CN110021660A - AlGaN/GaN异质结垂直型场效应晶体管及其制作方法 - Google Patents

AlGaN/GaN异质结垂直型场效应晶体管及其制作方法 Download PDF

Info

Publication number
CN110021660A
CN110021660A CN201910304396.1A CN201910304396A CN110021660A CN 110021660 A CN110021660 A CN 110021660A CN 201910304396 A CN201910304396 A CN 201910304396A CN 110021660 A CN110021660 A CN 110021660A
Authority
CN
China
Prior art keywords
type
algan
drift region
region
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910304396.1A
Other languages
English (en)
Other versions
CN110021660B (zh
Inventor
段宝兴
王彦东
杨珞云
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910304396.1A priority Critical patent/CN110021660B/zh
Publication of CN110021660A publication Critical patent/CN110021660A/zh
Application granted granted Critical
Publication of CN110021660B publication Critical patent/CN110021660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7788Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提出了一种AlGaN/GaN异质结垂直型场效应晶体管及其制作方法,该器件的主要特点是采用了特殊的漂移区即由N型漂移区与N+电流通道组成,同时利用AlGaN/GaN异质结形成的二维电子气和N+电流通道构造了新的电流通道,并且采用了P型屏蔽层。在正向导通时,P型屏蔽层几乎不会影响N+电流通道,可以获得较低的导通电阻。在器件关断时,随着漏极电压的升高,P型屏蔽层附近的耗尽区扩展,N+电流通路被夹断后,漂移区承担反向偏压,可以获得较高的击穿电压,因此弱化了击穿电压与漂移区浓度之间的矛盾关系。结合以上优势,与传统垂直型场效应晶体管相比,本发明提出的结构能承受更高的耐压,同时具有更低的导通损耗。

Description

AlGaN/GaN异质结垂直型场效应晶体管及其制作方法
技术领域
本发明涉及功率半导体器件领域,尤其涉及一种AlGaN/GaN垂直型场效应晶体管。
背景技术
氮化镓和碳化硅为代表的宽禁带化合物半导体材料,以其远优于传统硅材料的器件特性,正获得越来越的应用,氮化镓材料作为第三代半导体材料的核心之一,相比于碳化硅功率器件由于其易于实现的异质结构、高浓度的二维电子气(2DEG)、高的沟道电子迁移率、高的击穿电场广泛的应用于高速、高频领域。
在宽带隙半导体中杂质扩散速率很低,即使在高温情况下也是如此,因此一般采用双注入工艺,注入结较浅,当P型基区的耗尽区达到源区,会出现源漏穿通现象,导致击穿电压受到限制。宽带隙材料器件中为了避免基区穿通效应,需要高掺杂浓度的P型基区,由于宽带隙材料特性会导致极高的阈值电压。此外在器件关断时,由于较高的电压,栅介质层中内会产生高电场,很容易导致氧化层破裂甚至击穿,器件的寿命和可靠性也会大大降低。
发明内容
本发明提出一种新型AlGaN/GaN异质结垂直型场效应晶体管,旨在进一步提高垂直型场效应晶体管的击穿电压,降低其导通电阻,改善器件性能。
本发明的技术方案如下:
该AlGaN/GaN异质结垂直型场效应晶体管,包括:
半导体材料的衬底,兼作漏区;
在衬底上外延生长形成氮化镓材料的N型漂移区;
分别在N型漂移区上部的左、右两端区域形成的两处P型基区以及相应的N+型源区和P+沟道衬底接触;每一处P型基区中形成沟道,其中N+型源区与沟道邻接,P+沟道衬底接触相对于N+型源区位于沟道远端;
源极,覆盖P+沟道衬底接触与相应N+型源区相接区域的上表面;两处源极共接;
漏极,位于衬底下表面;
有别于现有技术的是:N型漂移区的中间区域通过离子注入形成N+电流通道,该N+电流通道纵向贯通N型漂移区;N+电流通道的掺杂浓度远高于N型漂移区的掺杂浓度;
在N+电流通道及其两侧与N型漂移区邻接的区域表面异质外延生长有AlGaN层,使得AlGaN/GaN异质结能够产生二维电子气(2DEG);
栅介质层一体覆盖两处P型基区相应的沟道部分以及AlGaN层的上表面和侧面;栅介质层表面覆盖栅极;
两处P型基区以及相应的N+型源区和P+沟道衬底接触的下方通过离子注入还形成有P型屏蔽层。
进一步的,衬底的材料采用氮化镓。
进一步的,N型漂移区的掺杂浓度比N+电流通道的掺杂浓度小1-3个数量级。
进一步的,P型屏蔽层与N+电流通道的距离大于或等于0。
进一步的,N型漂移区的掺杂浓度典型值为1×1015cm-3~1×1016cm-3;N+电流通道的掺杂浓度典型值为1×1016cm-3~1×1018cm-3
进一步的,P型屏蔽层的掺杂浓度典型值为1×1017cm-3~1×1019cm-3
进一步的,栅介质层的厚度为0.02~0.1μm。
进一步的,P型基区的掺杂浓度为1×1016cm-3~1×1017cm-3
一种制作上述AlGaN/GaN异质结的垂直型场效应晶体管的方法,包括以下步骤:
(1)取氮化镓材料作为衬底同时作为漏区;
(2)在衬底上形成外延层作为轻掺杂漂移区;
(3)在外延层中间通过离子注入形成重掺杂漂移区;
(4)根据所设计击穿电压的要求重复步骤(2)和(3)达到所要求的漂移区厚度;
(5)在GaN外延层上通过异质外延形成AlGaN层;
(6)在指定区域刻蚀去除AlGaN层,在GaN外延层上部的左、右两端区域采用离子注入形成P型屏蔽层、P型基区及其N+型源区和P+沟道衬底接触,形成相应的沟道;
(7)在两侧沟道和中间AlGaN/GaN表面形成栅介质层,并淀积金属形成栅极;
(8)在器件表面淀积钝化层,并在对应于源极的位置刻蚀接触孔;
(9)在接触孔内淀积金属并刻蚀(去除周边其余的钝化层)形成源极,并将两处源极共接。
本发明技术方案的有益效果如下:
本发明将AlGaN/GaN异质结形成的二维电子气和N+电流通道构造了新的电流通道;采用了P型屏蔽层,解决了宽带隙半导体材料在高电压下容易发生源漏穿通的问题,使得可以减小沟道的浓度以获取合适的阈值电压。器件关断时,P型屏蔽层有效的降低了栅介质层中的峰值电场,提高了器件的可靠性,在正向导通时,由于新的电流通道,可以获得较低的导通电阻,在器件关断时,整个漂移区承担反向偏压,可以获得较高的击穿电压,弱化了击穿电压与漂移区浓度之间的矛盾关系。
该AlGaN/GaN异质结的垂直型场效应晶体管,在相同漂移区长度(图中所示纵向尺寸)的情况下,具有更高的耐压和更低的导通损耗,具有更好的性能。
附图说明
图1是本发明的结构示意图。
其中,1-P+沟道衬底接触(P+型体区);2-N+型源区;3-P型基区;4-AlGaN层;5-栅极;6-栅介质层;7-源极;8-P型屏蔽层;9-N型漂移区;10-衬底(兼作漏区);11-漏极;12-N+电流通道。
具体实施方式
下面结合附图以N沟道AlGaN/GaN异质结垂直型场效应晶体管为例介绍本发明。
如图1所示,该器件的漂移区由N型漂移区与N+电流通道两部分组成,同时设置了P型屏蔽层。其中,N型漂移区的厚度和由器件的耐压要求决定,N+电流通道的浓度以及深度由器件的导通损耗决定;P型屏蔽层的浓度、厚度、长度由器件的耐压要求决定,P型基区的浓度由器件的阈值电压决定。
P型屏蔽层的长度大于或等于P型基区、N+型源区和P+沟道衬底接触的整体长度。
N型漂移区的掺杂浓度根据设计的击穿电压确定,典型掺杂浓度范围为1×1015cm-3~1×1016cm-3
N+电流通道的掺杂浓度根据设计的击穿电压确定,典型掺杂浓度范围为1×1016cm-3~1×1018cm-3
P型基区的掺杂浓度根据设计的阈值电压确定,典型掺杂浓度范围为1×1016cm-3~1×1017cm-3
P型屏蔽层的掺杂浓度根据设计的击穿电压确定,典型掺杂浓度范围为1×1017cm-3~1×1019cm-3
N型氮化镓外延层的厚度根据设计的击穿电压确定,例如:耐压为800V时,N型氮化镓外延层的厚度大约为5μm;
栅介质层的厚度根据阈值电压确定,典型值为0.02~0.1μm;
P型屏蔽层、P型基区及其N+型源区和P+沟道衬底接触以及沟道,是在N型外延层上部采用离子注入形成的。
P型掺杂GaN可以通过Mg或者其他可掺杂元素外延生长形成,视掺杂效果和需求而定。
源极、栅极、漏极均通过欧姆接触与GaN层、AlGaN层相连。
该器件具体可按照以下步骤制作:
(1)取GaN材料作N+衬底,同时作为漏区;
(2)在N+型衬底上表面形成的GaN材料的N型外延层,在中间区域通过离子注入形成N+电流通道,外延注入的次数由所设计的击穿电压确定,例如耐压800v时候,漂移区的长度典型值为5μm,需要2~3次外延注入;
(3)在N+型衬底下表面形成金属化漏极;
(4)在所述漂移区上通过异质外延形成AlGaN层;
(5)在指定区域刻蚀去除AlGaN层,在掩膜的保护下,在GaN外延层上部的左、右两端区域采用离子注入形成P型屏蔽层、P型基区及其N+型源区和P+沟道衬底接触,形成相应的沟道;
(6)在两侧沟道及中间AlGaN/GaN表面形成栅介质层,并淀积金属形成栅极;
(7)在器件表面淀积钝化层,并在对应于源极的位置刻蚀接触孔;
(8)在接触孔内淀积金属并刻蚀(去除周边其余的钝化层)形成源极,并将两处源极共接。
本发明采用了特殊的漂移区(由N型漂移区与N+电流通道组成),同时利用AlGaN/GaN异质结形成的二维电子气和N+电流通道构造了新的电流通道,并且采用了P型屏蔽层。由于P型屏蔽层的作用,解决了氮化镓半导体材料在高电压下容易发生源漏穿通的问题,可以减小沟道的浓度以获取合适的阈值电压,而且P型屏蔽层有效降低了栅介质层中的峰值电场,提高了器件的可靠性。在正向导通时,P型屏蔽层几乎不会影响N+电流通道,可以获得较低的导通电阻。在器件关断时,随着漏极电压的升高,P型屏蔽层附近的耗尽区扩展,N+电流通路被夹断后,漂移区承担反向偏压,可以获得较高的击穿电压,因此弱化了击穿电压与漂移区浓度之间的矛盾关系。结合以上优势,与传统垂直型场效应晶体管相比,本发明提出的结构能承受更高的耐压,同时具有更低的导通损耗。
经ISE TCAD仿真表明,本发明的性能较之于传统宽禁带垂直型场效应晶体管明显提升,当两种器件具有相等的击穿电压时,新型器件的导通电阻下降了30%以上。
基于本发明的原理,本领域技术人员应当能够认识到,采用能形成二维电子气的其他宽带隙半导体材料如砷化镓等,属于本发明的等同方案,也应当视为属于本专利申请权利要求的保护范围。
本发明中的垂直型场效应晶体管当然也可以为P型沟道,其结构与N沟道垂直型场效应晶体管等同,也应当视为属于本专利申请权利要求的保护范围,在此不再赘述。

Claims (9)

1.AlGaN/GaN异质结垂直型场效应晶体管,包括:
半导体材料的衬底(10),兼作漏区;
在衬底上外延生长形成氮化镓材料的N型漂移区(9);
分别在N型漂移区(9)上部的左、右两端区域形成的两处P型基区(3)以及相应的N+型源区(2)和P+沟道衬底接触(1);每一处P型基区(3)中形成沟道,其中N+型源区(2)与沟道邻接,P+沟道衬底接触(1)相对于N+型源区(2)位于沟道远端;
源极(7),覆盖P+沟道衬底接触(1)与相应N+型源区(2)相接区域的上表面;两处源极共接;
漏极(11),位于衬底下表面;
其特征在于:
N型漂移区(9)的中间区域通过离子注入形成N+电流通道(12),该N+电流通道(12)纵向贯通N型漂移区(9);N+电流通道(12)的掺杂浓度远高于N型漂移区(9)的掺杂浓度;
在N+电流通道(12)及其两侧与N型漂移区(9)邻接的区域表面异质外延生长有AlGaN层(4),使得AlGaN/GaN异质结能够产生二维电子气(2DEG);
栅介质层(6)一体覆盖两处P型基区(3)相应的沟道部分以及AlGaN层(4)的上表面和侧面;栅介质层(6)表面覆盖栅极(5);
两处P型基区(3)以及相应的N+型源区(2)和P+沟道衬底接触(1)的下方通过离子注入还形成有P型屏蔽层(8)。
2.根据权利要求1所述的AlGaN/GaN异质结垂直型场效应晶体管,其特征在于:所述衬底的材料采用氮化镓。
3.根据权利要求1所述的AlGaN/GaN异质结垂直型场效应晶体管,其特征在于:所述N型漂移区(9)的掺杂浓度比N+电流通道(12)的掺杂浓度小1-3个数量级。
4.根据权利要求1所述的AlGaN/GaN异质结垂直型场效应晶体管,其特征在于:P型屏蔽层(8)与N+电流通道(12)的距离大于或等于0。
5.根据权利要求1所述的AlGaN/GaN异质结垂直型场效应晶体管,其特征在于:所述N型漂移区(9)的掺杂浓度典型值为1×1015cm-3~1×1016cm-3;所述N+电流通道(12)的掺杂浓度典型值为1×1016cm-3~1×1018cm-3
6.根据权利要求1所述的AlGaN/GaN异质结垂直型场效应晶体管,其特征在于:所述P型屏蔽层(8)的掺杂浓度典型值为1×1017cm-3~1×1019cm-3
7.根据权利要求1所述的AlGaN/GaN异质结垂直型场效应晶体管,其特征在于:栅介质层的厚度为0.02~0.1μm。
8.根据权利要求1所述的AlGaN/GaN异质结垂直型场效应晶体管,其特征在于:P型基区(3)的掺杂浓度为1×1016cm-3~1×1017cm-3
9.一种制作权利要求1所述的AlGaN/GaN异质结垂直型场效应晶体管的方法,包括以下步骤:
(1)取氮化镓材料作为衬底,同时作为漏区;
(2)在衬底上形成外延层作为轻掺杂漂移区,即N型漂移区(9);
(3)在外延层中间通过离子注入形成重掺杂漂移区,即N+电流通道(12);
(4)根据所设计击穿电压的要求重复步骤(2)和(3)达到所要求的漂移区厚度;
(5)在外延层上通过异质外延形成AlGaN层;
(6)在指定区域刻蚀去除AlGaN层,在GaN外延层上部的左、右两端区域采用离子注入形成P型屏蔽层、P型基区及其N+型源区和P+沟道衬底接触,形成相应的沟道;
(7)在两侧沟道和中间AlGaN/GaN表面形成栅介质层,并淀积金属形成栅极;
(8)在器件表面淀积钝化层,并在对应于源极的位置刻蚀接触孔;
(9)在接触孔内淀积金属并刻蚀形成源极,并将两处源极共接。
CN201910304396.1A 2019-04-16 2019-04-16 AlGaN/GaN异质结垂直型场效应晶体管及其制作方法 Active CN110021660B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910304396.1A CN110021660B (zh) 2019-04-16 2019-04-16 AlGaN/GaN异质结垂直型场效应晶体管及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910304396.1A CN110021660B (zh) 2019-04-16 2019-04-16 AlGaN/GaN异质结垂直型场效应晶体管及其制作方法

Publications (2)

Publication Number Publication Date
CN110021660A true CN110021660A (zh) 2019-07-16
CN110021660B CN110021660B (zh) 2022-04-01

Family

ID=67191529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910304396.1A Active CN110021660B (zh) 2019-04-16 2019-04-16 AlGaN/GaN异质结垂直型场效应晶体管及其制作方法

Country Status (1)

Country Link
CN (1) CN110021660B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350038A (zh) * 2019-08-02 2019-10-18 厦门亚锝电子科技有限公司 一种基于GaN技术的驱动电源
CN111048584A (zh) * 2019-12-23 2020-04-21 复旦大学 一种高线性氮化镓hbt射频功率器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168335A (ja) * 1999-12-08 2001-06-22 Toyota Central Res & Dev Lab Inc 縦型半導体装置
CN102364688A (zh) * 2011-11-09 2012-02-29 电子科技大学 一种垂直双扩散金属氧化物半导体场效应晶体管
CN103608923A (zh) * 2011-06-20 2014-02-26 加利福尼亚大学董事会 电流孔径垂直电子晶体管
CN107482059A (zh) * 2017-08-02 2017-12-15 电子科技大学 一种GaN异质结纵向逆导场效应管
CN109599434A (zh) * 2018-12-26 2019-04-09 瑞能半导体有限公司 半导体器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168335A (ja) * 1999-12-08 2001-06-22 Toyota Central Res & Dev Lab Inc 縦型半導体装置
CN103608923A (zh) * 2011-06-20 2014-02-26 加利福尼亚大学董事会 电流孔径垂直电子晶体管
CN102364688A (zh) * 2011-11-09 2012-02-29 电子科技大学 一种垂直双扩散金属氧化物半导体场效应晶体管
CN107482059A (zh) * 2017-08-02 2017-12-15 电子科技大学 一种GaN异质结纵向逆导场效应管
CN109599434A (zh) * 2018-12-26 2019-04-09 瑞能半导体有限公司 半导体器件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350038A (zh) * 2019-08-02 2019-10-18 厦门亚锝电子科技有限公司 一种基于GaN技术的驱动电源
CN110350038B (zh) * 2019-08-02 2024-04-19 厦门亚锝电子科技有限公司 一种基于GaN技术的驱动电源
CN111048584A (zh) * 2019-12-23 2020-04-21 复旦大学 一种高线性氮化镓hbt射频功率器件及其制备方法

Also Published As

Publication number Publication date
CN110021660B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN110148629B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
JP5188037B2 (ja) 半導体装置
US9059284B2 (en) Semiconductor device
CN109192772B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN110518058B (zh) 一种横向沟槽型绝缘栅双极晶体管及其制备方法
CN110277439B (zh) 一种碳化硅倒t形掩蔽层结构的mosfet器件及其制备方法
US7772613B2 (en) Semiconductor device with large blocking voltage and method of manufacturing the same
US11588045B2 (en) Fortified trench planar MOS power transistor
CN111668312A (zh) 一种低导通电阻的沟槽碳化硅功率器件及其制造工艺
CN109166917B (zh) 一种平面型绝缘栅双极晶体管及其制备方法
CN110993691A (zh) 双沟道横向超结双扩散金属氧化物宽带隙半导体场效应管及其制作方法
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
CN110021660A (zh) AlGaN/GaN异质结垂直型场效应晶体管及其制作方法
JP2017191817A (ja) スイッチング素子の製造方法
CN116666425B (zh) 一种SiC沟槽型MOSFET器件
CN108231898A (zh) 一种低导通电阻的碳化硅功率半导体器件
CN108172618B (zh) 高k介质沟槽横向双扩散金属氧化物宽带隙半导体场效应管及其制作方法
CN114551586B (zh) 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法
CN105826369A (zh) 一种新型增强型iii-v异质结场效应晶体管
US11804524B2 (en) Semiconductor device and method for producing same
CN113972261A (zh) 碳化硅半导体器件及制备方法
CN112018162B (zh) 一种4H-SiC侧栅集成SBD MOSFET器件及其制备方法
CN104617139A (zh) Ldmos器件及制造方法
CN109888010A (zh) 具有P型屏蔽层的AlGaN/GaN异质结垂直型场效应晶体管及其制作方法
CN110047931A (zh) 碳化硅平面垂直型场效应晶体管及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant