CN110156073B - 蒸汽热溶液蒸发制备TiO2的方法 - Google Patents

蒸汽热溶液蒸发制备TiO2的方法 Download PDF

Info

Publication number
CN110156073B
CN110156073B CN201810097645.XA CN201810097645A CN110156073B CN 110156073 B CN110156073 B CN 110156073B CN 201810097645 A CN201810097645 A CN 201810097645A CN 110156073 B CN110156073 B CN 110156073B
Authority
CN
China
Prior art keywords
tio
cup
temperature
reaction
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810097645.XA
Other languages
English (en)
Other versions
CN110156073A (zh
Inventor
马永青
刘畅
孙筱雨
钱旎娴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201810097645.XA priority Critical patent/CN110156073B/zh
Publication of CN110156073A publication Critical patent/CN110156073A/zh
Application granted granted Critical
Publication of CN110156073B publication Critical patent/CN110156073B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了蒸汽热溶液蒸发制备TiO2的方法。将钛盐滴入到有机溶剂中,磁力搅拌并混合,转移到高脚石英杯中,随后在哈氏合金反应釜内加入有机溶剂,并将高脚石英杯放入反应釜中,在温度为240‑500℃下,蒸汽水热反应5小时,反应结束后,反应釜内的冷凝管开始通入冷却水,使釜内温度快速降低,待冷却至室温后,取出杯中产物,杯中产物为固体状态时经过磨细后得到TiO2光催化剂,杯中产物为液体状态时,经过固液分离,然后加入乙醇洗涤,放入真空烘箱内干燥得到TiO2光催化剂。本发明得到的TiO2光催化剂具备催化性能优秀,制备工艺简单安全,在光催化领域有很好的应用前景。

Description

蒸汽热溶液蒸发制备TiO2的方法
技术领域
本发明涉及蒸汽热溶液蒸发制备TiO2的方法,属于光催化剂技术 领域。
背景技术
TiO2在光催化降解领域有着广阔的应用前景,常规方法制备出来 的TiO2晶体通常暴露出来的是(101)晶面,而(101)面的缺点是载流子 迁移率低、反应活性位置少等。
研究人员发现,TiO2的(001)面上有着高密度的活性的不饱和Ti 原子,具有比(101)面更高的光催化活性。因此(001)面暴露的TiO2在光催化领域有着很大的应用潜力。为了让(001)面在晶体生长过程 中暴露,通常需要在制备过程中加入F-离子比如强腐蚀的氢氟酸, 或者强氧化剂比如H2O2,加入这些物质会造成一定的安全隐患,不利 于安全生产。
目前最常用的TiO2制备方法是水热法或者溶剂热法。水热法合成 的样品具有缺陷少,产物的结晶度高,大小均匀等优点。但也存在一 些不足,首先常规水热反应制备TiO2过程中,用水作为溶剂,水解反 应速率快,因此水解过程难以控制,制备的样品颗粒大,比表面积小 ,对光催化降解性能不利,为了解决这一问题,通常是在反应溶液中 加入分散剂,又会面临难以清洗的问题。其次,常规水热法制备样品 时,受反应釜本身的限制,反应温度通常在220℃以下,因为反应釜 中聚四氟乙烯内衬在230℃时就会严重变形,导致密封不好,容易发 生***危险。但是较低的反应温度会导致样品的晶化程度不高,需要 后续热处理进一步晶化。
发明内容
有鉴于此,本发明提出了蒸汽热溶液蒸发制备TiO2的方法,在超 临界状态下反应,得到的TiO2光催化剂具备催化性能优越,制备工艺 简单安全,在光催化领域有很好的应用前景。
为实现上述发明目的,本发明的蒸汽热溶液蒸发制备TiO2的方法, 将钛盐滴入到有机溶剂中,磁力搅拌并混合,得到澄清液体,并转移 到高脚石英杯中,随后在哈氏合金反应釜内加入有机溶剂,并将高脚 石英杯放入反应釜中,在温度为240-500℃下,蒸汽水热反应5小时, 反应结束后,反应釜内的冷凝管开始通入冷却水,使釜内温度快速降 低,待冷却至室温后,取出杯中产物,杯中产物为固体状态时经过磨 细后得到TiO2光催化剂,杯中产物为液体状态时,经过固液分离,然 后加入乙醇洗涤4-5次后,倒掉上清液,放入真空烘箱内干燥得到 TiO2光催化剂。
所述钛盐为钛酸异丙酯、钛酸四丁酯、四氯化钛或四氟化钛中的 至少一种。
所述有机溶剂为超临界温度低于500℃的醇类化合物。
本发明在超临界条件下进行反应,溶剂在超临界状态时,蒸汽压 升高,密度、表面张力和粘度都变低,这些变化会加快重要离子间的 反应,能够实现通常状态下难以发生的反应。同时,由于反应温度较 高,所制备样品的晶化程度高,不需要后续处理。
本发明采用非水的液体如醇类做为溶剂,加热到超临界温度以上, 使乙醇成为蒸汽,在蒸汽中反应缓慢生成水,降低钛源的水解速度, 以制备较小的TiO2颗粒;由于反应温度高,样品的结晶性好,不需要 后续晶化处理。在反应一段时间后,冷凝管通水快速冷却蒸汽成为液 体,收集到反应釜中,使得石英杯中的液体减少或者消失,经过处理 得到TiO2粒子,TiO2粒子仅10~20nm大小,比常规水热合成的粒子小得 多;重要的是,通过快速冷却过程,促进了TiO2(001)面的暴露,并 且TiO2表面吸附了一定的有机基团,提高了光响应范围和光催化性能, 有利于对可见光的吸收。
本发明通过超临界状态下反应,随后通过快速冷却的方法,使蒸 发的溶液在石英杯外的冷凝管上快速凝结,促进TiO2的(001)面暴露生 长;同时,石英杯内产物成为干燥粉末并吸附了一定有机基团,二者 共同提高了光催化性能,制备的催化剂光催化性能已经远超过工业 P25的水平,该催化剂无须经过金、银、铂等价格昂贵的金属修饰;也 无须利用氢氟酸等有害物质调控晶面;通过醇类会在高温下脱水缩合 的原理,使得原材料缓慢水解,生成的颗粒较小且均匀。
本发明的有益效果为:在超临界状态下反应,得到的TiO2光催化 剂具备催化性能优秀,制备工艺简单安全,在光催化领域有很好的应 用前景。
附图说明
图1为反应装置示意图。
图2为TiO2纳米粒子的XRD图谱,根据TiO2的标准PDF卡片(No.21-1272),可以确定TiO2为四方锐钛矿结构。其中,横坐标为衍 射角,纵坐标为相对强度。
图3为TiO2纳米粒子的透射电子显微(TEM)图。
图4为TiO2纳米粒子的UV-vis图。其中横坐标为波长,纵坐标 为吸收强度。
图5为TiO2纳米粒子的红外图谱。其中,横坐标为波长,纵坐标 为吸收强度。
图6为TiO2纳米粒子的荧光图谱。其中,横坐标为发射波长,纵 坐标为发光相对强度。
图7为TiO2纳米粒子对亚甲基蓝的光催化降解效率图。其中,横 坐标为光照时间,纵坐标为降解效率。
具体实施方式
下面结合附图和实施例对本发明作进一步详细的说明。
蒸汽热溶液蒸发制备TiO2的方法,将钛盐滴入到有机溶剂中,磁 力搅拌并混合,得到澄清液体,并转移到高脚石英杯中,随后在哈氏 合金反应釜内加入有机溶剂,并将高脚石英杯放入反应釜中,在温度 为240-500℃下,蒸汽水热反应5小时,反应结束后,反应釜内的冷凝 管开始通入冷却水,使釜内温度快速降低,待冷却至室温后,取出杯 中产物,杯中产物为固体状态时经过磨细后得到TiO2光催化剂,杯中 产物为液体状态时,经过固液分离,然后加入乙醇洗涤4-5次后,倒 掉上清液,放入真空烘箱内干燥得到TiO2光催化剂。
所述钛盐为钛酸异丙酯、钛酸四丁酯、四氯化钛或四氟化钛中的 至少一种。
所述有机溶剂为超临界温度低于500℃的醇类化合物。
实施例1
(1)吸取4mL钛酸异丙酯(TIP),滴入到96mL乙醇中,并磁力搅 拌30min。
(2)将步骤(1)中溶液转移到120mL的石英高脚中。
(3)称量200mL乙醇到1000mL的高温高压反应釜中,并将(2)中 的石英杯放入高温高压反应釜。随后分别进行如下条件反应:
在240℃环境下反应5小时。待溶液冷却后,石英杯中为少量液体 的沉淀物,离心分离所得产物,利用无水乙醇清洗4-5次后,倒掉上 清液,将所得沉淀物放入真空干燥箱中,在60℃的情况下干燥12小时, 获得TiO2纳米粒子①;
在250℃环境下反应5小时。待溶液冷却后,杯内产物呈干燥的淡 黄色固体,研磨后即获得TiO2纳米粒子②。
得到的TiO2纳米粒子②,具有非常强的催化性能,它对亚甲基蓝 的降解速率是工业P25的近3倍。
实施例2
(1)用X-射线多晶体衍射仪(XRD;Smartlab9KW)测试TiO2纳米粒 子的X-射线衍射图谱,见图2。由图2中TiO2纳米粒子衍射峰的位置和 相对强度与标准PDF卡片No.21-1272对比可知我们所制备的TiO2纳米 粒子的晶体结构为四方锐钛矿相。
(2)用透射电子显微镜(JEOLJEM-2100)表征240℃环境制备的 TiO2纳米粒子(即粒子①)的透射电子显微镜(TEM)图,见图3(a);表 征250℃TiO2纳米粒子(即粒子②)的透射电子显微图(TEM),见图3(b) ;表征250℃TiO2纳米粒子的高分辨透射电子显微图(HRTEM),见图 3(c)和(d)
由图3(a)和图3(b)可知,所制备的TiO2纳米粒子是粒径为约 10-20nm的纳米颗粒。如图3(c)所示,间距为0.35的条纹对应于 TiO2的(101)晶格条纹。图3(d)显示了来自TiO2的晶格条纹,分别 为0.19nm和0.35nm。其中0.19nm的条纹对应TiO2的(200)面,而0.35nm的条纹对应了TiO2的(101)面。
(3)利用紫外可见近红外分光光度计(U-4100)表征TiO2纳米粒子 ①和TiO2纳米粒子②的紫外可见光吸收谱,见图4。TiO2纳米粒子① 的吸收边在380nm左右,说明了TiO2纳米粒子①的带隙在3.2ev左右 ,对可见光的吸收能力不足;而TiO2纳米粒子②的吸收边有显著的红 移现象,有明显的对可见光的吸收能力。
(4)利用傅里叶红外显微***(Vertex80)对TiO2纳米粒子①和 TiO2纳米粒子②的红外吸收进行表征,结果见图5。对比TiO2纳米粒 子①和TiO2纳米粒子②,发现TiO2纳米粒子②的红外光谱在1731cm-1 处出现了吸收峰,此处的吸收峰是由C=O双键的伸缩振动产生的,说 明了TiO2纳米粒子②吸附了一定的C=O有机基团。
(5)利用荧光分光光度计(F-4500)对TiO2纳米粒子①和TiO2纳米 粒子②进行荧光表征。通过扫描确定了样品二者受300nm紫外光激发 的发射光强度最大,并且在发射波长为425nm和475nm处出现最高峰 。通过比较发现,TiO2纳米粒子①发射光强度大于TiO2纳米粒子②的 发射光强度,说明了TiO2纳米粒子②的有着更低的电子-空穴复合率 ,即更高的载流子寿命。
(6)利用紫外可见分光光度计(UV-6100)分别测试了TiO2纳米粒 子①和TiO2纳米粒子②以及工业P25粉末对亚甲基蓝的光催化降解 性能,结果如图7显示。在光照90min后,三者对亚甲基蓝的降解效 率都达到了99%以上。其中TiO2纳米粒子②对亚甲基蓝有着优秀的降 解能力,在30min左右就降解了99%的亚甲基蓝,快于工业P25粉末。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限 制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技 术人员应当理解,可以对本发明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利 要求范围当中。

Claims (3)

1.蒸汽热溶液蒸发制备TiO2的方法,其特征在于,将钛盐滴入到有机溶剂中,磁力搅拌并混合,得到澄清液体,并转移到高脚石英杯中,随后在哈氏合金反应釜内加入有机溶剂,并将高脚石英杯放入反应釜中,在温度为240-500℃下,蒸汽水热反应5小时,反应结束后,反应釜内的冷凝管开始通入冷却水,使釜内温度快速降低,待冷却至室温后,取出杯中产物,杯中产物为固体状态时经过磨细后得到TiO2光催化剂,杯中产物为液体状态时,经过固液分离,然后加入乙醇洗涤4-5次后,倒掉上清液,放入真空烘箱内干燥得到TiO2光催化剂。
2.如权利要求1所述的蒸汽热溶液蒸发制备TiO2的方法,其特征在于,所述钛盐为钛酸异丙酯、钛酸四丁酯、四氯化钛或四氟化钛中的至少一种。
3.如权利要求1所述的蒸汽热溶液蒸发制备TiO2的方法,其特征在于,所述有机溶剂为超临界温度低于500℃的醇类化合物。
CN201810097645.XA 2018-01-31 2018-01-31 蒸汽热溶液蒸发制备TiO2的方法 Expired - Fee Related CN110156073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810097645.XA CN110156073B (zh) 2018-01-31 2018-01-31 蒸汽热溶液蒸发制备TiO2的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810097645.XA CN110156073B (zh) 2018-01-31 2018-01-31 蒸汽热溶液蒸发制备TiO2的方法

Publications (2)

Publication Number Publication Date
CN110156073A CN110156073A (zh) 2019-08-23
CN110156073B true CN110156073B (zh) 2021-09-17

Family

ID=67641339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810097645.XA Expired - Fee Related CN110156073B (zh) 2018-01-31 2018-01-31 蒸汽热溶液蒸发制备TiO2的方法

Country Status (1)

Country Link
CN (1) CN110156073B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333009B (zh) * 2021-05-29 2022-02-18 安徽大学 一种氮掺杂γ-Bi2MoO6光催化剂的制备方法
CN113750928A (zh) * 2021-09-27 2021-12-07 合盛硅业(泸州)有限公司 一种二甲水解***停车逼干工艺
CN114405404A (zh) * 2022-01-10 2022-04-29 南京工程学院 一种改进的掺杂反应装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1234928C (zh) * 2004-06-11 2006-01-04 山东大学 二氧化钛纤维的制备方法
RU2340558C2 (ru) * 2006-12-29 2008-12-10 Марина Николаевна Данчевская Способ получения мелкокристаллического легированного алюмината лантана
CN100435940C (zh) * 2007-04-06 2008-11-26 武汉理工大学 一种制备高晶化纳晶二氧化钛光催化剂的蒸汽热方法
CN101791545A (zh) * 2010-03-02 2010-08-04 上海师范大学 一种{001}面暴露微米层状二氧化钛光催化剂的制备方法
CN103785371B (zh) * 2014-03-04 2016-01-13 湘潭大学 一种多孔炭微球@TiO2复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110156073A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Tong et al. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines
AU2020102258A4 (en) MIXED CRYSTAL TiO2/BiOBr COMPOSITE AND PREPARATION METHOD AND APPLICATION THEREOF
Filippo et al. Enhanced photocatalytic activity of pure anatase TiO 2 and Pt-TiO 2 nanoparticles synthesized by green microwave assisted route
CN106914263B (zh) 一种复合可见光催化剂的制备方法
CN110156073B (zh) 蒸汽热溶液蒸发制备TiO2的方法
CN110127722B (zh) 一种疏水化的表面缺陷改性TiO2可见光固氮催化剂的制备方法
CN112007632B (zh) 一种花状SnO2/g-C3N4异质结光催化剂的制备方法
CN107952455A (zh) 一种具有宏观构架的三维片状BiOI光催化材料及其制备与应用
CN108993503B (zh) 基于干凝胶-水热法制备的Cu/N共掺TiO2纳米粉体在光催化反应中降解丙酮的应用
Sanjini et al. Effect of precursors on the synthesis of CuO nanoparticles under microwave for photocatalytic activity towards methylene blue and rhodamine B dyes
CN108033432A (zh) 一种笼状结构材料g-C3N4的制备方法及其应用
CN113663693A (zh) 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用
Wu et al. One‐pot hydrothermal synthesis and photocatalytic hydrogen evolution of pyrochlore type K2Nb2O6
CN111715265A (zh) 一种稀土离子掺杂三氟化铈-石墨相氮化碳复合光催化材料及其制备方法与应用
CN107890861B (zh) 一种具有{001}晶面的二氧化钛片层/石墨烯复合薄膜的制备方法
Mendoza-Mendoza et al. A novel two-step route for synthesizing pure Ta2O5 nanoparticles with enhanced photocatalytic activity
Xie et al. Facile fabrication of TiO2-SiO2-C composite with anatase/rutile heterostructure via sol-gel process and its enhanced photocatalytic activity in the presence of H2O2
Arul et al. Visible light proven Si doped TiO2 nanocatalyst for the photodegradation of Organic dye
Goulart-Gonçalves et al. Direct synthesis of TiO2 nanoparticles without heat treatment: Effect of order of addition and precursor/reducing ratio
Shojaei et al. Effect of microwave irradiation on morphology and size of anatase nano powder: Efficient photodegradation of 4-nitrophenol by W-doped titania
CN101343043B (zh) 两性金属化合物纳米材料及其制备方法
CN112456556A (zh) 一种制备氧化钽纳米球的方法
CN110227517B (zh) CuBi2O4/BiPO4p-n型异质结光催化剂、制备方法及其应用
CN110683518A (zh) 金属氧化物的制备方法
Zhang et al. Carbon-dot-modified TiO 2− x mesoporous single crystals with enhanced photocatalytic activity for degradation of phenol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210917

Termination date: 20220131

CF01 Termination of patent right due to non-payment of annual fee