CN110133386A - 一种天线测试方法和设备 - Google Patents

一种天线测试方法和设备 Download PDF

Info

Publication number
CN110133386A
CN110133386A CN201910366770.0A CN201910366770A CN110133386A CN 110133386 A CN110133386 A CN 110133386A CN 201910366770 A CN201910366770 A CN 201910366770A CN 110133386 A CN110133386 A CN 110133386A
Authority
CN
China
Prior art keywords
signal
test
antenna
phase
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910366770.0A
Other languages
English (en)
Inventor
任宇鑫
潘冲
吴翔
李雷
张翔
徐菲
魏贵明
郭宇航
张宇
陈凯
杨思远
郭凤然
朱颖
孙浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Information and Communications Technology CAICT
Original Assignee
China Academy of Information and Communications Technology CAICT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Information and Communications Technology CAICT filed Critical China Academy of Information and Communications Technology CAICT
Priority to CN201910366770.0A priority Critical patent/CN110133386A/zh
Priority to PCT/CN2019/095088 priority patent/WO2020224044A1/zh
Publication of CN110133386A publication Critical patent/CN110133386A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供了一种天线测试方法和设备,该测试设备包括:探头阵列,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;信号处理单元,用于将所述探头阵列接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标。该方案能够在较近的距离和较低的成本下,实现远场和紧缩场的测试能力。

Description

一种天线测试方法和设备
技术领域
本发明涉及无线通信技术领域,特别涉及一种天线测试方法和设备。
背景技术
新一代5G(第五代)移动技术需要在有限的频段内实现更高的频谱效率,以提升小区容量和用户体验速率。3GPP(第三代伙伴计划)讨论并引入了Massive(大规模)MIMO(多输入多输出)技术,6GHz以下频段基站通过采用64通道,128或192阵子,同时并行传输高达16流的独立数据,相比传统的***移动通信技术,基站的峰值速率提升8倍。而5G引入的毫米波无线通信设备,通过采用更高频段、更大带宽与Massive MIMO技术,可实现峰值速率的进一步抬升。
在4G及之前的基站的天线测试多采用无源OTA(空口)测试方式,可以通过远场、近场、紧缩场等测试方法,得到被测件的方向图、增益、前后比等指标。基站的射频单元测试,多采用射频线缆直接连接的传导方式进行。由于5G设备射频单元与天线的连接更紧密,所以传统无源测试方式无法直接用于5G基站。
由于上述原因,Massive MIMO的射频测试采用OTA方式已逐渐成为共识。测试指标包括传统天线OTA指标,如:测试发射功率、接收灵敏度、增益、方向性、波瓣宽度、前后比等,还包括传统采用传导手段测试的射频指标,如EVM、ACLR、OBUE等。3GPP规定的5G基站设备测试可采用以下测试场地方案:
直接远场:被测基站设备与测试探头的测试距离超过2D2/λ,其中D为被测基站天线的口面尺寸,λ为被测基站的工作波长。由于5G基站体积较大,通过2D2/λ计算的远场较远,所以其暗室和测试***造价昂贵。
紧缩场:为了减少暗室尺寸,紧缩场使用高精度反射面,通过反射面的对电磁波的反射实现准平面波效果。紧缩场反射面对形变要求高,场地要求恒温恒湿,反射面价格昂贵,维护要求高。
发明内容
有鉴于此,本申请提供一种天线测试方法和设备,能够在较近的距离和较低的成本下,实现远场和紧缩场的测试能力。
为解决上述技术问题,本申请的技术方案是这样实现的:
在一个实施例中,提供了一种天线测试设备,该测试设备包括:
探头阵列,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;
信号处理单元,用于将所述探头阵列接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标。
在另一个实施例中,提供了一种天线测试方法,应用于包括所述测试设备、测试仪和被测天线的测试***中,所述方法包括:
部署测试***,将所述测试设备和被测天线置于微波暗室中,所述测试设备的探头阵列垂直放置,且与被测天线来波方向垂直;被测天线的相位中心坐标位于静区中心;
进行测试时,被测天线按照预设方式旋转或移动;
测试设备通过探头阵列向被测天线发送信号,并处理通过探头阵列接收到的信号;
测试仪获取测试设备处理后的信号,测量天线的射频指标。
由上面的技术方案可见,上述实施例中探头阵列的幅度和相位可调,能够不重组测试设备的情况下,满足多种测试需要,并且通过调整幅度和相位能够在静区生成满足测试要求的平面波,进而能够在较近的距离和较低的成本下,实现远场和紧缩场的测试能力。
附图说明
以下附图仅对本发明做示意性说明和解释,并不限定本发明的范围:
图1为本申请实施例中被测天线为无源天线的天线测试***示意图;
图2为本申请实施例中被测天线为有源天线的天线测试***示意图。
图3为本申请实施例中一测试设备的结构示意图;
图4为本申请实施例中一指定静区幅度分布示意图;
图5为本申请实施例中一指定静区相位分布示意图;
图6为本申请实施例中另一测试设备的结构示意图;
图7为本申请实施例中探头阵列的结构示意图;
图8为本申请实施例中一体化有源探头的结构示意图;
图9为静区校验示意图;
图10为本申请实施例中天线测试流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图并举实施例,对本发明的技术方案进行详细说明。
本申请实施例中提供一种天线测试***,在部署测试***时,针对被测天线是有源天线和无源天线分别部署测试***。
参见图1,图1为本申请实施例中被测天线为无源天线的天线测试***示意图。
参见图2,图2为本申请实施例中被测天线为有源天线的天线测试***示意图。
图1和图2中的测试***包括的设备是相同的,均包括测设设备、被测天线和测试仪。测试设备和被测天线置于微波暗室,被测天线置于转台、机械臂等设备上,通过转台控制器控制转台、机械臂等设备来实现天线设备的旋转或移动。
转台控制器和测试仪置于微波暗室之外;
置于微波暗室的测试设备和被测天线之间的位置关系为:
测试设备的探头阵列垂直放置,且与被测天线来波方向垂直;被测天线的相位中心坐标位于静区中心。
图1中的被测天线为无源天线,即当被测天线为无源天线时,所述测试仪可以为矢量网络分析仪、信号源频谱仪,或信号源与功率计的组合等;
所述测试仪的一端(B端口)通过射频线连接被测天线,另一端(C端口)通过射频线连接测试设备,被测天线通过端口A连接测试仪。
图2中的被测天线为有源天线,当被测天线为有源天线时,所述测试仪为频谱分析仪或功率计。
测试仪仅通过射频线与测试设备连接即可。
本申请实施例具体实现时,还可以通过一台PC连接测试仪,来读取测试仪测量的指标信息,测试的指标信息可以为:被测天线的方向图、增益、EIRP、EIS等。
还可以将被测天线安装在转台、机械臂等设备上,以便在微波暗室的被测天线能够转动和移动。
在微波暗室外,可以设置转台控制器,来控制转台、机械臂等设备的移动和转动,也可以不设置,使转台、机械臂等设备按照预设速率移动。
转台控制器可以是可操作的设备,也可以通过一台PC操作、控制。
其中,图1和图2中的测试设备的具体实现如下:
参见图3,图3为本申请实施例中一测试设备的结构示意图。该测试设备包括:探头阵列和信号处理单元;
探头阵列,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;
可以预先计算出符合测试要求的幅度和相位,具体计算方法可以,但不限于如下实现:
使用如下公式进行优化:
其中,N为一体化有源探头的个数,M为针对静区位置均匀抽样的点的个数,xm为静区中抽样的第m个点的位置坐标x、ym为静区中抽样的第m个点的位置坐标y、xn为第n个一体化有源探头的位置坐标x、yn为第n个一体化有源探头的位置坐标y,z=d为探头与被测天线之间的距离,其中设目标电场E为幅度相同相位一致的数值,将所有探头和优化区域坐标带入公式,得到带有ω的M×N个方程,使用目标软件优化该方程组,得到N个ω值,即幅度相位对应的值。
假设被测天线的频点为3.5GHz,坐标设目标电场E为幅度相同相位相等的数值等于1,M=36,N=36。探头阵列摆放至特定坐标内,将所有探头坐标和静区坐标带入公式,得到带有ω的36×36个方程,使用目标软件优化该方程组,得到n个ω值,即幅度相位调整单元数值。可由公式计算得到一体化有源探头的幅度和相位调整值,如下表1和表2;表1为ω幅度数值对应的内容;表2为ω相位数值对应的内容。
0.52 1.03 1.25 1.23 1.08 0.51
1.11 3.00 4.21 4.45 3.08 1.00
1.14 4.45 6.92 6.80 4.34 1.16
1.25 4.45 6.41 6.34 4.16 1.13
1.08 2.87 4.18 4.39 3.04 1.01
0.52 1.03 1.25 1.23 1.08 0.51
表1
-1.11 -1.01 -1.40 -1.44 -1.01 -1.12
-1.03 -0.64 -0.99 -1.00 -0.67 -1.04
-1.39 -1.02 -1.40 -1.37 -1.00 -1.43
-1.44 -1.00 -1.38 -1.40 -0.99 -1.43
-1.03 -0.66 -0.99 -1.00 -0.64 -1.01
-1.13 -1.02 -1.43 -1.43 -1.00 -1.14
表2
将针对每个探头阵列确定的相位和幅度分别以配置文件的方式发送给探头阵列,由探头阵列设置对应的幅度和相位。
探头阵列设置幅度和相位后,由理论可以推导出在该情况下被测天线区域内形成的静区的幅度和相位的分布图。参见图4,图4为本申请实施例中一指定静区幅度分布示意图。参见图5,图5为本申请实施例中一指定静区相位分布示意图。如图4和图5所示,电场分布的中心位置形成了正方形的平面波区域,图4中显示幅度波动小于0.5dB,图5中显示相位波动小于5度。
信号处理单元,用于将所述探头阵列接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标。
参见图6,图6为本申请实施例中另一测试设备的结构示意图。该测试设备包括:
探头阵列,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;
信号处理单元,用于将所述探头阵列接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标。
控制单元,用于接收上位机发送的指令,通过电信号控制所述探头阵列和所述信号处理单元的工作状态。
针对图3和图6中的探头阵列可以通过如下结构实现:
参见图7,图7为本申请实施例中探头阵列的结构示意图。该探头阵列包括:至少两个一体化有源探头和探头位置调整单元;图7中以K个探头为例K为大于1的整数。
一体化有源探头与探头位置调整单元一一对应,也就是说每个一体化有源探头对应一个,也是唯一一个探头位置调整单元;
每个探头位置调整单元,用于安装并调整对应的一体化有源探头的位置和角度。
探头阵列中的一体化有源探头的个数和类型不进行限制,只要实现的探头阵列能够满足测试需求即可。
探头位置调整单元在测试设备中位置固定,且可调节安装在其上的一体化有源探头的位置和角度,这里的位置调整指上下左右调整,角度调整针对探头的指向进行调整。
该实施例中测试设备中的探头阵列包括探头位置调整单元,能够适当调整对应一体化有源探头使所有一体化有源探头组成的能够满足测试条件的探头阵列。
每个探头位置调整单元与一体化有源探头通过硬件连接,如螺钉等,探头位置调整单元可以机械调整对应一体化有源探头的位置和角度。
针对图7中的一体化有源探头可以通过如下结构实现:
参见图8,图8为本申请实施例中一体化有源探头的结构示意图。
所述一体化有源探头包括:有源探头、幅相模块和极化模块;
所述有源探头,用于接收和发射信号;
所述极化模块,用于设置所述有源探头的极化;
所述幅相模块,用于设置信号的幅度和相位。
优选地,
所述幅相模块,进一步用于接收到更新后的幅度和相位时,更新设置的幅度和相位。
控制单元,控制探头阵列时,具体通过控制信息控制探头阵列中的位置调整单元、幅相单元和极化单元;
控制探头阵列中的位置调整单元调整有源探头的位置和角度,控制幅相单元设置、更新幅度和相位,控制极化单元设置探头的极化为单极化还是双极化。
本申请实施例中幅相调整单元整合到探头上提高生成静区的幅度和相位一致性的效率,本申请实施例中通过控制单元控制各模块的参数设置、位置、角度等变化,能够极大满足各种需求的测试的要求,能够压缩设备的制造成本,实现测量设备的小型化和轻量化。
基于同样的发明构思,本申请实施例中还提供一种天线测试方法。应用于图1和图2所示的测试***中。
在进行测试之前,先部署测试***,将所述测试设备和被测天线置于微波暗室中,所述测试设备的探头阵列垂直放置,且与被测天线来波方向垂直;被测天线的相位中心坐标位于静区中心。
本申请实施例中为了进一步验证设备的幅度和相位是否满足测试需求;在部署测试***之后,进行测试之前,进一步包括:
对指定的静区进行校验;
若在预设频带范围内,以及指定的静区内形成的波不符合测试要求的平面波,则被测设备通过探头阵列调整幅度和相位再次进行校验,直至在预设频带范围内,以及指定的静区内形成符合测试要求的平面波。
本申请实施中对指定的静区进行校验,包括:
使用二维平面扫描架对指定静区对应的区域进行扫描,获取静区内的幅度和相位;
当静区内的幅度相同,且相位一致时,确定在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;否则,确定在预设频带范围内,以及指定的静区内未形成符合测试要求的平面波。
参见图9,图9为静区校验示意图。如图9中,确定在预设频带范围内,以及指定的静区内形成符合测试要求的平面波,则确定当前设置的幅度和相位是合适的。
参见图10,图10为本申请实施例中天线测试流程示意图。具体步骤为:
步骤1001,进行测试时,被测天线按照预设方式旋转或移动,并发射和接收信号。
这里的被测天线按照预设方式旋转或移动可以是预先设置的移动或旋转方式,也可以是在微波暗室外通过转台控制器按照预设方式控制被测天线的旋转和移动。
步骤1002,测试设备通过探头阵列向被测天线发送信号,并处理通过探头阵列接收到的信号。
控制信号发射的信号通过探头阵列发射,发射的信号满足探头阵列的幅度和相位,以及极化的设置,使得发射的信号在静区内形成符合测试要求的平面波。
测试设备通过探头阵列接收到信号,信号经过探头阵列后,满足探头阵列的幅度和相位,以及极化的设置,信号在到达信号处理单元处使得信号也形成满足预设测试条件的平面波。
步骤1003,测试仪获取测试设备处理后的信号,测量被测天线的射频指标。
当被测天线为无源天线时,所述测试仪为矢量网络分析仪、信号源频谱仪,或信号源与功率计的组合;
测试仪还与被测天线连接。
当被测天线为有源天线时,所述测试仪为频谱分析仪或功率计。
这里的射频指标为方向图、EIRP、EIS、ACLR、EVM等指标。
本申请实施例中如果需要改变测试需要时,只需通过控制单元控制探头阵列改变探头的角度、位置、幅度、相位和极化即可,不需要重新架构、生成测试设备,能够节省测试成本。
综上所述,本申请通过探头阵列的幅度、相位、极化的可调,能够不重组测试设备的情况下,满足多种测试需要,并且通过调整幅度和相位能够在静区生成满足测试要求的平面,进而可以在较近的距离和较低的成本下,实现远场和紧缩场的测试能力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (10)

1.一种天线测试设备,其特征在于,该测试设备包括:
探头阵列,用于设置幅度和相位使发射的信号在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;并在测试时,接收和发射信号;
信号处理单元,用于将所述探头阵列接收的信号进行功率控制、信号合成和信号滤波处理,并将处理结果输出值测试仪表以测试天线的射频指标。
2.根据权利要求1所述的测试设备,其特征在于,所述测试设备进一步包括:
控制单元,用于接收上位机发送的指令,通过电信号控制所述探头阵列和所述信号处理单元的工作状态。
3.根据权利要求1所述的测试设备,其特征在于,所述探头阵列至少包括两个一体化有源探头和探头位置调整单元,其中,一体化有源探头与探头位置调整单元一一对应;
所述一体化有源探头,用于设置幅度和相位;
所述探头位置调整单元,用于安装并调整对应的一体化有源阵列的位置和角度。
4.根据权利要求3所述的测试设备,其特征在于,所述一体化有源探头包括:有源探头、幅相模块和极化模块;
所述有源探头,用于接收和发射信号;
所述幅相模块,用于设置信号的幅度和相位,有信号发射和接收时,按照设置的幅度和相位调整对应的信号;
所述极化模块,用于设置有源探头的极化。
5.根据权利要求4所述的测试设备,其特征在于,
所述幅相模块,进一步用于接收到所述控制单元发送的更新后的幅度和相位时,更新设置的幅度和相位;
所述极化模块,用于接收到所述控制单元发送的调整探头的极化的指令时,根据指令内容调整极化。
6.一种天线测试方法,其特征在于,应用于包括权利要求1-5所述的测试设备、测试仪和被测天线的测试***中,所述方法包括:
部署测试***,将所述测试设备和被测天线置于微波暗室中,所述测试设备的探头阵列垂直放置,且与被测天线来波方向垂直;被测天线的相位中心坐标位于静区中心;
进行测试时,被测天线按照预设方式旋转或移动;
测试设备通过探头阵列向被测天线发送信号,并处理通过探头阵列接收到的信号;
测试仪获取测试设备处理后的信号,测量天线的射频指标。
7.根据权利要求6所述的方法,其特征在于,所述部署测试***之后,所述进行测试之前,所述方法进一步包括:
对指定的静区进行校验;
若在预设频带范围内,以及指定的静区内形成的波不符合测试要求的平面波,则被测设备通过探头阵列调整幅度和相位再次进行校验,直至在预设频带范围内,以及指定的静区内形成符合测试要求的平面波。
8.根据权利要求7所述的方法,其特征在于,所述对指定的静区进行校验,包括:
使用二维平面扫描架对指定静区对应的区域进行扫描,获取静区内的幅度和相位;
当静区内的幅度相同,且相位一致时,确定在预设频带范围内,以及指定的静区内形成符合测试要求的平面波;否则,确定在预设频带范围内,以及指定的静区内未形成符合测试要求的平面波。
9.根据权利要求6-8任一项所述的方法,其特征在于,
当被测天线为无源天线时,所述测试仪为矢量网络分析仪、信号源频谱仪,或信号源与功率计的组合;
所述测试仪还与被测天线连接。
10.根据权利要求6-8任一项所述的方法,其特征在于,
当被测天线为有源天线时,所述测试仪为频谱分析仪或功率计。
CN201910366770.0A 2019-05-05 2019-05-05 一种天线测试方法和设备 Pending CN110133386A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910366770.0A CN110133386A (zh) 2019-05-05 2019-05-05 一种天线测试方法和设备
PCT/CN2019/095088 WO2020224044A1 (zh) 2019-05-05 2019-07-08 天线测试方法、设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910366770.0A CN110133386A (zh) 2019-05-05 2019-05-05 一种天线测试方法和设备

Publications (1)

Publication Number Publication Date
CN110133386A true CN110133386A (zh) 2019-08-16

Family

ID=67576114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910366770.0A Pending CN110133386A (zh) 2019-05-05 2019-05-05 一种天线测试方法和设备

Country Status (2)

Country Link
CN (1) CN110133386A (zh)
WO (1) WO2020224044A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110988501A (zh) * 2019-12-09 2020-04-10 北京航空航天大学 一种基于可移动阵列天线的应用于基站天线产线的平面波生成器测量***
CN111413553A (zh) * 2020-04-02 2020-07-14 南京捷希科技有限公司 一种天线测试***及测试方法
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试***、方法、毫米波雷达和计算机可读存储介质
CN111965439A (zh) * 2020-06-24 2020-11-20 中国电子科技集团公司第十四研究所 基于机械臂的天线测试***、方法及装置
CN112363000A (zh) * 2020-11-18 2021-02-12 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种机载电子对抗设备的自动测试装置及方法
CN112415282A (zh) * 2019-08-23 2021-02-26 安立股份有限公司 温度测试装置及温度测试方法
CN112526228A (zh) * 2020-11-27 2021-03-19 上海移远通信技术股份有限公司 天线测试方法及装置
CN112711040A (zh) * 2020-12-18 2021-04-27 中国信息通信研究院 卫星导航天线性能评估***及方法
CN112887039A (zh) * 2020-09-03 2021-06-01 上海无委无线电检测实验室有限公司 一种5g基站射频一致性测试方法
CN113708852A (zh) * 2020-05-21 2021-11-26 华为技术有限公司 一种天线的在位检测方法和装置
CN113848394A (zh) * 2021-09-23 2021-12-28 南京捷希科技有限公司 一种紧缩场空口测试设备
US11251840B1 (en) 2020-10-22 2022-02-15 Keysight Technologies, Inc. System and method for performing measurements of antenna under test offset from center of quiet zone
CN114325135A (zh) * 2022-03-11 2022-04-12 南京隼眼电子科技有限公司 天线测量装置及雷达测试***
WO2022082634A1 (en) * 2020-10-22 2022-04-28 Keysight Technologies, Inc. System and method for performng measurements of antenna under test offset from center of quiet zone
CN114726456A (zh) * 2021-01-05 2022-07-08 ***通信有限公司研究院 有源天线测试方法、装置、终端、***、设备和存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443209A (zh) * 2016-12-03 2017-02-22 刘科宏 有源基站天线三维空间远场辐射特性的测试***和方法
CN108347268A (zh) * 2017-01-23 2018-07-31 是德科技股份有限公司 用于执行多输入多输出(mimo)空中下载测试的***和方法
CN108508393A (zh) * 2018-07-03 2018-09-07 上海益麦电磁技术有限公司 一种多探头天线测试***探头校准***和校准方法
CN108896831A (zh) * 2018-05-11 2018-11-27 武汉虹信通信技术有限责任公司 一种结合室内近场和远场对有源天线进行ota测量的方法
US10177862B2 (en) * 2017-05-22 2019-01-08 Keysight Technologies, Inc. System and method for performing over-the-air tests for massive multi-input/multi-output wireless system
CN109462447A (zh) * 2019-01-28 2019-03-12 南京捷希科技有限公司 通信基站ota射频性能测试方法及***
CN109547128A (zh) * 2019-01-15 2019-03-29 南京捷希科技有限公司 Massive MIMO端到端性能的快速测试方法
CN109541330A (zh) * 2018-11-12 2019-03-29 北京航空航天大学 一种平面波模拟器的阵列天线通道校准***
CN109889239A (zh) * 2019-03-27 2019-06-14 北京邮电大学 一种用于mimo ota测试的双暗室结构及测试方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246744A (ja) * 1997-03-05 1998-09-14 Kokusai Electric Co Ltd 電波暗室の構造
US9502022B2 (en) * 2010-09-02 2016-11-22 Spatial Digital Systems, Inc. Apparatus and method of generating quiet zone by cancellation-through-injection techniques
CN106771585A (zh) * 2016-11-21 2017-05-31 南京长峰航天电子科技有限公司 一种微波暗室静区反射电平的数据处理方法
EP3376240B8 (en) * 2017-03-17 2020-01-08 Rohde & Schwarz GmbH & Co. KG Measuring system and method with digital quiet zone

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443209A (zh) * 2016-12-03 2017-02-22 刘科宏 有源基站天线三维空间远场辐射特性的测试***和方法
CN108347268A (zh) * 2017-01-23 2018-07-31 是德科技股份有限公司 用于执行多输入多输出(mimo)空中下载测试的***和方法
US10177862B2 (en) * 2017-05-22 2019-01-08 Keysight Technologies, Inc. System and method for performing over-the-air tests for massive multi-input/multi-output wireless system
CN108896831A (zh) * 2018-05-11 2018-11-27 武汉虹信通信技术有限责任公司 一种结合室内近场和远场对有源天线进行ota测量的方法
CN108508393A (zh) * 2018-07-03 2018-09-07 上海益麦电磁技术有限公司 一种多探头天线测试***探头校准***和校准方法
CN109541330A (zh) * 2018-11-12 2019-03-29 北京航空航天大学 一种平面波模拟器的阵列天线通道校准***
CN109547128A (zh) * 2019-01-15 2019-03-29 南京捷希科技有限公司 Massive MIMO端到端性能的快速测试方法
CN109462447A (zh) * 2019-01-28 2019-03-12 南京捷希科技有限公司 通信基站ota射频性能测试方法及***
CN109889239A (zh) * 2019-03-27 2019-06-14 北京邮电大学 一种用于mimo ota测试的双暗室结构及测试方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112415282A (zh) * 2019-08-23 2021-02-26 安立股份有限公司 温度测试装置及温度测试方法
CN110988501A (zh) * 2019-12-09 2020-04-10 北京航空航天大学 一种基于可移动阵列天线的应用于基站天线产线的平面波生成器测量***
CN111413553A (zh) * 2020-04-02 2020-07-14 南京捷希科技有限公司 一种天线测试***及测试方法
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试***、方法、毫米波雷达和计算机可读存储介质
CN113708852A (zh) * 2020-05-21 2021-11-26 华为技术有限公司 一种天线的在位检测方法和装置
CN113708852B (zh) * 2020-05-21 2022-11-11 华为技术有限公司 一种天线的在位检测方法和装置
CN111965439A (zh) * 2020-06-24 2020-11-20 中国电子科技集团公司第十四研究所 基于机械臂的天线测试***、方法及装置
CN112887039A (zh) * 2020-09-03 2021-06-01 上海无委无线电检测实验室有限公司 一种5g基站射频一致性测试方法
WO2022082634A1 (en) * 2020-10-22 2022-04-28 Keysight Technologies, Inc. System and method for performng measurements of antenna under test offset from center of quiet zone
US11879924B2 (en) 2020-10-22 2024-01-23 Keysight Technologies, Inc. System and method for performing measurements of antenna under test offset from center of quiet zone
GB2615500A (en) * 2020-10-22 2023-08-09 Keysight Technologies Inc System and method for performng measurements of antenna under test offset from center of quiet zone
US11251840B1 (en) 2020-10-22 2022-02-15 Keysight Technologies, Inc. System and method for performing measurements of antenna under test offset from center of quiet zone
CN112363000A (zh) * 2020-11-18 2021-02-12 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种机载电子对抗设备的自动测试装置及方法
CN112526228A (zh) * 2020-11-27 2021-03-19 上海移远通信技术股份有限公司 天线测试方法及装置
CN112711040A (zh) * 2020-12-18 2021-04-27 中国信息通信研究院 卫星导航天线性能评估***及方法
CN114726456A (zh) * 2021-01-05 2022-07-08 ***通信有限公司研究院 有源天线测试方法、装置、终端、***、设备和存储介质
CN114726456B (zh) * 2021-01-05 2024-05-14 ***通信有限公司研究院 有源天线测试方法、装置、终端、***、设备和存储介质
CN113848394A (zh) * 2021-09-23 2021-12-28 南京捷希科技有限公司 一种紧缩场空口测试设备
CN114325135A (zh) * 2022-03-11 2022-04-12 南京隼眼电子科技有限公司 天线测量装置及雷达测试***

Also Published As

Publication number Publication date
WO2020224044A1 (zh) 2020-11-12

Similar Documents

Publication Publication Date Title
CN110133386A (zh) 一种天线测试方法和设备
CN108966264B (zh) 对大规模多入多出无线***执行空中测试的***和方法
CN101802625B (zh) 发射功率测定方法以及发射功率测定装置
WO2019214570A1 (zh) 一种阵列天线总辐射功率的测量方法、装置和***
WO2018023929A1 (zh) 一种天线综合测试***
US8502546B2 (en) Multichannel absorberless near field measurement system
EP1452880B1 (en) Apparatus for measuring specific absorption rate of radio communication apparatus
US20070285322A1 (en) Multichannel absorberless near field measurement system
CN209821290U (zh) 一种基于3d探头阵列的紧缩场天线测试装置
WO2009046516A1 (en) Multichannel absorberless near field measurement system
CN110018361B (zh) 一种相控阵天线增益噪声温度比值测量方法及***
US7969367B2 (en) Antenna coupler
CN101771474A (zh) 接收灵敏度性能测试方法和***
US11387921B2 (en) Mobile terminal testing device and mobile terminal testing method
Qi et al. An efficient TIS measurement technique based on RSSI for wireless mobile stations
Gao et al. A virtual over-the-air method for 5G massive MIMO base station testing with flexible virtual probes
TWI422838B (zh) 多頻道無吸收器之近場測量系統
CN210015171U (zh) 一种基于圆弧形滑轨式的紧缩场天线测试装置
Duchesne et al. Compact multi-probe antenna test station for rapid testing of antennas and wireless terminals
Wong et al. Low-Profile Four-Port MIMO Antenna Module Based 16-Port Closely-Spaced 2 x 2 Module Array for 6G Upper Mid-Band Mobile Devices
Wong et al. Eight-Planar-Monopole MIMO Circular Array Generating Eight Uncorrelated Waves for 6G Upper Mid-Band 8 x 8 MIMO Access Points
CN111246507B (zh) 一种近场射频测试方法
CN206294185U (zh) 支持siso和mimo‑ota的配置水平环的暗室
CN111413553A (zh) 一种天线测试***及测试方法
CN219180768U (zh) 宽带宽角有源散射单元及其双站rcs性能的测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816

RJ01 Rejection of invention patent application after publication