WO2018010633A1 - 一种cbs系ltcc材料及其制备方法 - Google Patents

一种cbs系ltcc材料及其制备方法 Download PDF

Info

Publication number
WO2018010633A1
WO2018010633A1 PCT/CN2017/092466 CN2017092466W WO2018010633A1 WO 2018010633 A1 WO2018010633 A1 WO 2018010633A1 CN 2017092466 W CN2017092466 W CN 2017092466W WO 2018010633 A1 WO2018010633 A1 WO 2018010633A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbs
cuo
ball
dopant
powder
Prior art date
Application number
PCT/CN2017/092466
Other languages
English (en)
French (fr)
Inventor
刘剑
聂敏
Original Assignee
深圳顺络电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳顺络电子股份有限公司 filed Critical 深圳顺络电子股份有限公司
Priority to US15/693,423 priority Critical patent/US10160689B2/en
Publication of WO2018010633A1 publication Critical patent/WO2018010633A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to materials for electronic devices, and more particularly to a CBS system (CaO-B 2 O 3 -SiO 2 system) LTCC (low temperature co-fired ceramic) material and a preparation method thereof.
  • CBS system CaO-B 2 O 3 -SiO 2 system
  • LTCC low temperature co-fired ceramic
  • LTCC low temperature cofired ceramic
  • LTCC materials should have the following properties: low dielectric constant; low dielectric loss and high self-resonance frequency; high resistivity; low sintering temperature ( ⁇ 900 ° C), co-fired with electrode materials such as silver and copper. High mechanical properties, etc.
  • the main preparation processes of CBS LTCC materials are as follows:
  • the solid phase synthesis method is a traditional electronic ceramic process, which has the advantages of simple process, no component deviation, high stability, large mass production feasibility, and low cost, but the sintering temperature is not doped with the sintering agent. Higher, Yang Shilin et al. of the Electronic Science and Technology University in the article "Study on the preparation of CaO-B 2 O 3 -SiO 2 -based LTCC materials by solid phase synthesis", through the adjustment of the main component CBS, the optimum sintering temperature is up to 950 ° C He Ming et al.
  • the sintering temperature of the CBS system synthesized by the solid phase method was also as high as 950 ° C.
  • the excessively high sintering temperature made the energy consumption large and was not conducive to low temperature with Ag. Co-firing, therefore, this somewhat limits the application of CBS in LTCC.
  • the sol-gel method is to hydrolyze a glass-containing lipid into a gel, and to obtain a glass-ceramic material by drying and heat treatment, but has problems such as high preparation cost, complicated heat treatment, and difficulty in mass production.
  • the main object of the present invention is to overcome the deficiencies of the prior art, and to provide a CBS-based LTCC material which can realize low-temperature sintering and ensure a low dielectric constant, low loss and comprehensive performance of a CBS system and a preparation method thereof.
  • the present invention adopts the following technical solutions:
  • a CBS low temperature co-fired ceramic material the main component of which is a CaSiO 3 and CaB 2 O 4 low dielectric constant sintered phase comprising CBS and a dopant, wherein the CBS contains the following components by weight: CaO is 30% to 40%, B 2 O 3 is 15% to 30%, and SiO 2 is 40% to 50%.
  • the dopant includes P 2 O 5 , nano CuO, and nano V 2 O 5 , wherein: P 2 O 5 is 0% to 2%, CuO is 0% to 2%, and V 2 O 5 is 0.5% to 2%.
  • preparation method includes the following steps:
  • the CBS powder obtained after sieving in the step (1) is pre-fired, kept for a predetermined time, cooled to room temperature, then ground and sieved;
  • the final CBS powder obtained after sieving in the step (3) is pre-fired, kept for a predetermined time, and cooled to room temperature;
  • the CBS secondary calcined powder in the step (4) is ball-milled, ball-milled to a desired particle size range, and then the CBS mixture is dried, then ground, and passed through a 120 mesh sieve;
  • the powder after the step (5) is sieved, and the granulation liquid is added to be granulated, sieved, and fine powder is pressed to form a green body;
  • the doped CuO has an average particle diameter of 60 to 100 nm
  • the V 2 O 5 has an average particle diameter of 80 to 100 nm.
  • the desired particle size range described in the step (5) is from 0.5 to 1 ⁇ m.
  • the ball milled material: ball:water weight ratio is 1:2:1
  • the ball milling time is 3 h
  • the ball mill rotation speed is 250 rpm
  • the ball milling time is 3 h
  • the ball mill rotation speed is 250 rpm
  • the ball milling time is 4 h
  • the ball mill rotation speed is 350 rpm.
  • the calcination is carried out at 800 ° C for 6 h.
  • the calcination is carried out at 800 ° C for 4 h.
  • the powder after the step (5) is sieved, and a polyvinyl alcohol aqueous solution having a mass percentage of 5 wt.% is added for granulation, passed through a 120 mesh sieve, and fine powder is pressed to form a green body.
  • the pressure of press molding is 260 MPa, and the pressure holding time is 20 s.
  • the green body of the step (6) is placed in a muffle furnace, heated to 500 ° C at a rate of 1.5 ° C / min, and kept for 2 h to remove the organic matter;
  • the blank after the step (7) is discharged into a muffle furnace, and the temperature is raised to 850 ° C to 900 ° C at a heating rate of 5 ° C / min, and the temperature is kept for 2 hours. Cool to room temperature.
  • the CBS system LTCC material of the invention and the preparation method thereof can overcome the disadvantages of the solid phase synthesis of CBS sintering temperature is too high, by adding a sintering aid (low melting point nano oxide), and adjusting Art, to provide a microwave dielectric ceramic that can achieve low temperature sintering and ensure a low dielectric constant, low loss and comprehensive performance of the CBS system to meet the requirements of LTCC microwave devices and LTCC substrates.
  • a sintering aid low melting point nano oxide
  • the invention is based on CBS dielectric ceramics, one or two of P 2 O 5 and nano CuO are used as initial dopants, and the traditional oxide mixing method is adopted, and nano V 2 O 5 is added as the final sintering aid.
  • the invention can realize mass production, can be co-fired with Ag and Au precious metals at a low temperature, and can be widely applied in fields such as LTCC microwave devices and LTCC substrates.
  • Figure 1 is a graph showing the dielectric constant of Examples 1-3 and Comparative Examples 1-4 as a function of dopant content and sintering temperature.
  • 2a to 2d are microscopic topographical views of the cross section of the sample of the CBS-based LTCC material prepared in Comparative Example 3-2, Comparative Example 4-2, Example 2-2, and Example 3-2, which were sintered at 875 ° C / 2 h, respectively.
  • Figure 3 is a graph showing the dielectric constant and dielectric loss of Example 2-2 at 100 GHz.
  • a CBS low temperature co-fired ceramic material the main component of which is a CaSiO 3 and CaB 2 O 4 low dielectric constant sintered phase comprising CBS and a dopant
  • the CBS contains The following weight percentage components: CaO is 30% to 40%, B 2 O 3 is 15% to 30%, and SiO 2 is 40% to 50%, and the dopant contains P 2 O 5 , nano CuO, and nanometer.
  • V 2 O 5 wherein: P 2 O 5 is 0% to 2%, CuO is 0% to 2%, and V 2 O 5 is 0.5% to 2%.
  • a method for preparing a low dielectric low loss CBS system LTCC material has the following steps:
  • the CBS powder obtained after sieving in the step (1) is placed in a crucible, compacted, capped, sealed, pre-fired at 800 ° C in a muffle furnace, kept for 6 h, and naturally cooled to room temperature with the furnace. Then put it into an agate mortar and grind it through a 60 mesh sieve;
  • the mixture is placed in a ball mill jar, and the ball milling medium is deionized water and zirconia balls.
  • the weight ratio of the ball:water is 1:2:1; and the ground powder is placed in an oven at 100 ° C. Dry, then put into an agate mortar and grind through a 60 mesh sieve;
  • the final CBS powder obtained after sieving in step (3) is placed in a crucible, compacted, capped, sealed, pre-fired at 800 ° C in a muffle furnace, kept for 4 h, and naturally cooled to room temperature with the furnace. ;
  • the CBS secondary calcined powder in the step (4) is placed in a ball mill jar, and the weight ratio of the ball:water is 1:4:1, ball milled to the desired particle size range, and the CBS mixture is placed in the oven. Dry at 100 ° C, then put into an agate mortar and grind, pass 60 mesh sieve;
  • the powder after sieving in step (5) is granulated by adding an aqueous solution of polyvinyl alcohol having a mass percentage of 5 wt.%, passed through a 120 mesh sieve, and pressed into a green powder to form a green body;
  • the green body of the step (6) is placed in a muffle furnace, heated to 500 ° C at a rate of 1.5 ° C / min, and kept for 2 h to remove the organic matter;
  • the blank after the step (7) is discharged into a muffle furnace, and the temperature is raised at a heating rate of 5 ° C / min. Sintering at 850 ° C ⁇ 900 ° C, holding for 2 h, and naturally cooling to room temperature with the furnace;
  • the dielectric ceramic sintered in the step (8) was allowed to stand at room temperature for 12 hours, and ⁇ r and tan ⁇ were measured using an Agilent E5071C network analyzer.
  • the raw material of the step (1) is CaCO 3 , H 3 BO 3 , SiO 2 , P 2 O 5 , CuO, V 2 O 5 , wherein the average particle diameter of the nano CuO is 60-100 nm, and the nano-V 2 O 5 The average particle diameter is from 80 to 100 nm.
  • the ball milling time of the step (1) was 3 h, and the ball mill rotation speed was 250 rpm.
  • the ball milling time of the step (3) was 3 h, and the ball mill rotation speed was 250 rpm.
  • the ball milling time of the step (5) was 4 h, and the ball mill rotation speed was 350 rpm.
  • the desired particle size of the step (5) ranges from 0.5 to 1 ⁇ m.
  • the press molding of the step (6) has a pressure of 260 MPa and a dwell time of 20 s.
  • the step (6) press-formed green body is a cylindrical blank having a diameter of 14 mm and a thickness of 6 to 7 mm.
  • Figure 1 shows the dielectric constants of Examples 1-3 and Comparative Examples 1-4 as a function of dopant content and sintering temperature.
  • 2a to 2d respectively show the microscopic morphology of the cross section of the sintered sample of the CBS-based LTCC material prepared in Comparative Example 3-2, Comparative Example 4-2, Example 2-2, and Example 3-2 at 875 ° C / 2 h.
  • Figure 3 shows the dielectric constant and dielectric loss of Example 2-2 at 100 GHz.
  • P 2 O 5 and nano-CuO act as initial dopants, which help to form the main crystalline phase more fully during CBS calcination and improve the sintering activity of the powder.
  • the addition amount is controlled within 2wt.% and will not be harmful to CBS.
  • the dielectric constant of dielectric ceramics is mainly related to the phase type, content and relative density (density).
  • the examples are sintered at 850 ° C ⁇ 900 ° C and shrink into place and dense into porcelain, and its dielectric constant. And the loss is relatively stable.
  • the logarithmic mixing method of the dielectric material shows that the more pores (ie, the poorer the denseness), the lower the dielectric constant and the higher the loss, and the examples and comparative data conform to this rule. Therefore, in a certain composition of CBS system, the comprehensive use of P 2 O 5 and nano-CuO (one or two), nano-V 2 O 5 can achieve 850 ° C ⁇ 900 ° C sintering compact, porcelain, dielectric constant, Low loss and relatively good overall performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

一种CBS系低温共烧陶瓷材料及其制备方法,所述材料的主成分为CaSiO 3和CaB 2O 4低介电常数烧结物相,其包含CBS和掺杂剂,其中CBS含有以下重量百分比的组分:CaO为30%~40%、B 2O 3为15%~30%、SiO 2为40%~50%,所述掺杂剂包含P 2O 5、纳米CuO和纳米V 2O 5,其中:P 2O 5为0%~2%,CuO为0%~2%,V 2O 5为0.5%~2%。所述制备方法中,以CBS系介质陶瓷为基础,P 2O 5和CuO中的一种或两种作为初始掺杂剂,采用氧化物混合方式,再加入V 2O 5作为最终烧结助剂,以制得所述材料。该CBS系LTCC材料能够实现低温烧结,并保证CBS体系具有低介电常数、低损耗和较好的综合性能。

Description

一种CBS系LTCC材料及其制备方法 技术领域
本发明涉及电子器件的材料,特别是涉及一种CBS系(CaO-B2O3-SiO2系)LTCC(低温共烧陶瓷)材料及其制备方法。
背景技术
现代信息技术的快速发展对电子产品的小型化、轻量化、多功能、可靠性和低成本等方面提出了更高的要求,而低温共烧陶瓷技术(Low temperature cofired ceramic,LTCC)是一种先进的无源集成及混合电路封装技术,已成为未来电子元件集成化的首选方式。在这种背景下,主要介质材料的低温共烧也成为一种重要的发展趋势。
从应用角度出发,LTCC材料应具备以下性能:低介电常数;低介电损耗和高自谐频率;高电阻率;低的烧结温度(≤900℃),与银、铜等电极材料共烧;高的力学性能等。以硅灰石(β-CaSiO3:介电常数εr=5,介电损耗tanδ=0.01~0.03%)为主晶相的CaO-B2O3-SiO2系LTCC材料因其优异的介电性能和热性能,并可与贵金属Ag、Au在较低温度(<950℃)下烧结而备受关注。目前CBS系LTCC材料主要的制备工艺有以下几种方法:
(1)固相合成法。固相合成法是一种传统的电子陶瓷工艺,具有工艺简单、不会造成成分偏离、稳定性高、量产可行性大、成本低的优势,但不掺杂助烧剂条件下,烧结温度较高,电子科大的杨石林等人在“固相合成法制备CaO-B2O3-SiO2系LTCC材料的研究”一文中,通过主成分CBS的调整,其最佳烧结温度高达950℃,电子科大的何铭等人通过添加形核剂TiO2、ZrO2,采用固相法合成的CBS系烧结温度也高达950℃,过高的烧结温度使得能耗大,也不利于与Ag低温共烧,因此,这一定程度上限制了CBS系在LTCC中的应用。
(2)高温烧结法。高温烧结法是将初始原料混合均匀后在高温下熔融成液态,再水淬为玻璃,玻璃研磨磨细后,经850℃热处理(晶化、核化)得到“微晶玻璃”,但B2O3在熔融过程的挥发造成成分偏离配方设计,对性能不利,同时,玻璃制备中的不稳定性易造成批量化生产粉料批次间的不稳定,因此其稳定性、可靠性较难控制。
(3)溶胶-凝胶法。溶胶-凝胶法是将含玻璃成分的脂类水解成凝胶,经干燥、热处理得到玻璃陶瓷材料,但存在制备成本高、热处理复杂、批量化生产难等问题。
发明内容
本发明的主要目的在于克服现有技术的不足,提供一种可实现低温烧结并保证CBS体系具有低介电常数、低损耗和综合性能相对较好的CBS系LTCC材料及其制备方法。
为实现上述目的,本发明采用以下技术方案:
一种CBS系低温共烧陶瓷材料,所述材料的主成分为CaSiO3和CaB2O4低介电常数烧结物相,其包含CBS和掺杂剂,其中CBS含有以下重量百分比的组分:CaO为30%~40%、B2O3为15%~30%、SiO2为40%~50%,所述掺杂剂包含P2O5、纳米CuO和纳米V2O5,其中:P2O5为0%~2%,CuO为0%~2%,V2O5为0.5%~2%。
一种CBS系LTCC材料的制备方法,以CBS系介质陶瓷为基础,P2O5和CuO中的一种或两种作为初始掺杂剂,采用氧化物混合方式,再加入V2O5作为最终烧结助剂,以制得所述材料,其中所述材料的主成分为CaSiO3和CaB2O4低介电常数烧结物相,其包含CBS和掺杂剂,其中CBS含有以下重量百分比的组分:CaO为30%~40%、B2O3为15%~30%、SiO2为40%~50%,所述掺杂剂包含P2O5、纳米CuO和纳米V2O5,其中:P2O5为0%~2%,CuO为0%~2%,V2O5为0.5%~2%。
进一步地,所述制备方法,包括如下步骤:
(1)配料
将原料CaCO3、H3BO3、SiO2按30%~40%CaO、15%~30%B2O3、40%~50%SiO2进行称量,同时按CBS-xwt.%P2O5-ywt.%CuO掺杂,式中x=0~2、y=0~2的化学计量比,混合球磨,球磨介质为去离子水和氧化锆球;再将CBS混合料放入烘箱烘干,然后研磨,过60目筛;
(2)预烧
将步骤(1)中过筛后得到的CBS粉料进行预烧,保温预定时间,冷却至室温,然后研磨,过筛;
(3)二次混合
将步骤(2)中过筛的预烧粉料,按(CBS-xwt.%P2O5-ywt.%CuO)-zwt%.V2O5,式中z=0.5~2的化学计量比,混合后球磨,球磨介质为去离 子水和氧化锆球;再将研磨后的粉料放入烘箱烘干,然后研磨,过60目筛;
(4)二次预烧
将步骤(3)中过筛后得到的最终CBS粉料预烧,保温预定时间,冷却至室温;
(5)三次研磨
将步骤(4)中的CBS二次预烧粉进行球磨,球磨至所需粒径范围,再将CBS混合料烘干,然后研磨,过120目筛;
(6)压片
将步骤(5)过筛后的粉料,外加造粒液进行造粒,过筛,取细粉压制成生坯;
(7)排胶;
(8)烧结。
进一步地,所掺杂的CuO的平均粒径为60~100nm,V2O5的平均粒径为80~100nm。
进一步地,步骤(5)中所述的所需粒径范围为0.5~1μm。
进一步地,步骤(1)、(3)、(5)中球磨的料:球:水的重量比为1:2:1,步骤(1)中,所述球磨的时间为3h,球磨机转速为250rpm,步骤(3)中,所述球磨的时间为3h,球磨机转速为250rpm,步骤(5)中,所述球磨时间为4h,球磨机转速为350rpm。
进一步地,步骤(2)中是于800℃预烧,保温时间6h。
进一步地,步骤(4)中是于800℃预烧,保温时间4h。
进一步地,步骤(6)中,将步骤(5)过筛后的粉料,外加质量百分比为5wt.%的聚乙烯醇水溶液进行造粒,过120目筛,取细粉压制成生坯,其中压制成型的压强为260MPa、保压时间为20s。
进一步地,步骤(7)中,将步骤(6)的生坯放入马弗炉中,以1.5℃/min的速率升温至500℃,保温2h,进行有机物的排除;
进一步地,步骤(8)中,将步骤(7)排胶后的坯件放入马弗炉中,以5℃/min的升温速率升温至850℃~900℃烧结,保温2h,随炉自然冷却至室温。
本发明的有益效果:
本发明的CBS系LTCC材料及其制备方法能够克服固相法合成CBS烧结温度过高的弊端,通过添加烧结助剂(低熔点纳米氧化物),并调整工 艺,提供一种可实现低温烧结并保证CBS体系具有低介电常数、低损耗和综合性能相对较好的微波介质陶瓷,以满足LTCC微波器件和LTCC基板的要求。
本发明以CBS系介质陶瓷为基础,P2O5和纳米CuO中的一种或两种作为初始掺杂剂,采用传统的氧化物混合方式,再加入纳米V2O5作为最终烧结助剂,通过配方与工艺的调整和改进,提供一种可实现低温烧结并保证CBS体系具有低介电常数和低损耗(100GHz内)、综合性能相对较好、稳定性高的微波介质陶瓷,其中εr=5.8~6.5、tanδ<0.2%,以满足LTCC微波器件和LTCC基板的要求。本发明可实现批量生产,可与Ag、Au贵金属低温共烧,可在LTCC微波器件和LTCC基板等领域得到广泛应用。
附图说明
图1为实施例1-3与对比例1-4介电常数随掺杂剂含量和烧结温度的变化曲线。
图2a至2d分别为对比例3-2、对比例4-2、实施例2-2、实施例3-2制备的CBS系LTCC材料经875℃/2h烧结样品截面的微观形貌图。
图3为实施例2-2在100GHz内的介电常数与介电损耗。
具体实施方式
以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
在一种实施例中,一种CBS系低温共烧陶瓷材料,所述材料的主成分为CaSiO3和CaB2O4低介电常数烧结物相,其包含CBS和掺杂剂,其中CBS含有以下重量百分比的组分:CaO为30%~40%、B2O3为15%~30%、SiO2为40%~50%,所述掺杂剂包含P2O5、纳米CuO和纳米V2O5,其中:P2O5为0%~2%,CuO为0%~2%,V2O5为0.5%~2%。
一种CBS系LTCC材料的制备方法,以CBS系介质陶瓷为基础,P2O5和CuO中的一种或两种作为初始掺杂剂,采用氧化物混合方式,再加入V2O5作为最终烧结助剂,以制得所述材料,其中所述材料的主成分为CaSiO3和CaB2O4低介电常数烧结物相,其包含CBS和掺杂剂,其中CBS含有以下重量百分比的组分:CaO为30%~40%、B2O3为15%~30%、SiO2为40%~50%,所述掺杂剂包含P2O5、纳米CuO和纳米V2O5,其中:P2O5为0%~2%,CuO为0%~2%,V2O5为0.5%~2%。
在具体实施例中,一种低介电低损耗CBS系LTCC材料的制备方法,具有如下步骤:
(1)配料
将原料CaCO3、H3BO3、SiO2按30%~40%CaO、15%~30%B2O3、40%~50%SiO2进行称量,同时按CBS-xwt.%P2O5-ywt.%CuO掺杂,式中x=0~2、y=0~2的化学计量比,混合后放入球磨罐中,球磨介质为去离子水和氧化锆球,料:球:水的重量比为1:2:1;再将CBS混合料放入烘箱内于100℃烘干,然后放入玛瑙研钵研磨,过60目筛;
(2)预烧
将步骤(1)中过筛后得到的CBS粉料,放入坩埚内,压实、加盖、密封,在马弗炉中于800℃预烧,保温时间6h,随炉自然冷却至室温,然后放入玛瑙研钵研磨,过60目筛;
(3)二次混合
将步骤(2)中过筛的预烧粉料,按(CBS-xwt.%P2O5-ywt.%CuO)-zwt%.V2O5,式中z=0.5~2的化学计量比,混合后放入球磨罐中,球磨介质为去离子水和氧化锆球,料:球:水的重量比为1:2:1;再将研磨后的粉料放入烘箱内于100℃烘干,然后放入玛瑙研钵研磨,过60目筛;
(4)二次预烧
将步骤(3)中过筛后得到的最终CBS粉料,放入坩埚内,压实、加盖、密封,在马弗炉中于800℃预烧,保温时间4h,随炉自然冷却至室温;
(5)三次研磨
将步骤(4)中的CBS二次预烧粉放入球磨罐研磨,料:球:水的重量比为1:4:1,球磨至所需粒径范围,再将CBS混合料放入烘箱内于100℃烘干,然后放入玛瑙研钵研磨,过60目筛;
(6)压片
将步骤(5)过筛后的粉料,外加质量百分比为5wt.%的聚乙烯醇水溶液进行造粒,过120目筛,取细粉压制成生坯;
(7)排胶
将步骤(6)的生坯放入马弗炉中,以1.5℃/min的速率升温至500℃,保温2h,进行有机物的排除;
(8)烧结
将步骤(7)排胶后的坯件放入马弗炉中,以5℃/min的升温速率升温 至850℃~900℃烧结,保温2h,随炉自然冷却至室温;
(9)微波性能测试
将步骤(8)烧结后的介质陶瓷,于室温静置12h,使用Agilent E5071C网络分析仪测试εr和tanδ。
所述步骤(1)原料为CaCO3、H3BO3、SiO2、P2O5、CuO、V2O5,其中,纳米CuO的平均粒径为60~100nm,纳米V2O5的平均粒径为80~100nm。
所述步骤(1)的球磨时间为3h,球磨机转速为250rpm。
所述步骤(3)的球磨时间为3h,球磨机转速为250rpm。
所述步骤(5)的球磨时间为4h,球磨机转速为350rpm。
所述步骤(5)的所需粒径范围为0.5~1μm。
所述步骤(6)的压制成型的压强为260MPa、保压时间为20s。
所述步骤(6)压制成型的生坯为直径14mm,厚度6~7mm的圆柱状坯件。
所述步骤(9)的低介电低损耗CBS系LTCC材料的性能为εr=5.8~6.2、Tanδ<0.2%。
多个具体实施例与对比例的掺杂剂含量列于表1。
表1实施例与对比例的掺杂剂含量
Figure PCTCN2017092466-appb-000001
Figure PCTCN2017092466-appb-000002
上述实施例与对比例的烧结外观、收缩率、密度、介电常数、损耗测试结果列于表2。
表2实施例与对比例的烧结性能
Figure PCTCN2017092466-appb-000003
Figure PCTCN2017092466-appb-000004
图1示出了实施例1-3与对比例1-4介电常数随掺杂剂含量和烧结温度的变化曲线。图2a至2d分别示出了对比例3-2、对比例4-2、实施例2-2、实施例3-2制备的CBS系LTCC材料经875℃/2h烧结样品截面的微观形貌。图3示出了实施例2-2在100GHz内的介电常数与介电损耗。
上述实施例均可实现850℃~900℃致密成瓷烧结,制备出的CBS系LTCC材料性能为εr=5.8~6.5、tanδ<0.2%。其中,实施例3-2为最佳实施例,其损耗最低,tanδ=0.12%。
P2O5和纳米CuO作为初始掺杂剂,有助于CBS预烧时更充分形成主晶相,并提高其粉体的烧结活性,添加量控制在2wt.%内不会对CBS产生不利影响,而V2O5熔点为690℃,纳米级的活性更高,作为主粉体CBS系的最终烧结助剂,有助于液相产生并实现低温烧结,添加量控制在2wt.% 内不会对CBS产生杂相。介质陶瓷的介电常数主要与物相类型、含量和相对密度(致密性)有关,由于掺杂剂含量较少,实施例在850℃~900℃烧结收缩到位且致密成瓷,其介电常数和损耗比较稳定。此外,介质材料的对数混合法则表明,孔隙越多(即致密性越差),介电常数越低、损耗越高,实施例与对比例数据均符合此规律。因此,在一定成分的CBS体系中,综合使用P2O5和纳米CuO(一种或两种)、纳米V2O5可实现850℃~900℃烧结致密、成瓷、介电常数稳定、损耗低、综合性能相对较好的效果。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种CBS系低温共烧陶瓷材料,其特征在于,所述材料的主成分为CaSiO3和CaB2O4低介电常数烧结物相,其包含CBS和掺杂剂,其中CBS含有以下重量百分比的组分:CaO为30%~40%、B2O3为15%~30%、SiO2为40%~50%,所述掺杂剂包含P2O5、纳米CuO和纳米V2O5,其中:P2O5为0%~2%,CuO为0%~2%,V2O5为0.5%~2%。
  2. 一种CBS系LTCC材料的制备方法,其特征在于,以CBS系介质陶瓷为基础,P2O5和CuO中的一种或两种作为初始掺杂剂,采用氧化物混合方式,再加入V2O5作为最终烧结助剂,以制得所述材料,其中所述材料的主成分为CaSiO3和CaB2O4低介电常数烧结物相,其包含CBS和掺杂剂,其中CBS含有以下重量百分比的组分:CaO为30%~40%、B2O3为15%~30%、SiO2为40%~50%,所述掺杂剂包含P2O5、纳米CuO和纳米V2O5,其中:P2O5为0%~2%,CuO为0%~2%,V2O5为0.5%~2%。
  3. 如权利要求2所述的制备方法,其特征在于,包括如下步骤:
    (1)配料
    将原料CaCO3、H3BO3、SiO2按30%~40%CaO、15%~30%B2O3、40%~50%SiO2进行称量,同时按CBS-xwt.%P2O5-ywt.%CuO掺杂,式中x=0~2、y=0~2的化学计量比,混合球磨,球磨介质为去离子水和氧化锆球;再将CBS混合料放入烘箱烘干,然后研磨,过60目筛;
    (2)预烧
    将步骤(1)中过筛后得到的CBS粉料进行预烧,保温预定时间,冷却至室温,然后研磨,过筛;
    (3)二次混合
    将步骤(2)中过筛的预烧粉料,按(CBS-xwt.%P2O5-ywt.%CuO)-zwt%.V2O5,式中z=0.5~2的化学计量比,混合后球磨,球磨介质为去离子水和氧化锆球;再将研磨后的粉料放入烘箱烘干,然后研磨,过60目筛;
    (4)二次预烧
    将步骤(3)中过筛后得到的最终CBS粉料预烧,保温预定时间,冷却至室温;
    (5)三次研磨
    将步骤(4)中的CBS二次预烧粉进行球磨,球磨至所需粒径范围,再将CBS混合料烘干,然后研磨,过120目筛;
    (6)压片
    将步骤(5)过筛后的粉料,外加造粒液进行造粒,过筛,取细粉压制成生坯;
    (7)排胶;
    (8)烧结。
  4. 根据权利要求3所述的制备方法,其特征在于,所掺杂的CuO的平均粒径为60~100nm,V2O5的平均粒径为80~100nm。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤(5)中所述的所需粒径范围为0.5~1μm。
  6. 如权利要求3所述的制备方法,其特征在于,步骤(1)、(3)、(5)中球磨的料:球:水的重量比为1:2:1,步骤(1)中,所述球磨的时间为3h,球磨机转速为250rpm,步骤(3)中,所述球磨的时间为3h,球磨机转速为250rpm,步骤(5)中,所述球磨时间为4h,球磨机转速为350rpm。
  7. 如权利要求3所述的制备方法,其特征在于,步骤(2)中是于800℃预烧,保温时间6h。
  8. 如权利要求3所述的制备方法,其特征在于,步骤(4)中是于800℃预烧,保温时间4h。
  9. 如权利要求3所述的制备方法,其特征在于,步骤(6)中,将步骤(5)过筛后的粉料,外加质量百分比为5wt.%的聚乙烯醇水溶液进行造粒,过120目筛,取细粉压制成生坯,其中压制成型的压强为260MPa、保压时间为20s。
  10. 如权利要求3至9任一项所述的制备方法,其特征在于,步骤(7)中,将步骤(6)的生坯放入马弗炉中,以1.5℃/min的速率升温至500℃,保温2h,进行有机物的排除;
    步骤(8)中,将步骤(7)排胶后的坯件放入马弗炉中,以5℃/min的升温速率升温至850℃~900℃烧结,保温2h,随炉自然冷却至室温。
PCT/CN2017/092466 2016-07-12 2017-07-11 一种cbs系ltcc材料及其制备方法 WO2018010633A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/693,423 US10160689B2 (en) 2016-07-12 2017-08-31 CBS-based LTCC material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610546322.5 2016-07-12
CN201610546322.5A CN106187141B (zh) 2016-07-12 2016-07-12 一种cbs系ltcc材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/693,423 Continuation US10160689B2 (en) 2016-07-12 2017-08-31 CBS-based LTCC material and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2018010633A1 true WO2018010633A1 (zh) 2018-01-18

Family

ID=57477708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092466 WO2018010633A1 (zh) 2016-07-12 2017-07-11 一种cbs系ltcc材料及其制备方法

Country Status (2)

Country Link
CN (1) CN106187141B (zh)
WO (1) WO2018010633A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111470778A (zh) * 2019-01-24 2020-07-31 上海晶材新材料科技有限公司 一种钙钡硅铝玻璃基低介低温共烧陶瓷材料及其制备方法
CN111848145A (zh) * 2020-07-09 2020-10-30 中国电子科技集团公司第四十三研究所 无机瓷粉及其制备方法、ltcc生瓷带
CN112537949A (zh) * 2021-01-26 2021-03-23 蔡国凤 微波陶瓷材料及其制备方法
CN113999002A (zh) * 2021-09-14 2022-02-01 天津大学 低温烧结高q钛酸锂基微波介质陶瓷材料及其制备方法
CN114349493A (zh) * 2022-02-21 2022-04-15 昆明贵研新材料科技有限公司 一种铜离子掺杂硅酸钙微波介质陶瓷及其制备方法
CN114644514A (zh) * 2022-03-25 2022-06-21 上海晶材新材料科技有限公司 Ltcc生料带材料、ltcc基板、ltcf-ltcc异质基板及对应的制备方法
CN115403358A (zh) * 2022-09-13 2022-11-29 景德镇陶瓷大学 一种过渡金属离子与Eu3+共掺杂型固体电解质陶瓷材料及其制备方法
CN115974524A (zh) * 2022-12-19 2023-04-18 湖北中烟工业有限责任公司 一种低介电常数绝缘陶瓷的制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106187141B (zh) * 2016-07-12 2019-06-28 深圳顺络电子股份有限公司 一种cbs系ltcc材料及其制备方法
US10160689B2 (en) 2016-07-12 2018-12-25 Shenzhen Sunlord Electronics Co., Ltd. CBS-based LTCC material and preparation method thereof
CN108298979B (zh) * 2018-01-30 2020-12-25 北京元六鸿远电子科技股份有限公司 中介低温共烧陶瓷材料及其制备方法
CN110372221A (zh) * 2018-04-13 2019-10-25 上海晶材新材料科技有限公司 一种低温共烧陶瓷生带材料及其制备方法
CN110981440A (zh) * 2019-12-20 2020-04-10 贵阳顺络迅达电子有限公司 一种低介高q温度稳定型钙钛矿结构ltcc微波介质材料及其制备方法
JP7323879B2 (ja) * 2020-09-14 2023-08-09 岡本硝子株式会社 低温共焼成基板用組成物
CN112537947B (zh) * 2020-12-09 2022-03-29 江苏科技大学 一种低损耗低介电常数微波介质陶瓷材料及其制备方法
CN113716870B (zh) * 2021-09-03 2023-03-07 中国人民解放军国防科技大学 一种适用于高频的ltcc基板材料及其制备方法
CN114573333B (zh) * 2022-02-28 2023-06-09 嘉兴佳利电子有限公司 一种低介电硅灰石系低温共烧陶瓷材料及其制备方法
CN115417663B (zh) * 2022-08-19 2023-06-06 广西夏阳环保科技有限公司 一种ltcc电子陶瓷的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258335A (en) * 1988-10-14 1993-11-02 Ferro Corporation Low dielectric, low temperature fired glass ceramics
CN1389415A (zh) * 2002-07-12 2003-01-08 清华大学 一种高频片式电感用微晶玻璃陶瓷的配方及其制备方法
CN1872753A (zh) * 2005-05-31 2006-12-06 电子科技大学 微晶玻璃陶瓷材料及其制备方法
CN101200348A (zh) * 2007-12-21 2008-06-18 天津大学 CaO-B2O3-SiO2玻璃粉体及制备方法
CN101624263A (zh) * 2009-08-05 2010-01-13 贵研铂业股份有限公司 电子浆料用低熔点中性无公害玻璃及其制备方法
CN102173587A (zh) * 2011-03-03 2011-09-07 电子科技大学 电子基板用微晶玻璃材料及制备方法
CN102531570A (zh) * 2011-12-31 2012-07-04 嘉兴佳利电子股份有限公司 一种高q值低温烧结微波介质陶瓷材料及制备方法
CN102584234A (zh) * 2012-03-13 2012-07-18 嘉兴佳利电子股份有限公司 一种环保型低温烧结高介微波介质陶瓷及其制备方法
CN106187141A (zh) * 2016-07-12 2016-12-07 深圳顺络电子股份有限公司 一种cbs系ltcc材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541319A (zh) * 2015-12-11 2016-05-04 深圳顺络电子股份有限公司 一种中高介电常数微波介质陶瓷材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258335A (en) * 1988-10-14 1993-11-02 Ferro Corporation Low dielectric, low temperature fired glass ceramics
CN1389415A (zh) * 2002-07-12 2003-01-08 清华大学 一种高频片式电感用微晶玻璃陶瓷的配方及其制备方法
CN1872753A (zh) * 2005-05-31 2006-12-06 电子科技大学 微晶玻璃陶瓷材料及其制备方法
CN101200348A (zh) * 2007-12-21 2008-06-18 天津大学 CaO-B2O3-SiO2玻璃粉体及制备方法
CN101624263A (zh) * 2009-08-05 2010-01-13 贵研铂业股份有限公司 电子浆料用低熔点中性无公害玻璃及其制备方法
CN102173587A (zh) * 2011-03-03 2011-09-07 电子科技大学 电子基板用微晶玻璃材料及制备方法
CN102531570A (zh) * 2011-12-31 2012-07-04 嘉兴佳利电子股份有限公司 一种高q值低温烧结微波介质陶瓷材料及制备方法
CN102584234A (zh) * 2012-03-13 2012-07-18 嘉兴佳利电子股份有限公司 一种环保型低温烧结高介微波介质陶瓷及其制备方法
CN106187141A (zh) * 2016-07-12 2016-12-07 深圳顺络电子股份有限公司 一种cbs系ltcc材料及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111470778A (zh) * 2019-01-24 2020-07-31 上海晶材新材料科技有限公司 一种钙钡硅铝玻璃基低介低温共烧陶瓷材料及其制备方法
CN111470778B (zh) * 2019-01-24 2022-10-28 上海晶材新材料科技有限公司 一种钙钡硅铝玻璃基低介低温共烧陶瓷材料及其制备方法
CN111848145A (zh) * 2020-07-09 2020-10-30 中国电子科技集团公司第四十三研究所 无机瓷粉及其制备方法、ltcc生瓷带
CN112537949A (zh) * 2021-01-26 2021-03-23 蔡国凤 微波陶瓷材料及其制备方法
CN113999002A (zh) * 2021-09-14 2022-02-01 天津大学 低温烧结高q钛酸锂基微波介质陶瓷材料及其制备方法
CN114349493A (zh) * 2022-02-21 2022-04-15 昆明贵研新材料科技有限公司 一种铜离子掺杂硅酸钙微波介质陶瓷及其制备方法
CN114644514A (zh) * 2022-03-25 2022-06-21 上海晶材新材料科技有限公司 Ltcc生料带材料、ltcc基板、ltcf-ltcc异质基板及对应的制备方法
CN115403358A (zh) * 2022-09-13 2022-11-29 景德镇陶瓷大学 一种过渡金属离子与Eu3+共掺杂型固体电解质陶瓷材料及其制备方法
CN115403358B (zh) * 2022-09-13 2023-06-13 景德镇陶瓷大学 一种过渡金属离子与Eu3+共掺杂型固体电解质陶瓷材料及其制备方法
CN115974524A (zh) * 2022-12-19 2023-04-18 湖北中烟工业有限责任公司 一种低介电常数绝缘陶瓷的制备方法

Also Published As

Publication number Publication date
CN106187141A (zh) 2016-12-07
CN106187141B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2018010633A1 (zh) 一种cbs系ltcc材料及其制备方法
WO2018040749A1 (zh) 一种低温共烧陶瓷材料及其制备方法
US10179749B2 (en) Low-temperature co-fired ceramic material and preparation method thereof
CN103086703B (zh) 用于制备高抗弯强度低温共烧陶瓷的材料及方法
CN109608050B (zh) 一种高频低介低损耗微晶玻璃/陶瓷系ltcc基板材料及其制备方法
US20200123059A1 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
CN101148323B (zh) 一种低温共烧堇青石系玻璃-陶瓷基板粉料及其制备方法
CN103265271B (zh) 频率温度系数可调低温烧结氧化铝陶瓷材料及制备方法
CN108358632B (zh) 一种超低温烧结高Q×f值微波介质材料及其制备方法
CN109721340A (zh) 一种高强度低损耗ltcc材料及其制备方法
CN111995383B (zh) Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法
CN107176834B (zh) 中高介电常数的ltcc陶瓷材料及其制备方法
CN108947257A (zh) 一种堇青石基微晶玻璃材料及其制备方法
CN105347781B (zh) 一种陶瓷材料及其制备方法
CN114031402B (zh) 一种低温烧结微波介质材料MgZrNb2O8及其制备方法
CN108218406A (zh) 低介电常数低损耗的低温共烧陶瓷材料及其制备方法
CN107176793B (zh) Ltcc陶瓷材料及其制备方法
CN110407579B (zh) 一种具有超高q值微波介质材料及其制备方法
US10160689B2 (en) CBS-based LTCC material and preparation method thereof
CN112608144B (zh) 一种锂基微波介质陶瓷材料、其制备方法和锂基微波介质陶瓷
CN102219386B (zh) SiO2基复合氧化物体系玻璃的超微细粉体的制备方法
CN106810078B (zh) 一种超低温烧结的微晶玻璃系微波介质材料及其制备方法
CN112079631B (zh) 一种近零温度系数低介ltcc材料及其制备方法
CN109734428B (zh) 一种低介低温共烧陶瓷材料及其制备方法
CN111574213A (zh) 一种低介电常数ltcc材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17826969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826969

Country of ref document: EP

Kind code of ref document: A1