CN109975807B - 一种适用于毫米波车载雷达的降维子空间测角方法 - Google Patents

一种适用于毫米波车载雷达的降维子空间测角方法 Download PDF

Info

Publication number
CN109975807B
CN109975807B CN201910238433.3A CN201910238433A CN109975807B CN 109975807 B CN109975807 B CN 109975807B CN 201910238433 A CN201910238433 A CN 201910238433A CN 109975807 B CN109975807 B CN 109975807B
Authority
CN
China
Prior art keywords
signal
matrix
subspace
transmitting
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910238433.3A
Other languages
English (en)
Other versions
CN109975807A (zh
Inventor
黄永明
李杨
王海明
张铖
宋依欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910238433.3A priority Critical patent/CN109975807B/zh
Publication of CN109975807A publication Critical patent/CN109975807A/zh
Application granted granted Critical
Publication of CN109975807B publication Critical patent/CN109975807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,其包括以下步骤:首先提出采用波束域MUSIC算法来降低计算复杂度和内存占用,并利用先验信息来优化波束形成矩阵设计;其次,提出了一种新的MUSIC估计子,反映出关于信号子空间的更精细的尺度信息;此外,针对单快拍下两个相邻信号相干的情况,修改了接收信号估计样本协方差矩阵的数学表达式,以增强噪声子空间和信号子空间的正交性,保持其Toeplitz结构,采用子波束空间平均的方法,在每个子波束空间满秩的条件下,提高样本协方差矩阵的估计精度。

Description

一种适用于毫米波车载雷达的降维子空间测角方法
技术领域
本发明属于雷达信号处理领域,尤其涉及一种适用于毫米波车载雷达的降维子空间测角方法。
背景技术
近些年来,自动驾驶领域蓬勃发展,自动巡航,盲区检测,前向防冲撞等都是其典型的应用场景。毫米波雷达***是自动驾驶技术领域不可或缺的一环,它在较为恶劣的气候环境例如多雾,弱光等情况下具有良好的性能,这是激光雷达,摄像头等其他传感器所不具备的。其中调频连续波(FMCW)雷达是一种通过对连续波进行频率调制来获得距离与速度信息的毫米波雷达体制,在过去很长一段时间内FMCW雷达应用被限制在很小的范围内。进入九十年代,固态微波毫米波器件和数字信号处理技术的发展为毫米波FMCW雷达发展奠定了基础。毫米波雷达在军用、民用方面有着极其深远的应用价值,其优点可以概括如下:
1、有大量带宽可以使用,提高测距分辨率,有效消除相互干扰,无测速盲区。
2、波长较短,波束宽度窄,天线增益高,可以提高空间分辨率,同时元件尺寸小,重量轻。
3、大气吸收作用比微波强,衰减大,不易相互干扰,减少电磁污染。
基于FMCW上述的优点,其在车载雷达***中也得到了广泛的使用。
除了传统对于目标距离和速度的检测,车载毫米波雷达还对目标到达角估计提出了较高的需求。在过去的几十年内,MUSIC算法由于其优越的性能,一直被认为是一种有效的子空间角度估计算法。但是MUSIC算法的一大问题是其通常包含对于大量传感器接收到的阵列信号数据的特征值分解和谱峰搜索操作,计算量非常庞大,尤其是在车载毫米波FMCW雷达***中,其DSP处理芯片数目有限,对于计算复杂度和内存占用提出了非常高的要求。此外车载雷达应用场景下的来波方向估计是在目标所在的特定距离、多普勒单元进行的,实际上针对的是一个单快拍的接收信号数据,当存在多个相邻目标时,接收信号无法认为是非相干信号,接收信号协方差矩阵的Toeplitz结构遭到破环,这对测角方案也提出了新的要求。
发明内容
发明目的:针对以上问题,本发明提出了一种适用于毫米波车载雷达的降维子空间测角方法,一方面满足低计算复杂度和内存占用量的要求,另一方面无论是单目标还是多目标的情况下都具有优越的测角性能。
技术方案:为实现本发明的目的,本发明所采用的技术方案是如下:为了方便本部分的描述,表1列出了本发明中所有常用参数的说明。
表1常用参数说明
Figure BDA0002008924840000021
本发明公开的一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,包括以下步骤。
步骤1:建立毫米波车载雷达***的空间谱估计数学模型,得到发射信号和接收信号的数学表达式;
步骤2:利用毫米波车载雷达***所需的发射天线和接收天线的数目和布局,在步骤1的基础上拓展建立多收发情况下对接收信号混频后的中频信号的三维数据结构;
步骤3:对步骤2所得的三维接收信号数据在快时间维和慢时间维分别进行FFT,得到探测到的目标车辆的距离和速度信息及其对应的距离多普勒单元上的天线阵列的接收信号数据向量Y;
步骤4:利用车载雷达所需探测车辆所在的方位向角度范围信息,计算优化的波束形成矩阵Bopt,将特定距离多普勒单元上的天线阵列的接收信号数据向量Y从阵元域转化到波束域,得到波束域接收信号向量YB
步骤5:利用步骤4所得的波束域接收信号矩阵YB计算样本协方差矩阵
Figure BDA0002008924840000031
并对
Figure BDA0002008924840000032
进行修正,得到修正样本协方差矩阵
Figure BDA0002008924840000033
步骤6:对步骤5修正的样本协方差矩阵
Figure BDA0002008924840000034
进行特征值分解,得到噪声子空间
Figure BDA0002008924840000035
利用
Figure BDA0002008924840000036
Figure BDA0002008924840000037
建立新的MUSIC估计子feMUSIC,进行谱峰搜索,得到来波方向估计
Figure BDA0002008924840000038
进一步的,所述步骤1中,毫米波车载雷达***的发射信号波形为一组载频为f0在发射周期内具有一定扫频带宽的线性调频连续波信号(LFMCW),多个发射天线依次分时发射,在t时刻,第i个周期的发射信号st(t,i)的表达式为:
Figure BDA0002008924840000039
其中,A,f0,
Figure BDA00020089248400000310
分别是发射信号幅度大小,载波频率以及初始相位,μ=B0/T是调频斜率,其中B0是扫频带宽,T是一个线性调频连续波的周期。考虑当t=0时,在雷达的前方与目标车辆的径向距离为r,径向速度为v的目标,在本发明中沿径向速度靠近雷达方向为正,故接收信号sr(t,i)的表达式可以写为:
Figure BDA00020089248400000311
其中,A0是接收信号的幅度,τ=2(r-vt)/c是目标和雷达之间的距离带来的时延,c是光速。接收信号和原始发射信号进行混频操作,并通过低通滤波器获得中频信号也称差拍信号。在t时刻,第i个周期差拍信号的表达式sIF(t,i)可以写为:
Figure BDA00020089248400000312
进一步的,在步骤2中,考虑毫米波车载雷达***有Nt根发射天线,Nr根接收天线,Nt根发射天线轮流发射相同的调频连续波,总的发射周期长度T1=Nt·T,并组成虚拟阵列。一次信号处理流程时间内共发射Nsa个线性调频连续波。在第i个发射周期内,第k根接收天线的接收的第m根发射天线发射信号的回波复信号为:
Figure BDA0002008924840000041
其中,i=1,...,Nsa,m=1,...,Nt,k=1,...,Nr,A,A0,f0,
Figure BDA0002008924840000042
分别是发射信号幅度,接收信号的信号幅度,载波频率以及初始相位,μ=B0/T是调频斜率,其中,B0是扫频带宽,T是发射周期长度,d是天线间距,θ是目标所在的方位角大小。
对每一个发射信号yk,i(t)进行采样,采样点数为Ns=fsT,其中,fs是DSP数字芯片的采样频率。则在第i个发射周期内,第k根接收天线的接收的第m根发射天线发射信号的回波复信号采样信号
Figure BDA0002008924840000043
Figure BDA0002008924840000044
表示在第i个发射周期内,第k根接收天线的接收的第m根发射天线发射信号的回波复信号的第j个采样。在一个信号处理流程周期T2内,其中,T2=Nsa·Nt·T,第k根接收天线接收的第m根发射天线发射信号的采样信号
Figure BDA0002008924840000045
为:
Figure BDA0002008924840000046
将一个发射周期T1内相同接收天线接收的不同发射天线发射信号的回波信号进行合并,第i个发射周期内的接收信号为
Figure BDA0002008924840000047
整个信号处理流程T2时间内形成虚拟阵列
Figure BDA0002008924840000048
Figure BDA0002008924840000051
Figure BDA0002008924840000052
其中,i=1,...,Nsa,T1=Nt·T,故中频信号数据矩阵为NtNr×Nsa×Ns,为一个三维数据矢量、时间维,也即快时间维、速度维,也即慢时间维、和由于多发多收虚拟阵列所带来的相位维,数据结构见附图。
进一步的,所述步骤3中,对步骤1所得到的回波信号表达式,按照步骤2中的定义对接收数据的快时间维和慢时间维进行FFT。
将接收信号沿着快时间维进行加窗FFT处理,以第i个发射周期内,第k根接收天线的接收信号
Figure BDA0002008924840000053
为例:
Figure BDA0002008924840000054
式中,i=1,...,Nsa,k=1,...,Nr,wq为窗函数,是NS×1的列向量,符号⊙代表两个矢量的Hadamard积,即对应元素相乘,fft(·)指对信号做FFT运算,
Figure BDA0002008924840000055
表示第i个发射周期内,第k根接收天线沿着快时间维做完加窗FFT以后的接收信号。
假设存在距离为r,速度为v的目标,则对快时间维进行FFT之后,目标频谱峰值位置为:
Figure BDA0002008924840000056
因为锯齿波扫频周期T非常小,所以fr,v≈2B0r/cT。因此,快时间维可以等效为距离维,频谱单元可以等效为距离单元。
对每个发射周期、每根天线的接收信号进行加窗FFT,得到
Figure BDA0002008924840000061
NqFFT为快时间维FFT点数。
对YVF进行慢时间维FFT,以第k根接收天线,第l个频谱单元数据
Figure BDA0002008924840000062
为例:
Figure BDA0002008924840000063
式中,k=1,...,Nr,l=1,...,Ns,ws为窗函数,是Nsa×1的列向量,
Figure BDA0002008924840000064
表示第k根接收天线,第l个频谱单元沿着慢时间维做完加窗FFT处理以后的接收信号。
则对慢时间维进行FFT之后,目标频谱峰值位置为:
Figure BDA0002008924840000065
慢时间维FFT后,目标频谱峰值所在位置只与速度有关,因此慢时间维可以看成速度维。
对每根接收天线,不同距离单元的接收信号进行慢时间维FFT,得到
Figure BDA0002008924840000066
NsFFT为慢时间维FFT点数。
考虑由fr,v及fv所确定的第i个距离维单元,第l个速度维单元内存在一个目标车辆,取目标所在频谱单元的复矢量
Figure BDA0002008924840000067
记为Y:
Figure BDA0002008924840000068
所述i=1,...,NqFFT,l=1,...,NsFFT
进一步的,所述步骤4中,考虑一个均匀等距直线阵,阵元数为M,阵元间距为d,K个远场窄带信号源,其中K≤M,快时间维采样点数,也称快拍数为N。远场窄带信号源模型为:
Y=AS+N
式中,Y为阵列M×N的接收信号,A为M×K的阵列流形矩阵,S为K×N的发射信号矢量,此处S每一行即为步骤1中sIF(t,i)采样后的矩阵形式。在考虑Ν为M×N的加性高斯白噪声矢量矩阵,快拍数N=1时,Y即为步骤3中的目标所在频谱单元的复矢量Y。
认为波束形成矩阵B的维度为M×B,且B≤M,同时B是一个标准正交阵:
BHB=I
在车载毫米波雷达***的应用场景中,视场(FOV)是一个有限的角度范围,我们不需要设计一个覆盖360度的波束形成器。在这样的前提下,可以认为所需探测车辆的方位角信息在已知的角度范围内,利用方位角的范围信息,我们得到一个优化的波束形成矩阵。
在存在两辆待探测车辆的情况下,为了更加准确的估计出两辆车所在的方位角,我们需要设计一个优化的波束形成矩阵。优化的波束形成矩阵Bopt需要满足以下条件:由导向向量a(θ1),a(θ2),以及a(θm)所确定的子空间包含于Bopt的各列所确定的子空间中.θ1,θ2是两个目标所在方位角,并且θm可以定义为:
θm=(θ12)/2
当毫米波车载雷达应用场景下,可以采用如下的方法去获得优化的波束形成矩阵Bopt
Figure BDA0002008924840000071
Βopt=[υ1 … υB]
其中,a(θ)是阵列的导向矢量,θa和θb是方位角范围的边界,υi是Q的B个大特征值(λ1≥λ2≥…≥λB>λB+1≥λB+2≥…≥λM=σ2)作为主对角线元素的对角矩阵,Βopt是以υi为列矢量所组成的矩阵,i=1,2,...B。
步骤3所述的特定距离多普勒单元上接收信号复向量Y要经过一个波束形成器,其波束形成矩阵为本步骤所述的Bopt,通过该波束形成器,将接收信号Y从阵元域转化到波束域,得到波束域接收信号向量YB
YB=Bopt HY
进一步的,所述步骤5中,波束域接收信号向量YB的样本协方差矩阵
Figure BDA0002008924840000072
可以表示为:
Figure BDA0002008924840000081
其中,I是单位矩阵,T=Bopt HA是波束域等效的阵列流型矩阵,A为的导向矢量矩阵,Rs=E[SSH]为发射信号的自协方差矩阵,RB是不考虑噪声情况下接收信号波束域的协方差矩阵,σ2高斯白噪声的方差。
由于接收信号长度是有限的,样本协方差矩阵
Figure BDA0002008924840000082
是一个对协方差的一个估计值,其在实际应用中的计算表达式通常写为:
Figure BDA0002008924840000083
其中,YB(i)是波束域接收信号向量YB的第i个元素。在车载雷达单快拍的情况下,只有B个数据可以使用,这严重影响了协方差矩阵估计的准确性,从而影响了角度估计的有效性。在单快拍(N=1)的情况下,波束域接收信号模型根据步骤4中所述的远场窄带信号源模型的可以修正为:
YB=BHAS+BHN
其中,YB=[Y1,Y2,…,YB]T,为一个B×1的列矢量,Yi为YB的第i个元素,i=1,..B,B为波束形成器维数。
如果YB是一个宽平稳过程,根据工程矩阵和数字信号处理的知识可以知道,宽平稳过程的协方差矩阵
Figure BDA0002008924840000084
一定是一个共轭对称的Toeplitz矩阵,所以样本协方差矩阵可以写为:
Figure BDA0002008924840000085
Figure BDA0002008924840000086
上第i条对角线的元素ri为空域的自相关函数可以写为:
ri=E[Ym+iY* m]
其中,Ym+i表示YB中第m+i个元素,i=0,..B-1,此处是一个单快拍的情况,所以从矩阵降维成了一个矢量,因为可以看成一个随机过程,所以如果YB还是遍历过程,那么我们可以用时间上的平均值去代替样本的数学期望,所以ri可以进一步写为:
Figure BDA0002008924840000091
在实际中,我们使用以下的公式去计算样本协方差矩阵:
Figure BDA0002008924840000092
如果YB=[Y1,Y2,…,YB]T,考虑到信号的因果性,那么
Figure BDA0002008924840000093
最终可以写为:
Figure BDA0002008924840000094
但是以上用于估计样本协方差的表达式实际上一个有偏估计子,
Figure BDA0002008924840000095
和ri之间的差距为:
Figure BDA0002008924840000096
特别是当
Figure BDA0002008924840000097
不成立的时候,这个偏差是不能够忽略不计的。
为了提高单快拍情况下波束域MUSIC测角算法的性能,我们修正
Figure BDA0002008924840000098
来确保它是一个无偏的估计子,不难发现在采用下式进行修正之后
Figure BDA0002008924840000099
恒等于0,进而获得新的
Figure BDA00020089248400000910
的表达式。
Figure BDA00020089248400000911
Figure BDA00020089248400000912
从上面等式可以看出,要保证
Figure BDA00020089248400000913
是可物理实现的,就需要保证Y的下标满足1≤m+i≤B。也是说对某一个固定的i,有B-i个数据可以被使用,可以做B-i次的平均。例如对于r0,我们可以用B个数据去计算,这等效于去做了B次的平均,而对于rB-1,只能用1个数据来估计,相当于没有做任何的平均,这对协方差矩阵
Figure BDA0002008924840000101
估计是不利的。
所以实际上ri中最大的i通常不会取到B-1,而是通常会取B的2/3~4/5。但是这么做减少了天线阵列的孔径大小,自由度的降低也意味着可以估计的信号源数目减少。所以在本发明中还采用划分子波束的方法,每一个子波束的维度是L×L,第ith个子波束Rii即为原始样本协方差矩阵
Figure BDA0002008924840000102
中从第i行到第i+L行,第i列到第i+L列的数据块。在保证每个子波束满秩的情况下,提高样本协方差矩阵的准确性。
最后用于MUSIC算法测角的样本协方差矩阵表达式为:
Figure BDA0002008924840000103
其中,P为子波束个数,满足B=L+P-1,子波束划分的示意图见附图2。
进一步的,所述步骤6中,对步骤5得到的修正吼的样本协方差矩阵
Figure BDA0002008924840000104
进行特征值分解,得到噪声子空间
Figure BDA0002008924840000105
由于信号与噪声相互独立,样本协方差矩阵可分解为与信号、噪声相关的两部分。对
Figure BDA0002008924840000106
进行特征分解有:
Figure BDA0002008924840000107
式中,Σs是以
Figure BDA0002008924840000108
特征分解所得到的前K个最大特征值λ1≥λ2≥…≥λK作为主对角线元素的对角矩阵,Σo
Figure BDA0002008924840000109
剩余的L-K个特征值λK+1≥λK+2≥…≥λL=σ2作为其主对角线元素的对角矩阵,其中L是
Figure BDA00020089248400001010
的维数,K是探测目标车辆数目,σ2是噪声的方差。
Figure BDA00020089248400001011
是由前K个最大特征值λ1≥λ2≥…≥λK对应的特征矢量张成的子空间也即信号子空间,而
Figure BDA00020089248400001012
是由特征值λK+1≥λK+2≥…≥λL=σ2对应的特征矢量张成的子空间也即噪声子空间。
在步骤6中,提出的新的MUSIC空间谱函数可以写为:
Figure BDA00020089248400001013
式中,b(θ)=<BHa(θ)>L是波束域的导向矢量的前L个元素,<·>L表示取列矢量的前L个元素操作,
Figure BDA0002008924840000111
Figure BDA0002008924840000112
的伪逆。理想条件下,假设存在一个方位角度为θi的目标车辆,对θ∈[0° 360°]进行遍历,当θ=θi时,
Figure BDA0002008924840000113
si是方位向角度为θi的探测目标车辆i所对应的
Figure BDA0002008924840000114
特征值分解所得的特征值。且在理想情况下信号子空间与噪声子空间是相互正交的,也就是说信号子空间中的导向矢量也与噪声子空间正交,即:
Figure BDA0002008924840000115
Figure BDA0002008924840000116
由于噪声存在,所以信号子空间中的导向矢量也与噪声子空间不能完全正交,所以实际上空间谱估计的方位角估计是以对θ∈[0° 360°]进行遍历,最大值优化搜索实现的,即探测到的目标车辆的方位角估计
Figure BDA0002008924840000117
为:
Figure BDA0002008924840000118
其中,
Figure BDA0002008924840000119
操作表示求取当
Figure BDA00020089248400001110
取得最大值时对应的θ值。
有益效果:与现有技术相比,本发明的技术方案具有以下有益技术效果:
针对毫米波车载雷达***数字信号处理能力有限,实时性要求高的特点,采用优化的波束域MUSIC算法来降低计算复杂度和内存占用量。针对常规MUSIC方法在低信噪比、小快拍数条件下目标分辨性能下降,难以适应非理想条件下的工程应用的缺点,提出了一种的新的MUSIC估计子,最大限度的利用了信号子空间、噪声子空间和主特征值中包含的信息,结合了信号子空间处理稳健性高和噪声子空在间处理估计精度高的优点,有利于多目标方位估计性能的提高。
附图说明
图1为本发明算法设计流程图;
图2为本发明所提出的子波束划分示意图;
图3为本发明实施案例1中四种MUSIC算法的检测成功概率随SNR变化的曲线;
图4为本发明实施案例1中四种MUSIC算法的检测角度误差均值随SNR变化的曲线;
图5为本发明实施案例1中四种MUSIC算法的检测角度误差标准差随SNR变化的曲线;
图6为本发明实施案例2中两种MUSIC算法(MA3,MA4)的角度分辨成功概率随SNR变化的曲线;
图7为本发明实施案例2中两种MUSIC算法(MA3,MA4)的检测角度误差均值随SNR变化的曲线;
图8为本发明实施案例2中两种MUSIC算法(MA3,MA4)的检测角度误差标准差随SNR变化的曲线;
图9为本发明实施案例2中两种MUSIC算法(MA3,MA4)的在不同的角度间隔Δθ下的角度分辨成功率随SNR变化的曲线;
图10为本发明所述的一个相干处理间隔内雷达数据块的三维图形表示;
图11为本发明中待探测车辆可能的方位角分布范围。
具体实施方式
下面结合具体实施案例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
在这个部分,我们给出了一些具体数值结果,来进一步说明本发明所提出的增强的波束空间MUSIC算法的有效性。通过下面两种具体实施方式,分析了在单目标和两个相邻位置目标的不同条件下,所提出的增强的波束空间MUSIC算法优于传统MUSIC算法的优越性。
我们比较了以下四种不同MUSIC算法的性能。为了便于说明,它们被称为MA0(MUSIC算法0),MA1(MUSIC算法1),MA2(MUSIC算法2),MA3(MUSIC算法3),MA4(MUSIC算法4)。MA0是阵元空间中的经典MUSIC算法。MA1是使用DFT波束形成器的波束空间MUSIC算法。MA2是使用波束形成器Bopt的波束空间MUSIC算法。MA3是使用波束形成器和样本协方差矩阵
Figure BDA0002008924840000121
的波束空间MUSIC算法,以便在单快拍的情况下维持其Toeplitz结构。MA4是本发明提出的增强的波束空间MUSIC算法。表2中显示了五种不同算法之间的具体差异。
表2五种算法之间的差异比较
Figure BDA0002008924840000131
案例1:单信号源经典MUSIC算法与波束空间MUSIC算法的性能比较。在本案列中,我们比较了不同的波束空间MUSIC算法与经典阵元域MUSIC在角度测量方面的性能。信号源的数量是K为1。角度范围的边界θa和θb分别在3°和-3°。目标位于θ1=2.5°。快拍数N为1,阵元个数M为8。我们选择四种不同的MUSIC算法(MA0,MA1,MA2和MA4)进行性能比较。
从仿真结果附图3至5可以看出,在四种方案中,本文提出的增强的波束空间MUSIC算法(MA4)的性能在成功概率,偏差均值和标准差方面都是最优的。而其他两种波束形成MUSIC算法不如经典阵元域MUSIC算法(MA0),因为计算复杂性以天线孔径损失为代价而降低。此外,使用DFT波束形成器的波束空间MUSIC算法(MA1)在四种算法中具有最差的角度性能,这也证明了本发明提出的利用先验信息的优化波束形成矩阵Bopt的有效性。
案例2:针对两个相邻目标的单快拍波束空间MUSIC算法(MA3,MA4)的性能比较。首先,我们使用以下两个表来说明在两个目标的情况下,快拍数减少对信号源相关性的不利影响。阵元个数M为8,波束个数B为6。从表3可以看出,在大快拍数的情况下,噪声子空间和导向矢量的特征向量正交性十分显著,但在小快拍的情况下,所获得的噪声特征向量与信号子空间之间的正交性严重恶化,进而导致不准确的谱估计。从表4中还可以看出,采用MA3修改样本协方差矩阵的表达式,维持Toeplitz结构,噪声子空间和导向矢量的特征向量的正交性是增加了一个数量级,这对于随后的DOA估计非常重要。
表3 MA0的相关性分析
Figure BDA0002008924840000141
表4 MA0,MA3的相关性分析(N=1)
Figure BDA0002008924840000142
MA4在MA3的基础上进一步改进。因此,MA4还可以保证噪声子空间的特征向量与导向矢量之间的正交性,同时,角度测量的性能比MA3的性能进一步提高。图6-8显示本发明提出的增强的波束空间MUSIC算法在两个目标分别位于θ1=5°,θ2=-5°的情况下具有更高的分辨率,更小的平均偏差和的标准偏差。图9显示了两种MUSIC算法在不同角度间隔下的分辨率概率的比较。当角度间隔Δθ相同时,MA4在相同SNR下始终具有更高的分辨率概率。值得注意的是,当两个目标接近Δθ=4°时,MA3不再无效,并且MA4仍然有效。我们假定阵元个数M为8,波束个数B为6,快拍数N为1。

Claims (7)

1.一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,其特征在于,该方法包括以下步骤:
步骤1:建立毫米波车载雷达***的空间谱估计数学模型,得到发射信号和接收信号的表达式;
步骤2:利用毫米波车载雷达***所需的发射天线和接收天线的数目和布局,在步骤1的基础上拓展建立多收发情况下对接收信号混频后的中频信号的三维数据结构;
步骤3:对步骤2所得的三维接收信号数据在快时间维和慢时间维分别进行FFT,得到探测到的目标车辆的距离和速度信息及其对应的距离多普勒单元上的天线阵列的接收信号数据向量Y;
步骤4:利用车载雷达所需探测车辆所在的方位向角度范围信息,计算优化的波束形成矩阵Bopt,将特定距离多普勒单元上的天线阵列的接收信号数据向量Y从阵元域转化到波束域,得到波束域接收信号向量YB
步骤5:利用步骤4所得的波束域接收信号矩阵YB计算样本协方差矩阵
Figure FDA0002008924830000011
并对
Figure FDA0002008924830000012
进行修正,得到修正样本协方差矩阵
Figure FDA0002008924830000013
步骤6:对步骤5修正的样本协方差矩阵
Figure FDA0002008924830000014
进行特征值分解,得到噪声子空间
Figure FDA0002008924830000015
利用
Figure FDA0002008924830000016
Figure FDA0002008924830000017
建立MUSIC空间谱函数feMUSIC,进行谱峰搜索,得到来波方向估计
Figure FDA0002008924830000018
2.根据权利要求1所述的一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,其特征在于,步骤1中,建立毫米波车载雷达***的空间谱估计数学模型,得到发射信号和接收信号的表达式,方法如下:
毫米波车载雷达***的发射信号波形为一组载频为f0在发射周期内具有一定扫频带宽的线性调频连续波信号,多个发射天线依次分时发射,在t时刻,第i个周期的发射信号st(t,i)的表达式为:
Figure FDA0002008924830000019
其中,A,f0,
Figure FDA00020089248300000110
分别是发射信号幅度大小,载波频率以及初始相位,μ=B0/T是调频斜率,其中B0是扫频带宽,T是一个线性调频连续波的周期,当t=0时,在雷达的前方与目标车辆的径向距离为r,径向速度为v的目标,沿径向速度靠近雷达方向为正,故接收信号sr(t,i)的表达式可以写为:
Figure FDA0002008924830000021
其中,A0是接收信号的幅度,τ=2(r-vt)/c是目标和雷达之间的距离带来的时延,c是光速,接收信号和原始发射信号进行混频操作,并通过低通滤波器获得中频信号也称差拍信号,在t时刻,第i个周期差拍信号的表达式sIF(t,i)可以写为:
Figure FDA0002008924830000022
3.根据权利要求2所述的一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,其特征在于,步骤(2)中,在步骤(1)的基础上拓展建立多收发情况下对接收信号混频后的中频信号的三维数据结构,方法如下:
(2.1)毫米波车载雷达***有Nt根发射天线,Nr根接收天线,Nt根发射天线轮流发射相同的调频连续波,总的发射周期长度T1=Nt·T,并组成虚拟阵列,一次信号处理流程时间内共发射Nsa个线性调频连续波,在第i个发射周期内,第k根接收天线的接收的第m根发射天线发射信号的回波复信号为:
Figure FDA0002008924830000023
其中,i=1,...,Nsa,m=1,...,Nt,k=1,...,Nr,A,A0,f0,
Figure FDA0002008924830000024
分别是发射信号幅度,接收信号的信号幅度,载波频率以及初始相位,μ=B0/T是调频斜率,其中,B0是扫频带宽,T是发射周期长度,d是天线间距,θ是目标所在的方位角大小;
(2.2)对每一个发射信号yk,i(t)进行采样,采样点数为Ns=fsT,其中,fs是DSP数字芯片的采样频率,则在第i个发射周期内,第k根接收天线的接收的第m根发射天线发射信号的回波复信号采样信号
Figure FDA0002008924830000025
Figure FDA0002008924830000026
表示在第i个发射周期内,第k根接收天线的接收的第m根发射天线发射信号的回波复信号的第j个采样,在一个信号处理流程周期T2内,其中,T2=Nsa·Nt·T,第k根接收天线接收的第m根发射天线发射信号的采样信号
Figure FDA0002008924830000027
为:
Figure FDA0002008924830000031
将一个发射周期T1内相同接收天线接收的不同发射天线发射信号的回波信号进行合并,第i个发射周期内的接收信号为
Figure FDA0002008924830000032
整个信号处理流程T2时间内形成虚拟阵列
Figure FDA0002008924830000033
Figure FDA0002008924830000034
Figure FDA0002008924830000035
其中,i=1,...,Nsa,T1=Nt·T,故中频信号数据矩阵为NtNr×Nsa×Ns,其为一个三维数据矢量。
4.根据权利要求3所述的一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,其特征在于,步骤(3)中,对步骤(2)所得的三维接收信号数据在快时间维和慢时间维分别进行FFT,得到探测到的目标车辆的距离和速度信息及其对应的距离多普勒单元上的天线阵列的接收信号数据向量Y,方法如下:
(3.1)将接收信号沿着快时间维进行加窗FFT处理,设第i个发射周期内,第k根接收天线的接收信号
Figure FDA0002008924830000041
进行加窗FFT处理:
Figure FDA0002008924830000042
式中,i=1,...,Nsa,k=1,...,Nr,wq为窗函数,是NS×1的列向量,符号⊙代表两个矢量的Hadamard积,即对应元素相乘,fft(·)指对信号做FFT运算,
Figure FDA0002008924830000043
表示第i个发射周期内,第k根接收天线沿着快时间维做完加窗FFT以后的接收信号;
(3.2)假设存在一个与雷达之间径向距离为r,径向速度为v的目标车辆,则对快时间维进行FFT之后,目标频谱峰值位置为:
Figure FDA0002008924830000044
设fr,v=2B0r/cT,快时间维可以等效为距离维,频谱单元可以等效为距离单元;
(3.3)对每个发射周期、每根天线的接收信号进行加窗FFT,得到
Figure FDA0002008924830000045
NqFFT为快时间维FFT点数;
(3.4)对YVF进行慢时间维FFT,设第k根接收天线,第l个频谱单元数据
Figure FDA0002008924830000046
进行FFT处理如下:
Figure FDA0002008924830000047
式中,k=1,...,Nr,l=1,...,Ns,ws为窗函数,是Nsa×1的列向量,
Figure FDA0002008924830000048
表示第k根接收天线,第l个频谱单元沿着慢时间维做完加窗FFT处理以后的接收信号;
则对慢时间维进行FFT之后,目标频谱峰值位置为:
Figure FDA0002008924830000049
慢时间维FFT后,目标频谱峰值所在位置只与速度有关,将慢时间维看成速度维;
(3.5)对每根接收天线,不同距离单元的接收信号进行慢时间维FFT,得到
Figure FDA00020089248300000410
NsFFT为慢时间维FFT点数;
(3.6)由fr,v及fv所确定的第i个距离维单元,第l个速度维单元内存在一个目标车辆,取目标所在频谱单元的复矢量
Figure FDA00020089248300000411
记为Y:
Figure FDA00020089248300000412
所述i=1,...,NqFFT,l=1,...,NsFFT
5.根据权利要求4所述的一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,其特征在于,在步骤(4)中,利用车载雷达所需探测车辆所在的方位向角度范围信息,计算优化的波束形成矩阵Bopt,将特定距离多普勒单元上的天线阵列的接收信号数据向量Y从阵元域转化到波束域,得到波束域接收信号向量YB,方法如下:
(4.1)设个均匀等距直线阵,阵元数为M,阵元间距为d,远场窄带信号源模型为:
Y=AS+N
式中,Y为阵列M×N的接收信号,A为M×K的阵列流形矩阵,S为K×N的发射信号矢量,此处S每一行即为步骤(1)中sIF(t,i)采样后的矩阵形式,N为M×N的加性高斯白噪声矢量矩阵,K为远场窄带信号源的数目,K≤M,快时间维采样点数,也称快拍数为N,快拍数N=1时,Y即为步骤(3)中的目标所在频谱单元的复矢量Y;
(4.2)波束形成矩阵B的维度为M×B,且B≤M,同时B是一个标准正交阵:
BHB=I
(4.3)在存在两辆待探测车辆的情况下,为了估计出两辆车相对雷达所在的水平方位角,设计一个波束形成矩阵B,记设计的波束形成矩阵B为Bopt,该矩阵Bopt需要满足以下条件:由导向向量a(θ1),a(θ2),以及a(θm)所确定的子空间包含于Bopt的各列所确定的子空间中,导向向量使用如下公式计算:
Figure FDA0002008924830000051
其中,d是天线间距,λ是载波波长,θ1,θ2是两个目标所在方位角,并且θm可以定义为:
θm=(θ12)/2
(4.4)采用如下的方法去获得波束形成矩阵Bopt
Figure FDA0002008924830000052
Βopt=[υ1…υB]
其中,a(θ)是阵列的导向矢量,θa和θb是方位角范围的边界,λ1≥λ2≥…≥λB是Q特征值分解所得到的前B个大特征值,υi是这B个大特征值所对应的特征向量,Βopt是以υi为列矢量所组成的矩阵,i=1,2,...B;
(4.5)步骤(3)所述的特定距离多普勒单元上接收信号复向量Y要经过一个波束形成矩阵,其波束形成矩阵为本步骤所述的Bopt,通过该波束形成矩阵,将接收信号Y从阵元域转化到波束域,得到波束域接收信号向量YB
YB=Bopt HY。
6.根据权利要求5所述的一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,其特征在于,在步骤(5)中,利用步骤4所得的波束域接收信号矩阵YB计算样本协方差矩阵
Figure FDA0002008924830000061
并对
Figure FDA0002008924830000062
进行修正,得到修正样本协方差矩阵
Figure FDA0002008924830000063
方法如下:
(5.1)在快拍数N=1时,保证对样本协方差矩阵
Figure FDA0002008924830000064
的估计是无偏的,其可写成:
Figure FDA0002008924830000065
式中,
Figure FDA0002008924830000066
Figure FDA0002008924830000067
上第i条对角线的元素,可以写为:
Figure FDA0002008924830000068
其中,B是波束形成矩阵的维数,Ym是接收信号矢量YB的第m个元素,m=0,1,...,B-1;
(5.2)采用子波束平均的方法,
Figure FDA0002008924830000069
表示
Figure FDA00020089248300000610
的第i个子波束,第i个子波束数据为原始样本协方差矩阵
Figure FDA00020089248300000611
中从第i行到第i+L行,第i列到第i+L列的数据块,然后对i=1,2,...,P的P个子波束数据块
Figure FDA00020089248300000612
求平均得到最终修正后的样本修方差矩阵
Figure FDA00020089248300000613
Figure FDA00020089248300000614
其中,P为子波束个数,满足B=L+P-1。
7.根据权利要求6所述的一种适用于毫米波车载雷达目标检测领域的降维子空间测角方法,其特征在于,在步骤(6)中,对步骤5修正的样本协方差矩阵
Figure FDA0002008924830000071
进行特征值分解,得到噪声子空间
Figure FDA0002008924830000072
利用
Figure FDA0002008924830000073
Figure FDA0002008924830000074
建立空间谱函数feMUSIC,进行谱峰搜索,得到来波方向估计
Figure FDA0002008924830000075
方法如下:
(6.1)由于信号与噪声相互独立,样本协方差矩阵可分解为与信号、噪声相关的两部分,对
Figure FDA0002008924830000076
进行特征分解有:
Figure FDA0002008924830000077
式中,Σs是以
Figure FDA0002008924830000078
特征分解所得到的前K个最大特征值λ1≥λ2≥…≥λK作为主对角线元素的对角矩阵,Σo是
Figure FDA0002008924830000079
剩余的L-K个特征值λK+1≥λK+2≥…≥λL=σ2作为其主对角线元素的对角矩阵,其中L是
Figure FDA00020089248300000710
的维数,K是探测目标车辆数目,σ2是噪声的方差,
Figure FDA00020089248300000711
是由前K个最大特征值λ1≥λ2≥…≥λK对应的特征矢量张成的子空间,也即信号子空间,而
Figure FDA00020089248300000712
是由特征值λK+1≥λK+2≥…≥λL=σ2对应的特征矢量张成的子空间也即噪声子空间;
(6.2)建立的MUSIC空间谱函数为:
Figure FDA00020089248300000713
式中,b(θ)=<BHa(θ)>L是波束域的导向矢量的前L个元素,<·>L表示取列矢量的前L个元素操作,
Figure FDA00020089248300000714
Figure FDA00020089248300000715
的伪逆,理想条件下,假设存在一个方位角度为θi的目标车辆,对θ∈[0° 360°]进行遍历,当θ=θi时,
Figure FDA00020089248300000716
si是方位向角度为θi的探测目标车辆i所对应的
Figure FDA00020089248300000717
特征值分解所得的特征值;
(6.3)在理想状态下θ=θi时信号子空间与噪声子空间是相互正交的,也即信号子空间中的导向矢量也与噪声子空间正交,即:
Figure FDA0002008924830000081
Figure FDA0002008924830000082
由于噪声存在,所以信号子空间中的导向矢量也与噪声子空间不能完全正交,所以实际上空间谱估计的方位角估计是以对θ∈[0° 360°]进行遍历,最大值优化搜索实现对目标所在方位角θi的估计
Figure FDA0002008924830000083
即探测到的目标车辆的方位角估计
Figure FDA0002008924830000084
为:
Figure FDA0002008924830000085
其中,
Figure FDA0002008924830000086
操作表示求取当
Figure FDA0002008924830000087
取得最大值时对应的θ值。
CN201910238433.3A 2019-03-27 2019-03-27 一种适用于毫米波车载雷达的降维子空间测角方法 Active CN109975807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910238433.3A CN109975807B (zh) 2019-03-27 2019-03-27 一种适用于毫米波车载雷达的降维子空间测角方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910238433.3A CN109975807B (zh) 2019-03-27 2019-03-27 一种适用于毫米波车载雷达的降维子空间测角方法

Publications (2)

Publication Number Publication Date
CN109975807A CN109975807A (zh) 2019-07-05
CN109975807B true CN109975807B (zh) 2022-03-18

Family

ID=67080953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910238433.3A Active CN109975807B (zh) 2019-03-27 2019-03-27 一种适用于毫米波车载雷达的降维子空间测角方法

Country Status (1)

Country Link
CN (1) CN109975807B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110515066B (zh) * 2019-08-20 2023-03-24 立晟智能科技(成都)有限公司 一种车载毫米波雷达及其目标高度测量方法
CN110632586B (zh) * 2019-10-10 2022-05-24 南京凌云科技发展有限公司 一种基于快速fmcw雷达的道路车辆低运算量监测方法
CN111044996A (zh) * 2019-12-20 2020-04-21 南京航空航天大学 一种基于降维近似消息传递的lfmcw雷达目标检测方法
CN111175753B (zh) * 2020-02-24 2021-08-17 四川九洲电器集团有限责任公司 一种车载防撞雷达分波目标探测方法
CN113391257B (zh) * 2020-03-13 2023-04-18 光宝科技新加坡私人有限公司 用于物件的角度估测的运算装置及物件的角度估测方法
CN111537966B (zh) * 2020-04-28 2022-06-10 东南大学 一种适用于毫米波车载雷达领域的阵列天线误差校正方法
CN111521968B (zh) * 2020-05-22 2022-05-20 南京理工大学 基于目标空间分集的欠定doa估计方法
CN112711013B (zh) * 2020-12-14 2022-10-21 中国船舶重工集团公司第七一五研究所 一种基于分块矩阵的快速自适应波束形成方法
WO2022174392A1 (zh) * 2021-02-19 2022-08-25 华为技术有限公司 定位方法和装置
CN113030868B (zh) * 2021-03-29 2024-06-21 长沙莫之比智能科技有限公司 一种毫米波雷达角度超分辨方法
CN114609626A (zh) * 2022-03-16 2022-06-10 电子科技大学 一种车载毫米波雷达多目标检测方法
CN114428236B (zh) * 2022-04-06 2022-07-01 南京楚航科技有限公司 一种车载毫米波雷达角度置信度估计方法
CN115113157B (zh) * 2022-08-29 2022-11-22 成都瑞达物联科技有限公司 一种基于车路协同雷达的波束指向校准方法
CN116819509B (zh) * 2023-08-28 2023-11-07 烟台初心航空科技有限公司 基于扩谱时域反射的雷达定位测距方法
CN117538940B (zh) * 2023-10-27 2024-06-21 西安电子科技大学 基于vna的步进频率探地雷达***及工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142331A (ja) * 1996-11-14 1998-05-29 Komatsu Ltd ミリ波レーダ搭載車両
CN103529444A (zh) * 2013-09-27 2014-01-22 安徽师范大学 一种车载毫米波雷达动目标识别器及识别方法
CN105487070A (zh) * 2014-10-06 2016-04-13 日本电产艾莱希斯株式会社 雷达***、雷达信号处理装置、车辆行驶控制装置以及方法及电脑程序
CN106842114A (zh) * 2016-12-29 2017-06-13 西安电子科技大学 基于root‑MUSIC算法的目标波达方向获取方法
CN107688178A (zh) * 2017-08-25 2018-02-13 上海通趣科技有限公司 一种基于77GHz毫米波雷达的锯齿波测距测速方法
CN109358322A (zh) * 2018-10-25 2019-02-19 森思泰克河北科技有限公司 前向目标检测雷达和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142331A (ja) * 1996-11-14 1998-05-29 Komatsu Ltd ミリ波レーダ搭載車両
CN103529444A (zh) * 2013-09-27 2014-01-22 安徽师范大学 一种车载毫米波雷达动目标识别器及识别方法
CN105487070A (zh) * 2014-10-06 2016-04-13 日本电产艾莱希斯株式会社 雷达***、雷达信号处理装置、车辆行驶控制装置以及方法及电脑程序
CN106842114A (zh) * 2016-12-29 2017-06-13 西安电子科技大学 基于root‑MUSIC算法的目标波达方向获取方法
CN107688178A (zh) * 2017-08-25 2018-02-13 上海通趣科技有限公司 一种基于77GHz毫米波雷达的锯齿波测距测速方法
CN109358322A (zh) * 2018-10-25 2019-02-19 森思泰克河北科技有限公司 前向目标检测雷达和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于遗传算法的车载雷达天线阵列布局优化方法;邹乐 等;《微波学报》;20080731;第34卷;第155-158页 *

Also Published As

Publication number Publication date
CN109975807A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
CN109975807B (zh) 一种适用于毫米波车载雷达的降维子空间测角方法
CN111308437B (zh) 一种毫米波mimo交通雷达求熵解速度模糊的方法
CN111537966B (zh) 一种适用于毫米波车载雷达领域的阵列天线误差校正方法
US7804445B1 (en) Method and apparatus for determination of range and direction for a multiple tone phased array radar in a multipath environment
CN110133631B (zh) 一种基于模糊函数的频控阵mimo雷达目标定位方法
CN110673086A (zh) 一种基于数字阵列雷达的二维角度超分辨方法
CN109765521B (zh) 一种基于子阵划分的波束域成像方法
CN111007503B (zh) 基于频率谱精确定位的运动目标聚焦和定位方法及***
CN114895260A (zh) 一种俯仰向空时编码星载sar***回波分离方法
CN111521968B (zh) 基于目标空间分集的欠定doa估计方法
CN108828504B (zh) 基于部分相关波形的mimo雷达目标方向快速估计方法
CN112180339A (zh) 一种基于稀疏处理的雷达回波信号精确测向方法
CN108828586B (zh) 一种基于波束域的双基地mimo雷达测角优化方法
US11754671B2 (en) Incoming wave count estimation apparatus and incoming wave count incoming direction estimation apparatus
CN110579737A (zh) 一种杂波环境中基于稀疏阵列的mimo雷达宽带doa计算方法
CN110196417A (zh) 基于发射能量集中的双基地mimo雷达角度估计方法
CN111175745B (zh) 一种基于状态空间平衡法的动目标三维成像的方法
CN111368256A (zh) 一种基于均匀圆阵的单快拍测向方法
CN114779199A (zh) 端射阵机载雷达自适应互耦补偿与杂波抑制方法
CN114355309A (zh) 目标角度和距离定位方法、装置、雷达和存储介质
CN115015925A (zh) 基于改进匹配追踪的机载阵列雷达超分辨前视成像方法及装置
CN112666558B (zh) 一种适用于汽车fmcw雷达的低复杂度music测向方法及装置
WO2021196165A1 (zh) 频率分析方法、装置及雷达
CN110231590B (zh) 一种基于dft变换的阵列目标角度测量方法
Schurwanz et al. Compressive sensing techniques applied to a semi-circular mmWave MIMO array

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant