(360V,300W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为380mV。
在图12至图15中,在点A、B、C和D处进行准PIR控制实验。
图12示出了准PIR控制下点A(400V,60W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为5.6mV。输出电压纹波的240-Hz峰峰值约为28mV。
图13示出了准PIR控制下点B(360V,60W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为15.5mV。输出电压纹波的180-Hz峰峰值约为14mV。输出电压纹波的240-Hz峰峰值约为16mV。
图14示出了准PIR控制下点C(400V,300W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为17mV。输出电压纹波的240-Hz峰峰值约为30mV。
图15示出了准PIR控制下点D(360V,300W)处的输入电压、输出电压和输出电压的FFT分析。输出电压纹波的120-Hz峰峰值为22.5mV。边带(例如,150Hz和330Hz)处有一些轻微的纹波。
图16示出了开环控制、PI控制和准PIR控制下输出电压中的120-Hz纹波。图16示出,准PIR控制利用简单的设计实现了优异的120-Hz纹波降低。
应当理解,上述描述仅仅用于说明本发明。在不脱离本发明的情况下,本领域技术人员可以设计出各种替代和修改。因此,本发明旨在包含落在所附权利要求范围内的所有这些替代、修改和变化。

Claims (20)

1.一种LLC转换器,包括:
变压器,包括初级绕组和次级绕组;
谐振级,包括所述初级绕组;
开关级,包括开关并且连接到输入电压和所述谐振级;
整流级,连接到所述次级绕组并且提供输出电压;以及
控制器,感测所述输出电压,并且基于对所述输出电压的比例积分控制来控制对所述开关的切换以降低所述输出电压相对于DC电压的误差,以及基于对所述输出电压的准谐振控制来控制对所述开关的切换以降低所述输出电压相对于具有频率带宽的电压范围的误差。
2.根据权利要求1所述的LLC转换器,其中,所述比例积分控制的第一采样周期比所述准谐振控制的第二采样周期长。
3.根据权利要求1所述的LLC转换器,其中,所述控制器使用脉冲频率调制来控制对所述开关的切换。
4.根据权利要求1所述的LLC转换器,其中,所述比例积分控制和所述准谐振控制都是离散控制。
5.根据权利要求4所述的LLC转换器,其中,所述准谐振控制的传递函数由下式提供:
其中ω是线角频率,ωc是带宽角频率,kr是连续准谐振控制中的谐振增益,α=2ωcTR,kR=krTR 2,θ=ωTR,kR是离散谐振增益,且TR是所述准谐振控制的第二采样周期。
6.根据权利要求1所述的LLC转换器,其中,所述电压范围包括具有120Hz频率的电压。
7.根据权利要求1所述的LLC转换器,其中,所述谐振级还包括谐振电感器、谐振电容器和磁化电感器。
8.根据权利要求1所述的LLC转换器,其中,所述开关级包括由所述控制器控制的第一初级开关和第二初级开关。
9.根据权利要求1所述的LLC转换器,其中,所述整流级包括第一同步整流器和第二同步整流器。
10.根据权利要求1所述的LLC转换器,其中,所述控制器是数字信号控制器。
11.一种控制LLC转换器的方法,包括:
感测所述LLC转换器的输出电压;以及
基于对所述输出电压的比例积分控制来切换与所述LLC转换器中所包括的变压器的初级绕组相连接的开关以降低所述输出电压相对于DC电压的误差,以及基于对所述输出电压的准谐振控制来切换所述开关以降低所述输出电压相对于具有频率带宽的电压范围的误差。
12.根据权利要求11所述的方法,还包括:
针对所述比例积分控制,以第一采样周期对所述输出电压进行采样;以及
针对所述准谐振控制,以第二采样周期对所述输出电压进行采样;其中,
所述第二采样周期比所述第一采样周期长。
13.根据权利要求11所述的方法,其中,所述切换使用脉冲频率调制。
14.根据权利要求11所述的方法,其中,所述比例积分控制和所述准谐振控制都是离散控制。
15.根据权利要求14所述的方法,其中,所述准谐振控制的传递函数由下式提供:
其中ω是线角频率,ωc是带宽角频率,kr是连续准谐振控制器中的谐振增益,α=2ωcTR,kR=krTR 2,θ=ωTR,kR是离散谐振增益,且TR是准谐振控制的采样周期。
16.根据权利要求11所述的方法,其中,所述电压范围包括具有120Hz频率的电压。
17.根据权利要求11所述的方法,其中,所述开关连接到包括谐振电感器、谐振电容器、磁化电感器和初级绕组在内的谐振级。
18.根据权利要求11所述的方法,其中,所述开关包括连接到所述初级绕组的第一初级开关和第二初级开关。
19.根据权利要求11所述的方法,还包括:对来自所述变压器的次级绕组的电压进行整流,以提供所述输出电压。
20.根据权利要求11所述的方法,其中,使用数字信号控制器控制所述切换。
CN201880005249.8A 2017-01-27 2018-01-26 利用pir控制的llc转换器及控制llc转换器的方法 Active CN110168883B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762451129P 2017-01-27 2017-01-27
US62/451,129 2017-01-27
PCT/US2018/015598 WO2018140824A1 (en) 2017-01-27 2018-01-26 120-hz ripple reduction with pir controller for llc converter

Publications (2)

Publication Number Publication Date
CN110168883A true CN110168883A (zh) 2019-08-23
CN110168883B CN110168883B (zh) 2022-02-01

Family

ID=62978832

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880005249.8A Active CN110168883B (zh) 2017-01-27 2018-01-26 利用pir控制的llc转换器及控制llc转换器的方法

Country Status (3)

Country Link
US (1) US10944317B2 (zh)
CN (1) CN110168883B (zh)
WO (1) WO2018140824A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113098015A (zh) * 2021-04-20 2021-07-09 中国铁道科学研究院集团有限公司 单相整流器网侧电流低次谐波抑制方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995236B (zh) * 2017-12-29 2021-04-23 东南大学 一种llc变换器同步整流管的控制***
JP7061548B2 (ja) * 2018-10-04 2022-04-28 株式会社日立産機システム 共振型電源装置
TWI671984B (zh) * 2018-11-14 2019-09-11 群光電能科技股份有限公司 電源供應裝置
CN111800013A (zh) * 2019-04-08 2020-10-20 株式会社村田制作所 降低励磁电流并能提供高增益的llc转换器
CN113410991B (zh) * 2020-03-16 2022-05-20 北京新能源汽车股份有限公司 一种谐振变换电路的控制方法、装置、双向充电机及汽车
CN112600446B (zh) * 2020-12-30 2024-01-30 陕西航空电气有限责任公司 一种变频***的电压源整流器电流控制方法
US11799382B2 (en) * 2021-03-03 2023-10-24 Semiconductor Components Industries, Llc Resonant converter with dual-mode control
CA3158873A1 (en) * 2021-05-14 2022-11-14 Queen's University At Kingston Methods and circuits for sensing isolated power converter output voltage across the isolation barrier
CN114221552B (zh) * 2021-12-10 2024-04-26 同济大学 一种基于pwm和改进准谐振控制器的pmsm谐波抑制控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867296A (zh) * 2010-06-01 2010-10-20 国电南瑞科技股份有限公司 串联谐振直流/直流变换器
CN202617007U (zh) * 2012-05-22 2012-12-19 许继集团有限公司 一种使用uc3846芯片实现的调频控制电路
CN102870320A (zh) * 2010-03-17 2013-01-09 电力***技术有限公司 功率转换器的控制***及其操作方法
CN103532128A (zh) * 2013-11-01 2014-01-22 哈尔滨工业大学 直流微电网中光伏发电***的比例积分准谐振控制方法
CN104393598A (zh) * 2014-11-24 2015-03-04 电子科技大学 一种有源电力滤波器的频率自适应改进型谐振控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461552B2 (en) * 2006-03-23 2016-10-04 Enphase Energy, Inc. Method and apparatus for power conversion
CN101842956A (zh) 2007-02-22 2010-09-22 弗吉尼亚科技知识产权有限公司 通用功率调节***的控制***和方法
US8693213B2 (en) * 2008-05-21 2014-04-08 Flextronics Ap, Llc Resonant power factor correction converter
US8767421B2 (en) * 2011-06-16 2014-07-01 Solarbridge Technologies, Inc. Power converter bus control method, system, and article of manufacture
US8681513B2 (en) * 2011-06-28 2014-03-25 General Electric Company Optimization of a power converter employing an LLC converter
CN104206012B (zh) 2012-03-21 2017-06-13 赤多尼科两合股份有限公司 含包括具有协调频率的高频调制脉冲群信号的调光信号用于led的操作电路
KR101864466B1 (ko) * 2014-03-19 2018-06-05 한국과학기술원 전원 공급 장치
CN104269869B (zh) 2014-09-28 2016-06-01 国家电网公司 一种涉及参数优化的pwm变流器的比例谐振控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870320A (zh) * 2010-03-17 2013-01-09 电力***技术有限公司 功率转换器的控制***及其操作方法
CN101867296A (zh) * 2010-06-01 2010-10-20 国电南瑞科技股份有限公司 串联谐振直流/直流变换器
CN202617007U (zh) * 2012-05-22 2012-12-19 许继集团有限公司 一种使用uc3846芯片实现的调频控制电路
CN103532128A (zh) * 2013-11-01 2014-01-22 哈尔滨工业大学 直流微电网中光伏发电***的比例积分准谐振控制方法
CN104393598A (zh) * 2014-11-24 2015-03-04 电子科技大学 一种有源电力滤波器的频率自适应改进型谐振控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113098015A (zh) * 2021-04-20 2021-07-09 中国铁道科学研究院集团有限公司 单相整流器网侧电流低次谐波抑制方法及装置

Also Published As

Publication number Publication date
WO2018140824A1 (en) 2018-08-02
CN110168883B (zh) 2022-02-01
US20200112244A1 (en) 2020-04-09
US10944317B2 (en) 2021-03-09

Similar Documents

Publication Publication Date Title
CN110168883A (zh) 利用pir控制器降低llc转换器的120-hz纹波
Singh et al. Power factor corrected zeta converter based improved power quality switched mode power supply
US7313007B2 (en) Power factor correction controller
US9318960B2 (en) High efficiency and low loss AC-DC power supply circuit and control method
US9318949B2 (en) AC-to-DC power supply apparatus and power control structure and method thereof
US20050201124A1 (en) Power factor correction circuits
CN105827123B (zh) 电源变换电路及其驱动控制电路
US20140097808A1 (en) Digital controller based detection methods for adaptive mixed conduction mode power factor correction circuit
WO2010131496A1 (ja) Pfcコンバータ
CN103716965B (zh) Led驱动装置及其控制电路和输出电流检测电路
CN108063553A (zh) Dc/dc转换器
US9985515B1 (en) Controllers for regulated power inverters, AC/DC, and DC/DC converters
CN109713889B (zh) 一种功率因数校正电路及其控制方法
EP4181368A1 (en) Balancer circuit
US8957600B1 (en) Two-stage led driver with buck PFC and improved THD
US9380655B2 (en) Single-stage AC-DC power converter with flyback PFC and selectable dual output current
WO2015135073A1 (en) Primary side controlled led driver with ripple cancellation
US20210091678A1 (en) Control method and control circuit
Xu et al. A novel closed loop interleaving strategy of multiphase critical mode boost PFC converters
JP2023036968A (ja) 昇圧整流器
US9831791B2 (en) Quasi-resonant magnetron power supply
JP2009089564A (ja) Dc/dcコンバータ
CN103609011B (zh) 用于三相交流电压‑直流电压转换器的简易控制方法
CN114123758B (zh) Ac-dc变换器及ac-dc变换器的控制方法
US20150085537A1 (en) Control method, power converting circuit and ac-dc power converter using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant