CN110078017B - 一种贯穿空腔结构硅片的加工方法 - Google Patents

一种贯穿空腔结构硅片的加工方法 Download PDF

Info

Publication number
CN110078017B
CN110078017B CN201810075852.5A CN201810075852A CN110078017B CN 110078017 B CN110078017 B CN 110078017B CN 201810075852 A CN201810075852 A CN 201810075852A CN 110078017 B CN110078017 B CN 110078017B
Authority
CN
China
Prior art keywords
silicon wafer
pattern
wafer
bonding
false bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810075852.5A
Other languages
English (en)
Other versions
CN110078017A (zh
Inventor
李响
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENYANG SILICON TECHNOLOGY CO LTD
Original Assignee
SHENYANG SILICON TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENYANG SILICON TECHNOLOGY CO LTD filed Critical SHENYANG SILICON TECHNOLOGY CO LTD
Priority to CN201810075852.5A priority Critical patent/CN110078017B/zh
Priority to TW107143535A priority patent/TWI675796B/zh
Priority to US16/213,019 priority patent/US20190233280A1/en
Priority to FR1872607A priority patent/FR3077422B1/fr
Priority to DE102018131606.2A priority patent/DE102018131606B4/de
Priority to JP2018237689A priority patent/JP6726266B2/ja
Publication of CN110078017A publication Critical patent/CN110078017A/zh
Application granted granted Critical
Publication of CN110078017B publication Critical patent/CN110078017B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00047Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • B81B1/002Holes characterised by their shape, in either longitudinal or sectional plane
    • B81B1/004Through-holes, i.e. extending from one face to the other face of the wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00087Holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00214Processes for the simultaneaous manufacturing of a network or an array of similar microstructural devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00357Creating layers of material on a substrate involving bonding one or several substrates on a non-temporary support, e.g. another substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/005Bulk micromachining
    • B81C1/00507Formation of buried layers by techniques other than deposition, e.g. by deep implantation of elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00841Cleaning during or after manufacture
    • B81C1/00849Cleaning during or after manufacture during manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0016Abrading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/14Corona, ionisation, electrical discharge, plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/14Semiconductor wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0353Holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0111Bulk micromachining
    • B81C2201/0116Thermal treatment for structural rearrangement of substrate atoms, e.g. for making buried cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0118Processes for the planarization of structures
    • B81C2201/0125Blanket removal, e.g. polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0176Chemical vapour Deposition
    • B81C2201/0178Oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0191Transfer of a layer from a carrier wafer to a device wafer
    • B81C2201/0192Transfer of a layer from a carrier wafer to a device wafer by cleaving the carrier wafer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0191Transfer of a layer from a carrier wafer to a device wafer
    • B81C2201/0194Transfer of a layer from a carrier wafer to a device wafer the layer being structured

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Micromachines (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

一种贯穿空腔结构硅片的加工方法,其特征在于:其依次按照下述要求进行操作:对硅片或图形片进行离子注入;植入假底,使用硅片与图形片键合;磨抛,减薄图形片至露出图形的深度;键合;剥离假底。相对于现有技术而言,本发明操作规范,产品质量能够得到有效保证;且产品的性价比高,综合技术效果优良;其具有可预期的较为巨大的经济价值和社会价值。

Description

一种贯穿空腔结构硅片的加工方法
技术领域:
本发明涉及硅片加工技术领域,特别提供了一种贯穿空腔结构硅片的加工方法。
背景技术:
随着MEMS技术的蓬勃发展,产生出愈来愈多的MEMS新结构需求,但受加工硬件设备的制约,许多结构面临着无法被制造的窘境。在硬件无法满足要求的情况下就需要工程技术人员开发出新的技术克服这种尴尬的矛盾。
贯穿空腔的MEMS就是特殊结构中的一种。区别普通MEMS空腔在最终结构中被埋在硅片之中,贯穿空腔需要最终暴露在外,当前硅片加工的设备大部分使用真空抓取和加工硅片,贯穿硅片整体的空腔将破坏真空,直接影响设备完成动作,例如常规加工最终需要使用磨抛机进行两次研磨将原本在图形片中未漏出的部分完全暴露出来形成贯穿结构,但在第二次研磨时图形的干扰会影响真空的密封,打通空腔后真空被彻底破坏,磨抛机台不能在固定硅片也无法传递硅片,造成研磨不能按要求完成加工甚至危害机台。
为处理贯穿空腔带来的漏真空问题,我们开发出一种假底植入剥离的MEMS加工技术,用来解决漏真空和剥离最终结构不需要的假底。假底植入剥离技术由键合技术,离子注入技术和微波裂片技术构成。假底在形成最终结构之前起到封装空腔避免漏真空的发生,通过键合技术在常温或高温的温场和常压或真空的气压环境下,将普通硅片与图形片键合为一片实现对图形空腔的封装。由于假底是不被需要的部分,最终需要从最终结构中剥离,假底的剥离是通过键合前对普通硅片或图形片进行离子注入的预处理,常用氢离子氦原子最为分离用注入剂,最后通过微波裂片技术,提高注入离子的动能使离子发生汇聚产生小气泡,小气泡受硅片的挤压将倾向沿着键合面方向运动,小气泡汇聚在注入层形成完整的大气泡,是假底与主体结构形成宏观的分离,实现假底被剥离的效果,贯穿结构不需要研磨机实现。
发明内容:
本发明的目的是提供一种技术效果优良的贯穿空腔结构硅片的加工方法。
本发明提供了一种贯穿空腔结构硅片的加工方法,其特征在于:其依次按照下述要求进行操作:
①对硅片或图形片进行离子注入;步骤①的处理是为了假底在最后可以通过微波裂片技术被剥离进行预处理;
②植入假底,使用硅片与图形片键合;被键合的硅片即为假底,在以后步骤中起到密封图形,保证机台能够加工的作用;步骤②通过硅片直接键合技术,实现假底引入的目的;
②通过机械研磨或/和化学抛光方法进行磨抛,以被键合的硅片即假底为衬底,减薄图形片,研磨到露出图形的深度,暴露出原本未露出的空腔;磨抛使用机械研磨和化学抛光可以将硅片加工到设计需求的指定厚度及优良粗糙度,保证后续过程使用的是状态优良的表面;
③键合,将完成①②两步骤的两片硅片,进行图形对图形的键合;假底处于整体结构上、下两侧;
④剥离假底,通过低温退火和微波裂片操作将完成保护作用的假底剥离掉,实现贯穿结构的硅片。退火可以同时提升键合界面的键合力,保证图形键合界面优良的键合状态保证后续使用的可靠性。退火处理有助于增强图形图形键合界面的键合力,避免形成贯穿结构后在进行设备上的加工又产生漏真空问题;微波裂片是通过微波增加离子的动能,运动的离子彼此碰撞汇聚形成小气泡,硅片的挤压将限制气泡在垂直键合界面方向的运动,更倾向沿键合界面方向运动,小气泡因此汇聚成大气泡,最终在注入层形成硅片的分离,假底被剥离出主体结构。
步骤③是步骤④的预处理,目的是将两片图形片的空腔连接到一起做准备。磨抛使用机械研磨和化学抛光可以将硅片加工到设计需求的指定厚度及优良粗糙度,保证后续过程使用的是状态优良的表面。
所述贯穿空腔结构硅片的加工方法,优选内容要求是:
对硅片或图形片进行离子注入的要求是:注入深度在距表面1μm~0.001μm范围内;氢离子注入的参数要求是:10~120Kev能量,1E15~9E16剂量,1-20mA束流;通过参数控制可以保证经过注入的硅片表面状态良好,对后段加工没有影响;
使用硅片与图形片键合的具体要求是:硅片的粗糙度小于等于5nm;使用硅片与图形片直接接触,借助于二者表面的分子间作用力实现将两者结合为一体。
硅片与图形片键合使用等离子增强的直接键合方法。具体地:使用一枚普通硅片与图形片进行0~90s的等离子增强,将普通硅片与带图形的表面进行键合,普通硅片即为假底。
随着工业多键合力及降低热预算的需求,后续发展出等离子增强的直接键合技术,可以实现更快的加工速度和更低后续退火温度。
剥离假底时对键合片进行退火处理的温度要求是:150~450℃。
对硅片或图形片进行离子注入之前进行下述操作:对图形片进行化学湿法清洗,去除沾污,以降低金属和有机物污染;然后进行氧化处理,在800-1150℃下在图形片的正背面、边缘和空腔内均匀生长0.1-0.5μm厚度的氧化层;
使用微波裂片技术将两侧的假底剥离之后,对具有贯穿空腔结构的硅片使用HF进行氧化层的去净漂洗,去除分离界面,形成表面状态优良的表面。
相对于现有技术而言,本发明操作规范,产品质量能够得到有效保证;且产品的性价比高,综合技术效果优良;其具有可预期的较为巨大的经济价值和社会价值。
附图说明:
图1为贯穿空腔结构硅片的加工方法原理示意简图。
具体实施方式:
实施例1
一种贯穿空腔结构硅片的加工方法,其依次按照下述要求进行操作:
①对硅片或图形片进行离子注入;步骤①的处理是为了假底在最后可以通过微波裂片技术被剥离进行预处理;
②植入假底,使用硅片与图形片键合;被键合的硅片即为假底,在以后步骤中起到密封图形,保证机台能够加工的作用;步骤②通过硅片直接键合技术,实现假底引入的目的;
②通过机械研磨或/和化学抛光方法进行磨抛,以被键合的硅片即假底为衬底,减薄图形片,研磨到露出图形的深度,暴露出原本未露出的空腔;磨抛使用机械研磨和化学抛光可以将硅片加工到设计需求的指定厚度及优良粗糙度,保证后续过程使用的是状态优良的表面;
③键合,将完成①②两步骤的两片硅片,进行图形对图形的键合;假底处于整体结构上、下两侧;
④剥离假底,通过低温退火和微波裂片操作将完成保护作用的假底剥离掉,实现贯穿结构的硅片。退火可以同时提升键合界面的键合力,保证图形键合界面优良的键合状态保证后续使用的可靠性。退火处理有助于增强图形图形键合界面的键合力,避免形成贯穿结构后在进行设备上的加工又产生漏真空问题;微波裂片是通过微波增加离子的动能,运动的离子彼此碰撞汇聚形成小气泡,硅片的挤压将限制气泡在垂直键合界面方向的运动,更倾向沿键合界面方向运动,小气泡因此汇聚成大气泡,最终在注入层形成硅片的分离,假底被剥离出主体结构。
步骤③是步骤④的预处理,目的是将两片图形片的空腔连接到一起做准备。磨抛使用机械研磨和化学抛光可以将硅片加工到设计需求的指定厚度及优良粗糙度,保证后续过程使用的是状态优良的表面。
对硅片或图形片进行离子注入的要求是:注入深度在距表面1μm~0.001μm范围内;氢离子注入的参数要求是:10~120Kev能量,1E15~9E16剂量,1-20mA束流;通过参数控制可以保证经过注入的硅片表面状态良好,对后段加工没有影响;
使用硅片与图形片键合的具体要求是:硅片的粗糙度小于等于5nm;使用硅片与图形片直接接触,借助于二者表面的分子间作用力实现将两者结合为一体。
硅片与图形片键合使用等离子增强的直接键合方法。具体地:使用一枚普通硅片与图形片进行0~90s的等离子增强,将普通硅片与带图形的表面进行键合,普通硅片即为假底。随着工业多键合力及降低热预算的需求,后续发展出等离子增强的直接键合技术,可以实现更快的加工速度和更低后续退火温度。
剥离假底时对键合片进行退火处理的温度要求是:150~450℃。
对硅片或图形片进行离子注入之前进行下述操作:对图形片进行化学湿法清洗,去除沾污,以降低金属和有机物污染;然后进行氧化处理,在800-1150℃下在图形片的正背面、边缘和空腔内均匀生长0.1-0.5μm厚度的氧化层;
使用微波裂片技术将两侧的假底剥离之后,对具有贯穿空腔结构的硅片使用HF进行氧化层的去净漂洗,去除分离界面,形成表面状态优良的表面。
相对于现有技术而言,本实施例操作规范,产品质量能够得到有效保证;且产品的性价比高,综合技术效果优良;其具有可预期的较为巨大的经济价值和社会价值。
实施例2
一种贯穿空腔结构硅片的加工方法,其依次按照下述要求进行操作:
①对图形片进行化学湿法清洗,去除沾污,降低金属和有机物污染,然后进行氧化处理,在800-1150℃下在图形片的正背面,边缘,和空腔内均匀生长0.1-0.5μm厚度的氧化层。
②对图形片进行10~120Kev能量,1E15~9E16剂量,1-20mA束流的氢离子注入。
③使用一枚普通硅片与图形片进行0~90s的等离子增强,将普通硅片与带图形的表面进行键合,普通硅片即为假底。
④将完成步骤③的键合片,对图形片的进行研磨,以假底为衬底,减薄图形片,研磨到露出图形的深度。
⑤将完成步骤④的两片进行0~90s的等离子增强的键合,密封露出的图形,假底出于整体结构上下两侧。
⑥对完成步骤⑤的键合片进行150~450℃的退火处理,增强图形图形键合界面的键合力,避免形成贯穿结构后在进行设备上的加工又产生漏真空问题。
⑦使用微波裂片技术将两侧的假底剥离。
⑧对具有贯穿空腔结构的硅片使用HF进行氧化层的去净漂洗,去除分离界面,形成表面状态优良的表面。

Claims (4)

1.一种贯穿空腔结构硅片的加工方法,其特征在于:其依次按照下述要求进行操作:
①对硅片或图形片进行离子注入;
②植入假底,使用硅片与图形片键合;
③通过机械研磨或/和化学抛光方法进行磨抛,以被键合的硅片即假底为衬底,减薄图形片,研磨到露出图形的深度,暴露出原本未露出的空腔;
④键合,将完成①②两步骤的两片硅片,进行图形对图形的键合;
⑤剥离假底,通过低温退火和微波裂片操作将完成保护作用的假底剥离掉,实现贯穿结构的硅片;
对硅片或图形片进行离子注入的要求是:注入深度在距表面0.001μm-1μm范围内;氢离子注入的参数要求是:10~120Kev能量,1E15~9E16剂量,1-20mA束流;
使用硅片与图形片键合的具体要求是:硅片的粗糙度小于等于5nm;使用硅片与图形片直接接触,借助于二者表面的分子间作用力实现将两者结合为一体。
2.按照权利要求1所述贯穿空腔结构硅片的加工方法,其特征在于:硅片与图形片键合使用等离子增强的直接键合方法。
3.按照权利要求2所述贯穿空腔结构硅片的加工方法,其特征在于:剥离假底时对键合片进行退火处理的温度要求是:150~450℃。
4.按照权利要求1-3其中之一所述贯穿空腔结构硅片的加工方法,其特征在于:对硅片或图形片进行离子注入之前进行下述操作:对图形片进行化学湿法清洗,去除沾污,以降低金属和有机物污染;然后进行氧化处理,在800-1150℃下在图形片的正背面、边缘和空腔内均匀生长0.1-0.5μm厚度的氧化层;
使用微波裂片技术将两侧的假底剥离之后,对具有贯穿空腔结构的硅片使用HF进行氧化层的去净漂洗,去除分离界面,形成表面状态优良的表面。
CN201810075852.5A 2018-01-26 2018-01-26 一种贯穿空腔结构硅片的加工方法 Active CN110078017B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201810075852.5A CN110078017B (zh) 2018-01-26 2018-01-26 一种贯穿空腔结构硅片的加工方法
TW107143535A TWI675796B (zh) 2018-01-26 2018-12-04 一種貫穿空腔結構矽片的加工方法
US16/213,019 US20190233280A1 (en) 2018-01-26 2018-12-07 Method for processing silicon wafer with through cavity structure
FR1872607A FR3077422B1 (fr) 2018-01-26 2018-12-10 Procédé de traitement d’une plaquette de silicium avec une structure à cavité traversante
DE102018131606.2A DE102018131606B4 (de) 2018-01-26 2018-12-10 Verfahren zur Bearbeitung eines Siliziumwafers mit einer den Wafer durchziehenden Hohlraumstruktur
JP2018237689A JP6726266B2 (ja) 2018-01-26 2018-12-19 貫通チャンバ構造のシリコンチップの加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810075852.5A CN110078017B (zh) 2018-01-26 2018-01-26 一种贯穿空腔结构硅片的加工方法

Publications (2)

Publication Number Publication Date
CN110078017A CN110078017A (zh) 2019-08-02
CN110078017B true CN110078017B (zh) 2021-11-05

Family

ID=67223982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810075852.5A Active CN110078017B (zh) 2018-01-26 2018-01-26 一种贯穿空腔结构硅片的加工方法

Country Status (6)

Country Link
US (1) US20190233280A1 (zh)
JP (1) JP6726266B2 (zh)
CN (1) CN110078017B (zh)
DE (1) DE102018131606B4 (zh)
FR (1) FR3077422B1 (zh)
TW (1) TWI675796B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401195A (zh) * 2006-03-28 2009-04-01 夏普株式会社 半导体元件的转印方法和半导体装置的制造方法以及半导体装置
CN101473446A (zh) * 2006-09-08 2009-07-01 硅源公司 使用厚层转移工艺制造太阳能电池的方法和结构
TW201205689A (en) * 2010-06-22 2012-02-01 Analog Devices Inc Method of etching and singulating a cap wafer
CN105428301A (zh) * 2014-09-17 2016-03-23 中国科学院上海微***与信息技术研究所 利用微波退火技术低温制备goi的方法
CN105489512A (zh) * 2010-07-19 2016-04-13 硅绝缘体技术有限公司 临时半导体结构键合方法和相关的键合半导体结构
WO2017052653A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Selective die transfer using controlled de-bonding from a carrier wafer
CN107004573A (zh) * 2014-12-05 2017-08-01 信越化学工业株式会社 复合基板的制造方法和复合基板
TWI610336B (zh) * 2016-11-01 2018-01-01 瀋陽矽基科技有限公司 一種薄膜的製備方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946314B2 (en) * 2001-01-02 2005-09-20 The Charles Stark Draper Laboratory, Inc. Method for microfabricating structures using silicon-on-insulator material
FR2855909B1 (fr) * 2003-06-06 2005-08-26 Soitec Silicon On Insulator Procede d'obtention concomitante d'au moins une paire de structures comprenant au moins une couche utile reportee sur un substrat
US7579621B2 (en) 2004-09-17 2009-08-25 Massachusetts Institute Of Technology Integrated BST microwave tunable devices using buffer layer transfer method
US20100173437A1 (en) * 2008-10-21 2010-07-08 Wygant Ira O Method of fabricating CMUTs that generate low-frequency and high-intensity ultrasound
WO2010098151A1 (ja) * 2009-02-24 2010-09-02 日本電気株式会社 半導体装置およびその製造方法
US8129810B2 (en) 2009-06-19 2012-03-06 Carestream Health, Inc. Continuous large area imaging and display arrays using readout arrays fabricated in silicon-on-glass substrates
JP2016063114A (ja) 2014-09-19 2016-04-25 大日本印刷株式会社 貫通電極基板及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401195A (zh) * 2006-03-28 2009-04-01 夏普株式会社 半导体元件的转印方法和半导体装置的制造方法以及半导体装置
CN101473446A (zh) * 2006-09-08 2009-07-01 硅源公司 使用厚层转移工艺制造太阳能电池的方法和结构
TW201205689A (en) * 2010-06-22 2012-02-01 Analog Devices Inc Method of etching and singulating a cap wafer
CN105489512A (zh) * 2010-07-19 2016-04-13 硅绝缘体技术有限公司 临时半导体结构键合方法和相关的键合半导体结构
CN105428301A (zh) * 2014-09-17 2016-03-23 中国科学院上海微***与信息技术研究所 利用微波退火技术低温制备goi的方法
CN107004573A (zh) * 2014-12-05 2017-08-01 信越化学工业株式会社 复合基板的制造方法和复合基板
WO2017052653A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Selective die transfer using controlled de-bonding from a carrier wafer
TWI610336B (zh) * 2016-11-01 2018-01-01 瀋陽矽基科技有限公司 一種薄膜的製備方法

Also Published As

Publication number Publication date
JP6726266B2 (ja) 2020-07-22
TWI675796B (zh) 2019-11-01
TW201932402A (zh) 2019-08-16
FR3077422A1 (fr) 2019-08-02
CN110078017A (zh) 2019-08-02
DE102018131606A1 (de) 2019-08-01
JP2019129314A (ja) 2019-08-01
FR3077422B1 (fr) 2021-09-24
US20190233280A1 (en) 2019-08-01
DE102018131606B4 (de) 2021-09-30

Similar Documents

Publication Publication Date Title
CN105140171B (zh) 一种绝缘体上材料的制备方法
KR101369007B1 (ko) 지지기판에 기능화 층을 구비하는 반도체 구조물을 제조하기 위한 프로세스
CN106409650B (zh) 一种硅片直接键合方法
EP1194949A1 (en) Surface finishing of soi substrates using an epi process
CN105374862B (zh) 一种半导体器件及其制作方法和电子装置
JP2013229516A5 (zh)
CN110078017B (zh) 一种贯穿空腔结构硅片的加工方法
KR100827907B1 (ko) 실리콘 기판의 세정방법
CN101093791A (zh) 粘结的晶片的制造方法
EP1798764A1 (en) Process for manufacturing wafers usable in the semiconductor industry
Li et al. Room temperature wafer bonding by surface activated ALD-Al2O3
CN106117472B (zh) 硅通孔中一步法化学接枝有机绝缘膜的方法
CN104576280A (zh) 等离子体处理腔室及其去夹持装置和方法
CN103035518A (zh) 一种绝缘栅双极型晶体管晶片制作方法
US10388527B2 (en) Method of manufacturing semiconductor device
CN112670170B (zh) 一种提高硅片键合力的方法
CN114242582A (zh) 间接式等离子体大腔体刻蚀的结构及其制备工艺
CN107342221A (zh) 一种SiC基GaN晶体的深孔刻蚀方法
KR20090023983A (ko) 접합 웨이퍼의 제조 방법
CN110739214A (zh) 一种减少注入损伤制备soi的方法
CN111370321A (zh) 衬底键合方法、三维集成基板及电路、电子设备和芯片
CN100490112C (zh) 改善高压mos器件中浅沟槽隔离形貌的方法
CN104078336B (zh) 无衬底结构的功率器件制造工艺
CN110085549B (zh) 一种双面注入得到soi的方法
CN117727687A (zh) 绝缘体上硅及其键合方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant