CN110041069B - 一种微波介质陶瓷材料及其制备方法 - Google Patents

一种微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN110041069B
CN110041069B CN201910471136.3A CN201910471136A CN110041069B CN 110041069 B CN110041069 B CN 110041069B CN 201910471136 A CN201910471136 A CN 201910471136A CN 110041069 B CN110041069 B CN 110041069B
Authority
CN
China
Prior art keywords
barium
microwave dielectric
dielectric ceramic
ceramic material
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910471136.3A
Other languages
English (en)
Other versions
CN110041069A (zh
Inventor
顾永军
杨兴化
胡伟
黄金亮
李谦
李丽华
李新利
李海涛
孙晓岗
吴建彪
梅国建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201910471136.3A priority Critical patent/CN110041069B/zh
Publication of CN110041069A publication Critical patent/CN110041069A/zh
Application granted granted Critical
Publication of CN110041069B publication Critical patent/CN110041069B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明属于陶瓷加工技术领域,具体涉及一种微波介质陶瓷材料及其制备方法。本发明的微波介质陶瓷材料的制备方法包括以下步骤:(1)将钡源、钛源、Ba2Ti9O20与溶剂混合均匀得预混料;所述钡源为氢氧化钡、氯化钡、醋酸钡、硝酸钡中的至少一种;所述钛源为二氧化钛、钛酸酯中的至少一种;所用溶剂的质量为Ba2Ti9O20质量的6~20%;(2)将预混料在430~450MPa、180~190℃下保压保温1~120min,得前驱体;(3)将前驱体在700~900℃下保温3~5h。本发明的制备方法工艺简单,最高热处理温度仅为900℃,远低于常规工艺的热处理温度,并且制得的微波介质陶瓷材料的相对密度可以达到传统工艺制备出来的Ba2Ti9O20微波介质陶瓷的相对密度。

Description

一种微波介质陶瓷材料及其制备方法
技术领域
本发明属于陶瓷加工技术领域,具体涉及一种微波介质陶瓷材料及其制备方法。
背景技术
高频介电材料已经被广泛应用于众多领域如电子封装、基板、功能元器件等。Ba2Ti9O20具有优良的微波介电性能、高介电常数(εr=39.8)、低谐振频率温度系数(τf=2ppm/℃)以及高品质因数(Q×f为8000),是一种可用在共振器及滤波器的微波介质陶瓷材料。Ba2Ti9O20在其结构排列上沿着[001]轴出现O-Ba-vacancy(空位)-Ba-O的顺序,这样的结构使Ba2+在外加电场的左右作用下以跳跃的方式在空位与正常位置间相互移动,且因几何空间的限制,使Ba2+只能在有限的范围间移动,因此,Ba2Ti9O20具有较佳的微波介电性能。
一般的陶瓷材料的熔点都非常高,传统烧结的温度需要达到熔点的50~75%。因此,对于绝大多数陶瓷材料来说,制备时的烧结温度都在1000℃以上。如公布号为CN1420102A的中国发明专利申请中公开了一种准纳米级二钡九钛氧化物微波陶瓷及其制备方法。准纳米级Ba2Ti9O20微波陶瓷由主成分Ba(OH)2·8H2O和TiO2以及微量添加物Al2O3、SiO2和Bi2O3组成,其制备方法包括以下步骤:将主成分在高压反应釜中进行水热反应后,在产物中加入微量添加物,然后在1250~1300℃下保温即得。较高的烧结温度造成了能量的浪费,而且高温需要复杂的设备;若原料中含有高温易挥发的物质,则会造成化学计量比不准从而导致最终的产物与理想产物相差很远。较高的烧结温度使得Ba2Ti9O20不能够与其他金属如Ag共烧来制备多层电容器,限制了Ba2Ti9O20微波介质陶瓷材料的应用。
申请公布号为CN103342383A的中国发明专利申请中公开了一种微波介质陶瓷的制备方法,包括以下步骤:以硝酸钡、钛酸四丁酯和柠檬酸为原料制备第一溶液;以硝酸钡、钛酸四丁酯和柠檬酸为原料制备第二溶液,然后加入氨水调节pH值为5,制成溶胶,然后烘干制得凝胶后在1100℃煅烧得到钡钛基微米粉体,加乙醇制成悬浮液;将悬浮液与第一溶液混合,制成溶胶,烘干后在700℃下煅烧得到前驱体;然后在高温炉中在1200℃下烧成,制得钡钛基微波介质陶瓷。该方法中步骤较为复杂,是将钡钛基微米粉体制成悬浮液,然后与第一溶液混合,采用溶胶凝胶法得到粉体后,再经过两段烧结得到,并且第二阶段烧结温度较高。
发明内容
本发明的目的在于提供一种工艺简单的微波介质陶瓷材料的制备方法。
本发明的目的还在于提供一种由上述制备方法制备的微波介质陶瓷材料,该微波介质陶瓷材料具有较高的致密度。
为实现上述目的,本发明的微波介质陶瓷材料的制备方法采用的技术方案为:
一种微波介质陶瓷材料的制备方法,包括以下步骤:
(1)将钡源、钛源、Ba2Ti9O20与溶剂混合均匀得预混料;所述钡源为氢氧化钡、氯化钡、醋酸钡、硝酸钡中的至少一种;所述钛源为氧化钛、钛酸酯中的至少一种;所用溶剂的质量为Ba2Ti9O20质量的6~20%;
(2)将步骤(1)得到的预混料在430~450MPa、180~190℃条件下保压保温1~120min,得前驱体;
(3)将步骤(2)得到的前驱体在700~900℃下保温3~5h,即得。
Ba2Ti9O20、钡源、钛源和溶剂混合后,Ba2Ti9O20颗粒被含钡源和钛源的液体润湿,表面附着一层液体。步骤(2)中保压保温时精确控制压力与温度,避免微波介质陶瓷材料的开裂。在保压保温过程中,受压力和温度的作用,同时在液相的毛细管力作用下,Ba2Ti9O20颗粒发生滑移和重排,Ba2Ti9O20颗粒之间的点接触部位,毛细管力使Ba2Ti9O20颗粒溶解度增高,Ba2Ti9O20相由高溶解度区迁移至低溶解度区,使得接触区的颗粒逐渐趋于平坦而互相靠近,使陶瓷基体收缩而实现致密化。同时,钡源和钛源以类似天然成矿的方式发生溶解、反应,析出无定形物(无定形物中Ba/Ti的比例接近2/9),析出的无定形物填充于Ba2Ti9O20颗粒周围与间隙位置,缩小了内部孔洞,增加了材料的致密度。在后续的热处理过程中无定形物晶化,进一步使Ba2Ti9O20颗粒逐渐由球形变为多边形,最终形成致密化多晶结构。
本发明利用液相溶剂作为媒介,液相的流动造成Ba2Ti9O20颗粒在远远低于迁移温度(1150℃)的条件下发生重排,因此本发明的制备过程能够在较低温度下获得高致密化的材料。本发明的制备方法将无机固体颗粒通过热能和压力作用成为致密多晶结构,对于块体陶瓷加工来说,这是一个非常关键的步骤。而且,材料的性能,例如介电性能、介电击穿强度、电导率等都与致密度有关。
本发明的制备方法烧结时间短,设备简单,节约能耗,操作简单,最高热处理温度仅为900℃,远低于常规工艺的热处理温度,有望实现与Ag/Cu电极材料共烧。本发明的制备方法制备得到的Ba2Ti9O20微波介质陶瓷的相对密度可以达到传统工艺制备出来的Ba2Ti9O20微波介质陶瓷的相对密度。
步骤(1)中将钡源、钛源、Ba2Ti9O20与溶剂混合为:先将钡源、钛源与溶剂混合制成悬浮液,然后将悬浮液与Ba2Ti9O20混合均匀。
由于纳米材料本身的颗粒细小,比表面积巨大,极易出现团聚现象,因此常规意义上添加的纳米颗粒,实际在马尔文激光粒度仪上粒径显示为几十微米,表明团聚后在外观上已经达到微米级别的粒径,难以真正起到纳米颗粒的作用。本发明将悬浮液与Ba2Ti9O20混合,利用颗粒在液体介质中的相互作用力,使颗粒在悬浮液中均匀分散,不易团聚。
步骤(1)中所述Ba2Ti9O20的平均粒径为50~100nm。当Ba2Ti9O20的平均粒径为50~100nm时,制备得到的陶瓷片致密度高。当粒径大于100nm时,Ba2Ti9O20颗粒在保压保温过程中形成的孔隙尺寸大,致使最终陶瓷材料的致密度下降;当粒径小于50nm时,完全润湿Ba2Ti9O20颗粒所需溶剂较多,在保压保温过程中溶剂所占体积形成的孔隙多,致使最终陶瓷材料的致密度下降。
步骤(1)中钡源、钛源与溶剂的总质量为Ba2Ti9O20质量的10~30%。混合时,若溶剂的量过多,则会使预混料过稀从而难以成型;若过少,则难以均匀润湿Ba2Ti9O20颗粒的表面。
步骤(1)所述钡源中的钡与钛源中的钛的摩尔比为(0.47~0.72):(1.1~1.8)。采用上述摩尔比的钡源与钛源有利于形成中Ba/Ti的比例接近2/9的无定形物。
步骤(2)中在保压保温前先在430~450MPa、常温下保持10~15min,然后再升温至180~190℃。在常温、430~450MPa保持10~15min,促使Ba2Ti9O2颗粒发生重排,有利于致密度的提高。
所述升温的速率为9~15℃/min,快速将样品温度升至180~190℃,以减少升温过程中溶剂的蒸发损失。
为保证水分充分蒸发,步骤(3)中在700~900℃下保温前先在150~250℃下保温11~12h,然后再升温至700~900℃。
所述升温的速率为3~5℃/min。以较慢的速率升温有利于残余溶剂的排出。
本发明的微波介质陶瓷材料采用的技术方案为:
一种由上述微波介质陶瓷材料的制备方法制备的微波介质陶瓷材料。
本发明的微波介质陶瓷材料的相对密度可以达到传统工艺制备出来的Ba2Ti9O20微波介质陶瓷的相对密度,介电常数εr=35~40,品质因数Q×f=33800~33950GHz,谐振频率温度系数τf=1.25~1.68ppm/℃。
具体实施方式
本发明的微波介质陶瓷材料的制备方法,包括以下步骤:
(1)将钡源、钛源、Ba2Ti9O20与溶剂混合均匀得预混料;所述钡源为氢氧化钡、氯化钡、醋酸钡、硝酸钡中的至少一种;所述钛源为二氧化钛、钛酸酯中的至少一种;所用溶剂的质量为Ba2Ti9O20质量的6~20%;
(2)将步骤(1)得到的预混料在430~450MPa、180~190℃下保压保温1~120min,得前驱体;
(3)将步骤(2)得到的前驱体在700~900℃下保温3~5h。
优选的,TiO2为无定形TiO2
所述钛酸酯为钛酸乙酯、钛酸四丁酯中的至少一种。
所述溶剂为水。
优选的,将钡源、钛源、Ba2Ti9O20与溶剂混合为:先将钡源、钛源与溶剂混合制成悬浮液,然后将悬浮液与Ba2Ti9O20混合均匀。
优选的,悬浮液与Ba2Ti9O20混合时为研磨混合。所述研磨混合包括:将悬浮液加入到Ba2Ti9O20中,搅拌研磨1~2min。
优选的,所述钡源为Ba(OH)2
下面结合具体实施例对本发明作进一步说明。
微波介质陶瓷材料的制备方法的实施例1
本实施例的微波介质陶瓷Ba2Ti9O20的制备方法,包括以下步骤:
(1)取3.1547g Ba(OH)2·8H2O、2.1031g无定形TiO2和20mL去离子水配制成悬浮液;
(2)将1.4179g平均粒径为50nm的Ba2Ti9O20纳米粉体与质量为Ba2Ti9O20纳米粉体质量的30%的悬浮液在快速研磨机中研磨混合2min得预混料,将预混料放入模具中;
(3)将模具于常温下单轴加压至430MPa并保温10min,然后以9℃/min的升温速率升温至180℃,且保持压力不变,之后在180℃下保温1min,撤去压力,得前驱体;
(4)将前驱体在200℃下保温12h,之后以5℃/min的升温速率升温至700℃,并保温3h,即得。
微波介质陶瓷材料的制备方法的实施例2
本实施例的微波介质陶瓷Ba2Ti9O20的制备方法,包括以下步骤:
(1)取3.1547g Ba(OH)2·8H2O、1.9717g无定形TiO2和20mL去离子水配制成悬浮液;
(2)将1.5124g平均粒径为100nm的Ba2Ti9O20纳米粉体与质量为Ba2Ti9O20纳米粉体质量的20%的悬浮液在快速研磨机中研磨混合1min得预混料,将预混料放入模具中;
(3)将模具于常温下单轴加压至435MPa并保温12min,然后以10℃/min的升温速率升温至190℃,且保持压力不变,之后在190℃下保温15min,撤去压力,得前驱体;
(4)将前驱体在200℃下保温12h,之后以5℃/min的升温速率升温至750℃,并保温3.5h,即得。
微波介质陶瓷材料的制备方法的实施例3
本实施例的微波介质陶瓷Ba2Ti9O20的制备方法,包括以下步骤:
(1)取3.1547g Ba(OH)2·8H2O、2.0222g无定形TiO2和20mL去离子水配制成悬浮液;
(2)将与1.3234g平均粒径为100nm的Ba2Ti9O20纳米粉体与质量为Ba2Ti9O20纳米粉体质量的30%的悬浮液在快速研磨机中研磨混合1min得预混料,将预混料放入模具中;
(3)将模具于常温下单轴加压至450MPa并保温10min,然后以15℃/min的升温速率升温至185℃,且保持压力不变,之后在185℃下保温30min,撤去压力,得前驱体;
(4)将前驱体在200℃下保温12h,之后以5℃/min的升温速率升温至800℃,并保温3.2h,即得。
微波介质陶瓷材料的制备方法的实施例4
本实施例的微波介质陶瓷Ba2Ti9O20的制备方法,包括以下步骤:
(1)取3.1547g Ba(OH)2·8H2O、2.1031g无定形TiO2和20mL去离子水配制成悬浮液;
(2)将1.4179g平均粒径为50nm的Ba2Ti9O20纳米粉体与质量为Ba2Ti9O20纳米粉体质量的10%的悬浮液在快速研磨机中研磨混合2min得预混料,将预混料放入模具中;
(3)将模具于常温下单轴加压至440MPa并保温10min,然后以10℃/min的升温速率升温至185℃,且保持压力不变,之后在185℃下保温60min,撤去压力,得前驱体;
(4)将前驱体在200℃下保温12h,之后以5℃/min的升温速率升温至850℃,并保温3h,即得。
微波介质陶瓷材料的制备方法的实施例5
本实施例的微波介质陶瓷Ba2Ti9O20的制备方法,包括以下步骤:
(1)取3.1547g Ba(OH)2·8H2O、2.1031g无定形TiO2和20mL去离子水配制成悬浮液,其中Ba(OH)2·8H2O、无定形TiO2二者的重量比为1.5:1,摩尔比为0.48:1.2;
(2)将1.4179g平均粒径为50nm的Ba2Ti9O20纳米粉体与质量为Ba2Ti9O20纳米粉体质量的25%的悬浮液在快速研磨机中研磨混合2min得预混料,将预混料放入模具中;
(3)将模具于常温下单轴加压至445MPa并保温15min,然后以12℃/min的升温速率升温至182℃,且保持压力不变,之后在182℃下保温120min,撤去压力,得前驱体;
(4)将前驱体在200℃下保温12h,之后以5℃/min的升温速率升温至900℃,并保温3.5h,即得。
微波介质陶瓷材料的实施例1
本实施例的微波介质陶瓷材料由微波介质陶瓷材料的制备方法的实施例1的制备方法制备得到。
微波介质陶瓷材料的实施例2
本实施例的微波介质陶瓷材料由微波介质陶瓷材料的制备方法的实施例2的制备方法制备得到。
微波介质陶瓷材料的实施例3
本实施例的微波介质陶瓷材料由微波介质陶瓷材料的制备方法的实施例3的制备方法制备得到。
微波介质陶瓷材料的实施例4
本实施例的微波介质陶瓷材料由微波介质陶瓷材料的制备方法的实施例4的制备方法制备得到。
微波介质陶瓷材料的实施例5
本实施例的微波介质陶瓷材料由微波介质陶瓷材料的制备方法的实施例5的制备方法制备得到。
试验例
采用屏蔽腔谐振法对本发明的微波介质陶瓷材料的实施例1~5的微波介质陶瓷进行性能测试,测试结果如表1所示。
表1性能测试结果
Figure BDA0002080872700000061
由表1可以看出,采用本发明工艺制备Ba2Ti9O20微波介质陶瓷样品的相对密度、微波介电性能可与传统工艺相比拟,如介电常数εr=35~40,品质因数Q×f=33800~33950GHz,谐振频率温度系数τf=1.25~1.68ppm/℃,但是本发明中Ba2Ti9O20微波介质陶瓷样品最高热处理温度仅为900℃,远低于常规工艺的热处理温度。

Claims (4)

1.一种微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)将钡源、钛源、Ba2Ti9O20与溶剂混合均匀得预混料;所述钡源为氢氧化钡、氯化钡、醋酸钡、硝酸钡中的至少一种;所述钛源为二氧化钛、钛酸酯中的至少一种;所用溶剂的质量为Ba2Ti9O20质量的6~20%;所述Ba2Ti9O20的平均粒径为50~100nm;所述钡源、钛源与溶剂的总质量为Ba2Ti9O20质量的10~30%;所述钡源、钛源、Ba2Ti9O20与溶剂混合为:先将钡源、钛源与溶剂混合制成悬浮液,然后将悬浮液与Ba2Ti9O20混合均匀;所述钡源中的钡与钛源中的钛的摩尔比为(0.47~0.72):(1.1~1.8);
(2)将步骤(1)得到的预混料在430~450MPa、180~190℃条件下保压保温1~120min,得前驱体;所述保压保温前先在430~450MPa、常温下保持10~15min,然后再升温至180~190℃;
(3)将步骤(2)得到的前驱体在700~900℃下保温3~5h,即得;所述步骤(3)中在700~900℃下保温前先在150~250℃下保温11~12h,然后再升温至700~900℃。
2.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,所述步骤(2)中升温的速率为9~15℃/min。
3.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,所述步骤(3)中升温的速率为3~5℃/min。
4.一种采用如权利要求1所述的微波介质陶瓷材料的制备方法制备的微波介质陶瓷材料。
CN201910471136.3A 2019-05-31 2019-05-31 一种微波介质陶瓷材料及其制备方法 Active CN110041069B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910471136.3A CN110041069B (zh) 2019-05-31 2019-05-31 一种微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910471136.3A CN110041069B (zh) 2019-05-31 2019-05-31 一种微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110041069A CN110041069A (zh) 2019-07-23
CN110041069B true CN110041069B (zh) 2021-11-30

Family

ID=67284327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910471136.3A Active CN110041069B (zh) 2019-05-31 2019-05-31 一种微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110041069B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153694B (zh) * 2020-01-06 2022-04-15 浙江嘉康电子股份有限公司 一种微波介质陶瓷材料及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357848A (zh) * 2008-09-05 2009-02-04 贵州大学 激光烧结复合制备电子陶瓷的方法
CN103342383A (zh) * 2013-07-05 2013-10-09 深圳市大富科技股份有限公司 一种微波介质陶瓷材料的制备方法
CN104761258A (zh) * 2015-03-18 2015-07-08 河南科技大学 一种低温烧结锆酸钙微波介质陶瓷的方法
WO2017113218A1 (zh) * 2015-12-30 2017-07-06 深圳市大富科技股份有限公司 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN108546124A (zh) * 2018-05-03 2018-09-18 佛山九陌科技信息咨询有限公司 一种bczt基无铅压电陶瓷的制备方法
CN109020536A (zh) * 2018-09-29 2018-12-18 成都顺康三森电子有限责任公司 一种介质陶瓷谐振体制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241712B2 (en) * 2005-02-28 2007-07-10 National Taiwan University Technology Low-temperature sintered barium titanate microwave dielectric ceramic material
CN103342557B (zh) * 2013-07-05 2015-02-11 深圳市大富科技股份有限公司 一种微波介质陶瓷材料的制备方法
CN106587994B (zh) * 2016-12-16 2019-09-27 哈尔滨工程大学 一种钛酸钡铁电陶瓷的低温冷烧结制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101357848A (zh) * 2008-09-05 2009-02-04 贵州大学 激光烧结复合制备电子陶瓷的方法
CN103342383A (zh) * 2013-07-05 2013-10-09 深圳市大富科技股份有限公司 一种微波介质陶瓷材料的制备方法
CN104761258A (zh) * 2015-03-18 2015-07-08 河南科技大学 一种低温烧结锆酸钙微波介质陶瓷的方法
WO2017113218A1 (zh) * 2015-12-30 2017-07-06 深圳市大富科技股份有限公司 陶瓷材料及其制备方法、谐振器、滤波器及射频拉远设备
CN108546124A (zh) * 2018-05-03 2018-09-18 佛山九陌科技信息咨询有限公司 一种bczt基无铅压电陶瓷的制备方法
CN109020536A (zh) * 2018-09-29 2018-12-18 成都顺康三森电子有限责任公司 一种介质陶瓷谐振体制造方法

Also Published As

Publication number Publication date
CN110041069A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2018010633A1 (zh) 一种cbs系ltcc材料及其制备方法
Su et al. Preparation of BaTiO 3/low melting glass core–shell nanoparticles for energy storage capacitor applications
CN108329027B (zh) 一种具有双层“芯-壳”结构的细晶储能介质陶瓷材料及其制备方法
KR102590441B1 (ko) 나노 티탄산바륨 파우더 및 그 제조 방법, 세라믹 유전층 및 그 제조 방법
CN110128129B (zh) 一种低损耗石榴石铁氧体材料的制备方法
CN114478029B (zh) 一种制备abo3型钙钛矿陶瓷块体的方法
CN1294103C (zh) 一种可低温度烧结的钛酸锌高频介质陶瓷及其制备方法
CN105801112A (zh) Nd、Al共掺杂取代Ba0.4Sr0.6TiO3巨介电陶瓷及其制备方法
CN110041069B (zh) 一种微波介质陶瓷材料及其制备方法
CN102951902A (zh) 一种拉德列斯登-波普尔同源钙钛矿结构陶瓷粉体及其制备方法
CN115893482B (zh) 一种高稳定钡钛复合料的制备方法
CN116063067A (zh) 一种多主元素巨介电陶瓷材料及其制备方法和应用
CN101525151B (zh) 高纯电子级钛酸锶的生产工艺
CN112645708B (zh) 一种抗还原bme瓷介电容器及电容器用陶瓷材料
CN111848154B (zh) 一种陶瓷电容器介质及其制备方法
JP5142468B2 (ja) チタン酸バリウム粉末の製造方法
CN110041073B (zh) 一种铌酸钾钠陶瓷的制备方法
CN109369173B (zh) 一种四方相钛酸钡粉体的制备方法及产品
CN106966719B (zh) 一种钛酸钡基x8r陶瓷材料及其制备方法、陶瓷电容器
CN116606143B (zh) 一种压电陶瓷材料及其制备方法
JP6179423B2 (ja) 硫黄含有ニッケル粉末の製造方法
CN117105660A (zh) 高介电低损耗温度稳定性三六价离子共掺杂金红石二氧化钛陶瓷材料及其制备方法
Xu et al. Intra-grain composition nonuniform barium strontium calcium titanate ceramics by sol–gel pervasion techniques
CN116217223B (zh) 一种SnO2基陶瓷材料及其制备方法与应用
CN111995395B (zh) 一种制备Zn掺杂CaZrO3微波介质陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20190723

Assignee: Zhongshan Lvgao Building Materials Co.,Ltd.

Assignor: HENAN University OF SCIENCE AND TECHNOLOGY

Contract record no.: X2023980035142

Denomination of invention: A microwave dielectric ceramic material and its preparation method

Granted publication date: 20211130

License type: Common License

Record date: 20230428