CN109999527B - 一种多流体智能配料控制方法 - Google Patents

一种多流体智能配料控制方法 Download PDF

Info

Publication number
CN109999527B
CN109999527B CN201910340980.2A CN201910340980A CN109999527B CN 109999527 B CN109999527 B CN 109999527B CN 201910340980 A CN201910340980 A CN 201910340980A CN 109999527 B CN109999527 B CN 109999527B
Authority
CN
China
Prior art keywords
temperature
control
liquid level
flow
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910340980.2A
Other languages
English (en)
Other versions
CN109999527A (zh
Inventor
赵奎
孙佳隆
杜兴刚
黄鹰
崔维贤
朱广文
朱波
庄绪铭
王绘忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Jari Industry Control Technology Co ltd
Original Assignee
Qingdao Jari Industry Control Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Jari Industry Control Technology Co ltd filed Critical Qingdao Jari Industry Control Technology Co ltd
Priority to CN201910340980.2A priority Critical patent/CN109999527B/zh
Publication of CN109999527A publication Critical patent/CN109999527A/zh
Application granted granted Critical
Publication of CN109999527B publication Critical patent/CN109999527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种多流体智能配料控制方法,在精馏釜上同步监测温度、压力、液位,通过导热油调节罐内流体温度;精确控制反应釜内温度、压力、液位三者的变化范围;在成品罐内控制液位、压力、温度三者的同步,以液位控制为主,控制进出料口阀门,保证成品罐内温度、压力恒定;反应釜内反应过程,综合考虑温度、流量、压力、液位四者的逻辑关系,在软件上通过逻辑运算功能块实现全量程分段模糊逻辑控制,将温度偏差值转换为流量偏差信号,作为模糊逻辑控制过程中输入侧的干扰条件作用或者影响主控流量参数的差值输入环节,实现了温度、流量、压力、液位四位一体的同步精准控制的要求,保证化工反应过程的安全。

Description

一种多流体智能配料控制方法
技术领域
本发明属于流体控制技术领域,特别涉及一种多流体智能配料控制方法,通过对化工反应过程中相关工艺参数的数据挖掘、数据分析、数据处理,从而实现对多流体配送工艺流程的智能优化与配料流量的精准控制。
背景技术
目前多流体智能配料***处于起步、发展阶段。随着工业化进程的发展,工业结构的优化,企业对工艺产线的升级改造迫在眉睫。目前对配料***流体阀门的控制主要是通过人工手动操作来完成,由于生产环境多为防爆场合,不仅对操作人员提出了更高的素质要求,而且部分生产场所存在一定的安全隐患,对员工的生命安全产生了威胁。另一方面,行业普遍面临劳动力短缺、人力成本不断上升等不利因素也对企业的生产组织及供应链等资源的组合带来了不便,从而引发了自动化、智能化工厂的建设热潮。只有通过建设自动化、信息化、智能化的工艺生产线才能更好的实现产品安全、质量安全,生产安全。
此外,现有技术中的流量控制通常仅靠设置设定值及安全阈值,传感器检测到达到设定值/安全阈值后,即启动/关闭阀门,并没有一套更加智能化的物料管控***及方法,然而物料在反应过程中,并非简单线性变化,一些参数实时变化,因此传统方法简单调控精度较低,不能保证***物料反应处于最优状态。
发明内容
针对现有技术存在的不足,本发明提供一种多流体智能配料控制方法,通过改进模糊算法,并结合主控、辅控对象在不同反应阶段中的动态转换,实现对温度、流量、压力、液位四位一体的同步控制,从而达到提高控制精度;通过计算温度在不同阶段的偏差值,对采集温度进行实时修正补偿;反应过程综合考虑温度、流量、压力、液位四者的逻辑关系,保证反应过程的恒温、恒压,根据不同反应阶段的特性,调整催化剂的流量与产品的液位,及时更换主控对象、辅控对象,保证化工反应过程的安全。
为了解决上述技术问题,本发明采用的技术方案是:
一种多流体智能配料控制方法,在精馏釜上同步监测温度、压力、液位,通过导热油调节罐内流体温度;精确控制反应釜内温度、压力、液位三者的变化范围;在成品罐内控制液位、压力、温度三者的同步,以液位控制为主,控制进出料口阀门,保证成品罐内温度、压力恒定;其中,反应釜内反应过程,综合考虑温度、流量、压力、液位四者的逻辑关系,在软件上通过逻辑运算功能块实现全量程分段模糊逻辑控制,所述的逻辑运算功能块,用于处理温度参数偏差值,将温度偏差值转换为流量偏差信号,作为模糊逻辑控制过程中输入侧的干扰条件作用或者影响主控流量参数的差值输入环节。
进一步的,流量与温度的模糊逻辑控制算法是:
(1)依据机械结构计算出反应釜的主体部分的总容积V,作为公式1,且体积V是一个已知的常数;
(2)依据试验过程参数初步确定了反应釜热量损耗Q1与反应釜温度t的一个理论曲线,总结出一套逻辑公式2;
(3)结合工艺过程以及热量的转化率初步计算出滴加流量q与反应釜内温度t的一个理论曲线,总结出另一套逻辑公式3;
(4)整合公式2、3,可以得出流量q与反应釜内温度t的一个实际的函数公式4;
(5)基于此,可以完成流量与温度不同对象的转换,流量参数最终实现的是温度参数的输入控制。
进一步的,步骤(2)中,逻辑公式2为
Q1=K1t,30℃<t≤100℃,和
Q1=100K1+K2,100℃<t<180℃,
其中K2是一个常数;K1与V成线性关系;流体温度<30℃时状态会发生变化,而且第一步精馏釜会通过180℃导热油对罐内流体进行加热,保证流体的状态与特性,进入后续环节流料温度肯定会大于30℃且小于180℃。
进一步的,步骤(3)中,逻辑公式3为
t=K3q+t1
其中t1代表反应釜内初始温度,是一个已知常数;K3是一个近似于正切的逻辑函数,选取反应釜内控制温度是30℃-180℃范围,将K3参数简化与分段,转换成为一个不同温度段下的线性常数。
进一步的,步骤(4)中
公式4为
t=K3q+t1-Q1=K3q+t1-K1t,30℃<t≤100℃,和
t=K3q+t1-100K1-K2,100℃<t<180℃。
与现有技术相比,本发明优点在于:
(1)通过改进模糊算法,并结合主控、辅控对象在不同反应阶段中的动态转换,实现对温度、流量、压力、液位四位一体的同步控制,从而达到提高控制精度;
(2)通过计算温度在不同阶段的偏差值,对采集温度进行实时修正补偿,消除温度滞后造成的影响,保证温度采集数据的准确可靠;
(3)结合现场工艺流程与环境条件设计了符合反应釜温控曲线的温度调节功能块(逻辑运算功能块),以温度为主控参数,压力为辅控参数,流量、液位为干扰参数,进一步分解了各参数之间的逻辑关系,运算功能块可以针对同一个被控对象结合2个甚至多个不同的控制参数进行设定值与实际值的输出混合控制,实现了温度、流量、压力、液位四位一体的同步精准控制的要求;
(4)控制过程分段处理,将变量参数进行全量程分段的模糊控制,根据不同反应阶段的特性,调整流量与液位,保证每一个量程段参数的相对匹配,保证控制的快速性需求和稳定性要求的平衡。
附图说明
图1为本发明的流程图;
图2为本发明的管控***架构图;
图3为本发明的逻辑运算功能块原理图;
图4为传统温度控制调优后的控制曲线图;
图5为改进型温度控制调优后的控制曲线图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的说明。
本发明在物料的反应过程中,通过控制各反应参数及阀门的开启,保证化工反应过程的精确与安全。如图1所示,多流体智能配料***机械组成上包括精馏釜、反应釜和成品罐。针对车间现有各模块、各分站信息交互效率低、数据共享困难、不易操作的问题,建立了智能化的多流体智能配料管控***,通过基于***容错的集群技术实现控制***的不间断安全运行。***要求稳定可靠,采用了S7-400软冗余的方案,其***架构如图2所示。
***是由两套独立的S7-414-5H PLC***组成,冗余***能够实现:主机架电源、背板总线等冗余;PLC处理器冗余;PROFIBUS现场总线网络冗余(包括通讯接口、总线接头、总线电缆的冗余);ET200M站的通讯接口模块IM153-2冗余。冗余***由A和B两套PLC控制***组成。开始时,A***为主,B***为备用,当主***A中的任何一个组件出错,控制任务会自动切换到备用***B当中执行,这时,B***为主,A***为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153接口模块的整体切换。***运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备***切换。先进的***集成和设备接口模块,充分实现了***内部各类信息互通,完成智能管控的数据挖掘、数据分析、数据优化等功能。通过智能化的生产管理***,最大程度上实现了生产信息的共享和生产管理的智能化,达到了资源的最优配置。
软件上,根据对已有工艺参数数据的提取、分析,定制开发专用软件算法模块,通过逻辑控制器驱动执行单元实现精准的配料控制。软件上采用模糊PID控制算法代替数字控制算法,将常规的数字控制器升级为模糊控制器,通过软件实现模糊化、模糊推理以及反模糊化的控制过程,实现反应过程对温度、流量、压力、液位四者的同步控制,提高产品的转化率和产品质量。
下面结合图1说明本发明的多流体智能配料控制方法步骤。
在精馏釜上同步监测温度、压力、液位,***通过导热油对夹套循环加热来提高精馏釜的温度,当反应釜温度、压力过高时,要调节导热油配送流量。该阶段温度控制为主,液位控制为辅,压力控制为辅。
液碱通过计量罐配送到反应釜,化学反应过程中会导致温度、压力升高,需要精准控制反应釜内温度、压力、液位三者的变化范围,保证反应过程的充分,提高反应过程的有效性。该阶段温度控制为主,压力控制为辅,液位控制为辅。
在成品罐内控制液位、压力、温度三者的同步,以液位控制为主,控制进出料口阀门实现远程精准调控,减少闭环反馈扰动,保证成品罐内温度、压力恒定,保证成品罐内储存环境的稳定。
其中,反应釜内反应过程,综合考虑温度、流量、压力、液位四者的逻辑关系,保证反应过程的恒温、恒压;又要根据不同反应阶段的特性,调整催化剂的流量与产品的液位,及时更换主控对象、辅控对象,保证化工反应过程的安全。该功能的实现通过软件算法实现。在软件上通过逻辑运算功能块实现全量程分段模糊逻辑控制,所述的逻辑运算功能块,用于处理温度参数偏差值,将温度偏差值转换为流量偏差信号,作为模糊逻辑控制过程中输入侧的干扰条件作用或者影响主控流量参数的差值输入环节。此逻辑运算实现基础是温度对象变化不大,不足以对流量对象或者反应过程产生致命的影响,因此干扰作用于主控对象效果是一种正向的优化。
逻辑运算功能块原理如图3所示,逻辑运算功能块中流量与温度的模糊逻辑控制算法是:
(1)依据机械结构计算出反应釜的主体部分的总容积V,作为公式1,且体积V是一个已知的常数;
(2)因为反应釜采用循环水隔热,依据试验过程参数初步确定了反应釜热量损耗Q1与反应釜温度t的一个理论曲线,总结出一套逻辑公式2。
逻辑公式2为:
Q1=K1t,30℃<t≤100℃,和
Q1=100K1+K2,100℃<t<180℃,
其中K2是一个常数;K1与V成线性关系,可以理解为一个常数;流体温度<30℃时状态会发生变化,而且第一步精馏釜会通过180℃导热油对罐内流体进行加热,保证流体的状态与特性,进入后续环节流料温度肯定会大于30℃且小于180℃。
(3)结合工艺过程以及热量的转化率初步计算出滴加流量q与反应釜内温度t的一个理论曲线,总结出另一套逻辑公式3。
逻辑公式3为:t=K3q+t1
其中t1代表反应釜内初始温度,是一个已知常数;K3是一个近似于正切的逻辑函数,选取反应釜内控制温度是30℃-180℃范围,是曲线中比较平缓的一段,将K3参数简化与分段,转换成为一个不同温度段下的线性常数。
(4)整合公式2、3,可以得出流量q与反应釜内温度t的一个实际的函数公式4:
t=K3q+t1-Q1=K3q+t1-K1t,30℃<t≤100℃,和
t=K3q+t1-100K1-K2,100℃<t<180℃。
(5)基于此,可以完成流量与温度不同对象的转换,流量参数最终实现的是温度参数的输入控制。
逻辑运算功能块中温度差值的控制逻辑:
采用改进型的温度控制方式,通过前后2次输出差值的计算达到精确控制,首先我们得到采样时刻K的控制输出值uk,由式(1)计算得出:
Figure BDA0002040689080000061
再得到前一采样时刻K-1的输出控制值uk-1,由式(2)计算得出:
Figure BDA0002040689080000062
将式(1)与式(2)合并整理得到前后不同时刻输出的偏差值△uk,由式(3)计算得出:
Figure BDA0002040689080000063
其中:
Figure BDA0002040689080000064
Figure BDA0002040689080000065
Figure BDA0002040689080000066
式中:
Kp为比例系数;
ek为k时刻输入实时值;
ek-1为k的前第一个采样周期时刻输入实时值;
ek为k的前第二个采样周期时刻输入实时值;
化简后由上式可以推出***首先要选取合适的采样周期T,保证采样频率大于2倍以上的信号频率。根据反应釜高温***的特点选取A、B、C合适的PID调节参数,取前后三次误差值的平均,通过A、B、C参数调节达到稳定的调节状态。
传统PID温度控制与改进型PID温度控制算法对反应釜温度调节曲线下图4、5所示。传统PID的温度控制在超调、振荡方面存在明显不足,无论如何优化比例、微分、积分三个参数,输出结果必定会出现超调与震荡情况,只是衰减周期会改善或者加剧而已。改进型PID温度控制算法在稳定性方面具有明显优势,可以保证输出结果单向无限接近理论值但绝不会超调,同时震荡以及衰减周期可以控制的非常小,保证控制过程的平稳与精准。
当然,上述说明并非是对本发明的限制,本发明也并不限于上述举例,本技术领域的普通技术人员,在本发明的实质范围内,做出的变化、改型、添加或替换,都应属于本发明的保护范围。

Claims (1)

1.一种多流体智能配料控制方法,其特征在于,在精馏釜上同步监测温度、压力、液位,通过导热油调节罐内流体温度;精确控制反应釜内温度、压力、液位三者的变化范围;在成品罐内控制液位、压力、温度三者的同步,以液位控制为主,控制进出料口阀门,保证成品罐内温度、压力恒定;其中,反应釜内反应过程,综合考虑温度、流量、压力、液位四者的逻辑关系,在软件上通过逻辑运算功能块实现全量程分段模糊逻辑控制,所述的逻辑运算功能块,用于处理温度参数偏差值,将温度偏差值转换为流量偏差信号,作为模糊逻辑控制过程中输入侧的干扰条件作用或者影响主控流量参数的差值输入环节;
流量与温度的模糊逻辑控制算法是:
(1)依据机械结构计算出反应釜的主体部分的总容积 V,作为公式 1,且体积 V是一个已知的常数;
(2)依据试验过程参数初步确定了反应釜热量损耗 Q1 与反应釜温度 t 的一个理论曲线,总结出一套逻辑公式2;
(3)结合工艺过程以及热量的转化率初步计算出滴加流量 q 与反应釜内温度 t的一个理论曲线,总结出另一套逻辑公式3;
(4)整合公式 2、3,可以得出流量 q 与反应釜内温度 t 的一个实际的函数公式4;
(5)基于此,可以完成流量与温度不同对象的转换,流量参数最终实现的是温度参数的输入控制;
步骤(2)中,逻辑公式2 为
Q1=K1t , 30℃<t≤100℃,和
Q1=100K1+ K2,100℃<t<180℃,
其中 K2是一个常数;K1与V成线性关系;流体温度<30℃时状态会发生变化,而且第一步精馏釜会通过180℃导热油对罐内流体进行加热,保证流体的状态与特性,进入后续环节流料温度肯定会大于30℃且小于180℃;
步骤(3)中,逻辑公式3为t=K3q+t1,其中 t1代表反应釜内初始温度,是一个已知常数;K3是一个近似于正切的逻辑函数,选取反应釜内控制温度是 30℃-180℃范围,将 K3参数简化与分段,转换成为一个不同温度段下的线性常数;
步骤(4)中公式 4 为
t=K3q+t1-Q1= K3q+t1- K1t, 30℃<t≤100℃,和
t= K3q+t1- 100K1- K2, 100℃<t<180℃。
CN201910340980.2A 2019-04-25 2019-04-25 一种多流体智能配料控制方法 Active CN109999527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910340980.2A CN109999527B (zh) 2019-04-25 2019-04-25 一种多流体智能配料控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910340980.2A CN109999527B (zh) 2019-04-25 2019-04-25 一种多流体智能配料控制方法

Publications (2)

Publication Number Publication Date
CN109999527A CN109999527A (zh) 2019-07-12
CN109999527B true CN109999527B (zh) 2021-10-15

Family

ID=67174294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910340980.2A Active CN109999527B (zh) 2019-04-25 2019-04-25 一种多流体智能配料控制方法

Country Status (1)

Country Link
CN (1) CN109999527B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513001A (zh) * 2021-08-13 2021-10-19 北京奥特美克科技股份有限公司 一种测控一体化闸门的水量控制方法、装置和电子设备
CN115193342B (zh) * 2022-07-04 2024-04-05 中国科学院过程工程研究所 一种稳定浆料态物料流量的方法及实现其的装置与应用
CN115309215B (zh) * 2022-08-05 2023-03-07 福建省龙氟新材料有限公司 氟化铵制备用的自动配料控制***及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916207A (ja) * 1995-06-26 1997-01-17 Idemitsu Kosan Co Ltd ハイブリッド制御方法
CN201477408U (zh) * 2009-08-31 2010-05-19 兰州交通大学 仿人逻辑控制器及用于动态配料***的控制装置
CN102516058A (zh) * 2011-12-27 2012-06-27 岳阳亚王精细化工有限公司 一种5-氯戊酰氯合成装置
CN103030720A (zh) * 2011-09-30 2013-04-10 中国石油化工股份有限公司 一种间歇液相本体法生产聚丙烯的设备和方法
CN105974953A (zh) * 2016-07-06 2016-09-28 曲阜师范大学 一种反应釜负压精馏模糊控制方法
CN108004140A (zh) * 2018-01-30 2018-05-08 济南大学 一种生物反应器全参数检测***及其测量控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0916207A (ja) * 1995-06-26 1997-01-17 Idemitsu Kosan Co Ltd ハイブリッド制御方法
CN201477408U (zh) * 2009-08-31 2010-05-19 兰州交通大学 仿人逻辑控制器及用于动态配料***的控制装置
CN103030720A (zh) * 2011-09-30 2013-04-10 中国石油化工股份有限公司 一种间歇液相本体法生产聚丙烯的设备和方法
CN102516058A (zh) * 2011-12-27 2012-06-27 岳阳亚王精细化工有限公司 一种5-氯戊酰氯合成装置
CN105974953A (zh) * 2016-07-06 2016-09-28 曲阜师范大学 一种反应釜负压精馏模糊控制方法
CN108004140A (zh) * 2018-01-30 2018-05-08 济南大学 一种生物反应器全参数检测***及其测量控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《有机硅生产集成控制***的研究与应用》;刘鹤;《工程科技Ⅰ辑》;中国学术期刊(光盘版)电子杂志社;20170215(第2期);B016-154,第2.2.2节、第3.3.1节、第3.3.3节、第4.1节、第4.2节、第5.1.2节 *

Also Published As

Publication number Publication date
CN109999527A (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
CN109999527B (zh) 一种多流体智能配料控制方法
CN105974953B (zh) 一种反应釜负压精馏模糊控制方法
CN105122162A (zh) 用于硬件组件的遥控的控制***和方法
US7024665B2 (en) Control systems and methods for translating code from one format into another format
CN103268069A (zh) 基于Hammerstein模型的自适应预测控制方法
Tandon et al. Genetic algorithm based parameter tuning of PID controller for composition control system
CN107512754B (zh) 一种用于水处理的粉末活性炭加药自动控制***
US11796977B2 (en) PID controller autotuner using machine learning approaches
CN115591493A (zh) 一种反应釜温度控制方法
CN113448357A (zh) 一种水电站泄洪闸门集成控制方法及***
CN115344064A (zh) 一种阀门流量的控制方法、装置及电子设备
CN102520617A (zh) 一种炼油工业过程的部分解耦非最小化模型预测控制方法
CN104267754B (zh) 反应堆入口压力智能调节***及其控制方法
CN102520618A (zh) 误差容忍限机制下的焦化加热炉辐射出口温度控制方法
CN105353618B (zh) 一种批次注塑过程的约束跟踪控制方法
CN101995845A (zh) 基于fpga的自调匀整控制***及控制方法
CN104615161A (zh) 一种基于模型预测的双回路水箱液位控制方法
CN105271398A (zh) 水解集成***及其工作方法
CN116009398A (zh) 一种汽柴油混油段分割方法及相关装置
Kulіnchenko et al. Development of extreme regulator of separation moisture from the gas stream
CN115271318A (zh) 一种能源回收调度方法及装置
Li et al. Research of predictive PID algorithm Simulation in drawing roller temperature control
Mansano et al. A new adaptive controller in wireless networked control systems: Developing a robust and effective controller for energy efficiency
Chu et al. Process control: Art or practice
Guojun et al. A real-time updated model predictive control strategy for batch processes based on state estimation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant