CN111175753B - 一种车载防撞雷达分波目标探测方法 - Google Patents

一种车载防撞雷达分波目标探测方法 Download PDF

Info

Publication number
CN111175753B
CN111175753B CN202010111548.9A CN202010111548A CN111175753B CN 111175753 B CN111175753 B CN 111175753B CN 202010111548 A CN202010111548 A CN 202010111548A CN 111175753 B CN111175753 B CN 111175753B
Authority
CN
China
Prior art keywords
matrix
angle
receiving antennas
row
targets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010111548.9A
Other languages
English (en)
Other versions
CN111175753A (zh
Inventor
叶祥龙
蒋文
李云莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Jiuzhou Electric Group Co Ltd
Original Assignee
Sichuan Jiuzhou Electric Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Jiuzhou Electric Group Co Ltd filed Critical Sichuan Jiuzhou Electric Group Co Ltd
Priority to CN202010111548.9A priority Critical patent/CN111175753B/zh
Publication of CN111175753A publication Critical patent/CN111175753A/zh
Application granted granted Critical
Publication of CN111175753B publication Critical patent/CN111175753B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种车载防撞雷达分波目标探测方法,包括:步骤1,将MIMO天线得到的L列接收天线,按照每一个周期做一维距离压缩,得到L列接收天线的一维距离像矩阵X1;步骤2,将一维距离像矩阵X1按照每一列做方位向的匹配滤波,得到矩阵X2;步骤3,将L列接收天线的FOV以天线波束宽度为步进得到若干个互相不重合的导向角,在每个导向角上对矩阵X2做波束成型,得到每个导向角的新矩阵Yθ;步骤4,对每个导向角的新矩阵Yθ求模后做CFAR检测,得到每个导向角的目标速度距离信息;将所有导向角方向的目标聚集同时剔除速度距离相同的目标,然后通过AOA估计得到目标的角度信息。本发明的方法实现了在要求FOV足够大的条件下同时探测远距离目标。

Description

一种车载防撞雷达分波目标探测方法
技术领域
本发明涉及雷达信号处理技术领域,尤其是一种车载防撞雷达分波目标探测方法。
背景技术
77GHZ毫米波雷达频率高,波长短,测速测距精度高,在对精度要求很高的领域(比如汽车防撞领域),77GHZ毫米波雷达因为能够全天候工作,不受如雾霾沙尘,光线等恶劣天气环境等影响,已经成为业界主流选择,因此也是汽车电子厂商以及各大高校研究的重点课题。
一般毫米波雷达采取非相干累加的办法,其SNR不足以满足在要求FOV足够大的条件下同时探测远距离目标。
发明内容
本发明所要解决的技术问题是:针对上述存在的问题,提供一种车载防撞雷达分波目标探测方法。
本发明采用的技术方案如下:
一种车载防撞雷达分波目标探测方法,包括如下步骤:
步骤1,将MIMO天线得到的L列接收天线,按照每一个周期做一维距离压缩,得到L列接收天线的一维距离像矩阵X1;
步骤2,将得到的l列接收天线的一维距离像矩阵X1按照每一列做方位向的匹配滤波,得到矩阵X2;
步骤3,将L列接收天线的FOV以天线波束宽度为步进得到若干个互相不重合的导向角,在每个导向角上对矩阵X2做波束成型,得到每个导向角的新矩阵Yθ
步骤4,对每个导向角的新矩阵Yθ求模后做CFAR检测,得到每个导向角的目标速度距离信息;将所有导向角方向的目标聚集同时剔除速度距离相同的目标,然后通过AOA估计得到目标的角度信息。
进一步,步骤1的方法为:
步骤1.1,以
Figure BDA0002390202870000026
表示第l列接收天线(l=1,2…L)第m个周期(m=1,2…M)的第n个采样点(n=1,2…N)的复数信号,则有矩阵
Figure BDA0002390202870000021
步骤1.2,对矩阵Xl的每一行做FFT,得到矩阵
Figure BDA0002390202870000022
即为第l列接收天线的一维距离像压缩结果;
步骤1,3,对每一列接收天线按照步骤1.1~1.2的操作,得到L列接收天线的一维距离像矩阵
Figure BDA0002390202870000023
进一步,步骤1.2的方法为:对于每个周期加178点汉宁窗后补0,补足256个点后,对矩阵Xl的每一行做256点FFT,得到矩阵
Figure BDA0002390202870000024
即为第l列接收天线的一维距离像压缩结果。
进一步,步骤2的方法为:将矩阵X1的每一列加128点汉宁窗后做128点FFT得到矩阵X2。
进一步,步骤3的方法为:
步骤3.1,将L列接收天线的FOV以天线波束宽度为步进得到若干个互相不重合的导向角:
Figure BDA0002390202870000025
其中,K表示导向角个数,Δθ表示天线波束宽度,FOV的范围为[θ12];
步骤3.2,计算导向向量:
对于第k个导向角的波导角位
Figure BDA0002390202870000031
其中,θ∈(θ12);计算阵列平面归一化空域频率kθ=2πd sinθ/λ,其中,d为阵列天线间距,λ为雷达波长;则导向向量
Figure BDA0002390202870000032
步骤3.3,将矩阵X2和导向向量做点乘得到新矩阵
Figure BDA0002390202870000033
Figure BDA0002390202870000034
其中,
Figure BDA0002390202870000035
Figure BDA0002390202870000036
表示第i列接收天线做完步骤1的一维距离压缩和步骤2的方位向的匹配滤波的结果;
Figure BDA0002390202870000037
代表
Figure BDA0002390202870000038
矩阵每个元素乘以
Figure BDA0002390202870000039
这个相位因子;
步骤3.4,对每个导向角按照步骤3.2~3.3的操作,得到每个导向角的新矩阵Yθ
进一步,用于计算导向角的FOV的范围根据所要达到的测量指标和天线波束范围进行偏移。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1、本发明基于距离压缩以及方位向匹配滤波后所形成的L列接收天线矩阵在不同导向角上做DBF,然后聚集所有不同方位的目标,实现了在要求FOV足够大的条件下同时探测远距离目标,即针对77GHZ毫米波雷达防撞技术SNR不足的问题,利用目标波束成型(Digital Beam Forming)技术起到在不损失FOV的前提条件下提高目标SNR。
2、本发明将用于计算导向角的FOV的范围根据所要达到的测量指标和天线波束范围进行偏移,可以达到探测范围的测量指标。尤其能够满足2发4收天线***[-60°,60°]的探测范围。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为示例的入射角度到均匀线阵的波前示意图。
图2为示例的流程图。
图3为示例的一维距离压缩结果,
图4为示例的目标幅值和导向角关系图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明的一种车载防撞雷达分波目标探测方法,其特征在于,包括如下步骤:
步骤1,将MIMO天线得到的L列接收天线,按照每一个周期做一维距离压缩,得到L列接收天线的一维距离像矩阵X1;
步骤2,将得到的L列接收天线的一维距离像矩阵X1按照每一列做方位向的匹配滤波,得到矩阵X2;
步骤3,将L列接收天线的FOV以天线波束宽度为步进得到若干个互相不重合的导向角,在每个导向角上对矩阵X2做波束成型,得到每个导向角的新矩阵Yθ
步骤4,对每个导向角的新矩阵Yθ求模后做CFAR检测,得到每个导向角的目标速度距离信息;
步骤5,将所有导向角方向的目标聚集同时剔除速度距离相同的目标,然后通过AOA估计得到目标的角度信息
以下以结合实施例对本发明的特征和性能作进一步的详细描述。
步骤1、一维距离压缩
将MIMO天线得到的L列接收天线,按照每一个周期做一维距离压缩,得到L列接收天线的一维距离像矩阵X1;
具体地:
步骤1.1,以
Figure BDA0002390202870000051
表示第l列接收天线(l=1,2…L)第m个周期(m=1,2…M)的第n个采样点(n=1,2…N)的复数信号,则有矩阵
Figure BDA0002390202870000052
步骤1.2,对矩阵Xl的每一行做FFT,得到矩阵
Figure BDA0002390202870000053
即为第l列接收天线的一维距离像压缩结果;
步骤1,3,对每一列接收天线按照步骤1.1~1.2的操作,得到L列接收天线的一维距离像矩阵
Figure BDA0002390202870000054
步骤2、方位向压缩
将得到的L列接收天线的一维距离像矩阵X1按照每一列做方位向的匹配滤波,得到矩阵X2,表示为
Figure BDA0002390202870000055
步骤3、导向角波束成型
将L列接收天线的FOV以天线波束宽度为步进得到若干个互相不重合的导向角,在每个导向角上对矩阵X2做波束成型,得到每个导向角的新矩阵Yθ
具体地:
步骤3.1,将L列接收天线的FOV以天线波束宽度为步进得到若干个互相不重合的导向角:
Figure BDA0002390202870000061
其中,K表示导向角个数,Δθ表示天线波束宽度,FOV的范围为[θ12];
步骤3.2,计算导向向量:
对于第k个导向角的波导角位
Figure BDA0002390202870000062
其中,θ∈(θ12);计算阵列平面归一化空域频率kθ=2πd sinθ/λ,其中,d为阵列天线间距,λ为雷达波长;则导向向量
Figure BDA0002390202870000063
步骤3.3,将矩阵X2和导向向量做点乘得到新矩阵
Figure BDA0002390202870000064
Figure BDA0002390202870000065
其中,
Figure BDA0002390202870000066
Figure BDA0002390202870000067
表示第i列接收天线做完步骤1的一维距离压缩和步骤2的方位向的匹配滤波的结果;
Figure BDA0002390202870000068
代表
Figure BDA0002390202870000069
矩阵每个元素乘以
Figure BDA00023902028700000610
这个相位因子;
步骤3.4,对每个导向角按照步骤3.2~3.3的操作,得到每个导向角的新矩阵Yθ
步骤4、目标检测
对每个导向角的新矩阵Yθ求模后做CFAR检测,得到每个导向角的目标速度距离信息;将所有导向角方向的目标聚集同时剔除速度距离相同的目标,然后通过AOA估计得到目标的角度信息。
示例:如图1所示的入射角度到均匀线阵的波前示意图,如图2所示的示例的流程图,如图3所示的一维距离压缩结果,如图4所示的目标幅值和导向角关系图。
步骤1、一维距离压缩
对8列接收天线,每列接收天线128个周期,每个周期加178点汉宁窗后补0,补足256个点后,对每列接收天线(即矩阵Xl的每一行)做256点FFT,得到8列接收天线的一维距离像压缩结果
Figure BDA0002390202870000071
如图3所示,可以看出在34m左右存在目标。
步骤2、方位向压缩
对步骤1得到的8列接收天线的一维距离像压缩结果,每一列加128点汉宁窗后做128点FFT,得到8列接收天线的新的矩阵
Figure BDA0002390202870000072
步骤3、导向角波束成型
需要注意的是,用于计算导向角的FOV的范围根据所要达到的测量指标和天线波束范围进行偏移。例如探测范围的测量指标为[-60°,60°],而天线波束范围为[-7.5°,7.5°],由此,用于计算导向角的FOV的范围为[-52.5,52.5],以天线波束宽度15°为步进形成8个互相不重合的导向角。然后计算导向向量:对于第k个导向角的波导角位
Figure BDA0002390202870000073
其中,θ∈(θ12);计算阵列平面归一化空域频率kθ=2πdsinθ/λ,其中,d为阵列天线间距,λ为雷达波长;则导向向量
Figure BDA0002390202870000074
然后将矩阵X2和导向向量做点乘得到新矩阵Yθ;最后对8导向角按照前述操作,得到8导向角的新矩阵Yθ
步骤4、目标检测
对每个导向角的新矩阵Yθ求模后做CFAR检测,得到每个导向角的目标速度距离信息;将所有导向角方向的目标聚集同时剔除速度距离相同的目标,然后通过AOA估计得到目标的角度信息。
图4显示某个在雷达径向距离35m左右的目标以18km/h的速度朝向雷达运动,横坐标表示导向角,纵坐标表示从[-52.5°,52.5°]以1°分波位的目标幅度,从图4可以看出目标在7.5°的导向角能量最强,在0.5°和13.5°以后都衰减了一倍以上其波束宽度为13°和上文设定的15°波束宽度相近似。该图表明了目标在7.5°导向角中心从0.5°到13.5°能量衰减在3db以内,其它波位能量衰减了3db以上。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种车载防撞雷达分波目标探测方法,其特征在于,包括如下步骤:
步骤1,将MIMO天线得到的L列接收天线,按照每一个周期做一维距离压缩,得到L列接收天线的一维距离像矩阵X1;
步骤2,将得到的L列接收天线的一维距离像矩阵X1按照每一列做方位向的匹配滤波,得到矩阵X2;
步骤3,将L列接收天线的FOV以天线波束宽度为步进得到若干个互相不重合的导向角,在每个导向角上对矩阵X2做波束成型,得到每个导向角的新矩阵Yθ
步骤4,对每个导向角的新矩阵Yθ求模后做CFAR检测,得到每个导向角的目标速度距离信息;将所有导向角方向的目标聚集同时剔除速度距离相同的目标,然后通过AOA估计得到目标的角度信息。
2.根据权利要求1所述的车载防撞雷达分波目标探测方法,其特征在于,步骤1的方法为:
步骤1.1,以
Figure FDA0002390202860000011
表示第l列接收天线(l=1,2…L)第m个周期(m=1,2…M)的第n个采样点(n=1,2…N)的复数信号,则有矩阵
Figure FDA0002390202860000012
步骤1.2,对矩阵Xl的每一行做FFT,得到矩阵
Figure FDA0002390202860000013
即为第l列接收天线的一维距离像压缩结果;
步骤1. 3,对每一列接收天线按照步骤1.1~1.2的操作,得到L列接收天线的一维距离像矩阵
Figure FDA0002390202860000014
3.根据权利要求2所述的车载防撞雷达分波目标探测方法,其特征在于,步骤1.2的方法为:对于每个周期加178点汉宁窗后补0,补足256个点后,对矩阵Xl的每一行做256点FFT,得到矩阵
Figure FDA0002390202860000015
即为第l列接收天线的一维距离像压缩结果。
4.根据权利要求1所述的车载防撞雷达分波目标探测方法,其特征在于,步骤2的方法为:将矩阵X1的每一列加128点汉宁窗后做128点FFT得到矩阵X2。
5.根据权利要求1所述的车载防撞雷达分波目标探测方法,其特征在于,步骤3的方法为:
步骤3.1,将L列接收天线的FOV以天线波束宽度为步进得到若干个互相不重合的导向角:
Figure FDA0002390202860000021
其中,K表示导向角个数,Δθ表示天线波束宽度,FOV的范围为[θ12];
步骤3.2,计算导向向量:
对于第k个导向角的波导角位
Figure FDA0002390202860000022
其中,θ∈(θ12);计算阵列平面归一化空域频率kθ=2πd sinθ/λ,其中,d为阵列天线间距,λ为雷达波长;则导向向量
Figure FDA0002390202860000023
步骤3.3,将矩阵X2和导向向量做点乘得到新矩阵
Figure FDA0002390202860000024
Figure FDA0002390202860000025
其中,
Figure FDA0002390202860000026
Figure FDA0002390202860000027
表示第i列接收天线做完步骤1的一维距离压缩和步骤2的方位向的匹配滤波的结果;
Figure FDA0002390202860000028
代表
Figure FDA0002390202860000029
矩阵每个元素乘以
Figure FDA00023902028600000210
这个相位因子;
步骤3.4,对每个导向角按照步骤3.2~3.3的操作,得到每个导向角的新矩阵Yθ
6.根据权利要求5所述的车载防撞雷达分波目标探测方法,其特征在于,用于计算导向角的FOV的范围根据所要达到的测量指标和天线波束范围进行偏移。
CN202010111548.9A 2020-02-24 2020-02-24 一种车载防撞雷达分波目标探测方法 Active CN111175753B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010111548.9A CN111175753B (zh) 2020-02-24 2020-02-24 一种车载防撞雷达分波目标探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010111548.9A CN111175753B (zh) 2020-02-24 2020-02-24 一种车载防撞雷达分波目标探测方法

Publications (2)

Publication Number Publication Date
CN111175753A CN111175753A (zh) 2020-05-19
CN111175753B true CN111175753B (zh) 2021-08-17

Family

ID=70648397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010111548.9A Active CN111175753B (zh) 2020-02-24 2020-02-24 一种车载防撞雷达分波目标探测方法

Country Status (1)

Country Link
CN (1) CN111175753B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485770B (zh) * 2020-12-02 2024-06-18 惠州市德赛西威智能交通技术研究院有限公司 毫米波雷达全fov受限场景识别方法、存储介质及车载设备
CN112882007B (zh) * 2021-01-12 2023-06-23 北京交通大学 基于稀布阵雷达的单脉冲多目标超分辨测角实现方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781541B1 (en) * 2003-07-30 2004-08-24 Raytheon Company Estimation and correction of phase for focusing search mode SAR images formed by range migration algorithm
US7843376B1 (en) * 2006-12-27 2010-11-30 Lockheed Martin Corporation Cross-eye jamming detection and mitigation
CN103412305A (zh) * 2013-07-15 2013-11-27 电子科技大学 扫描雷达超分辨成像方法
CN103487803A (zh) * 2013-09-25 2014-01-01 电子科技大学 迭代压缩模式下机载扫描雷达成像方法
CN103616679A (zh) * 2013-11-19 2014-03-05 北京航空航天大学 基于差波束调制和波形分析的pd雷达测距测角方法
CN106324595A (zh) * 2016-09-14 2017-01-11 电子科技大学 一种基于多角度探测成像的多径假目标抑制方法
CN107121677A (zh) * 2017-06-02 2017-09-01 太原理工大学 基于超宽带认知cppm信号的避障雷达方法及装置
CN107346986A (zh) * 2017-07-12 2017-11-14 电子科技大学 一种基于稀疏频控传感器天线阵列的多波束形成方法
CN108226899A (zh) * 2018-01-17 2018-06-29 上海禾赛光电科技有限公司 激光雷达及其工作方法
CN108437923A (zh) * 2018-03-27 2018-08-24 浙江吉利控股集团有限公司 一种行人保护***及方法
CN207992440U (zh) * 2018-03-22 2018-10-19 苏州速感智能科技有限公司 一种实现毫米波雷达广域远距离目标探测的装置
CN109765529A (zh) * 2018-12-30 2019-05-17 成都汇蓉国科微***技术有限公司 一种基于数字波束形成的毫米波雷达抗干扰方法及***
CN109975807A (zh) * 2019-03-27 2019-07-05 东南大学 一种适用于毫米波车载雷达的降维子空间测角方法
CN110161474A (zh) * 2019-05-09 2019-08-23 中科宇达(北京)科技有限公司 一种基于数字波束形成技术的低慢小目标探测方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6781541B1 (en) * 2003-07-30 2004-08-24 Raytheon Company Estimation and correction of phase for focusing search mode SAR images formed by range migration algorithm
US7843376B1 (en) * 2006-12-27 2010-11-30 Lockheed Martin Corporation Cross-eye jamming detection and mitigation
CN103412305A (zh) * 2013-07-15 2013-11-27 电子科技大学 扫描雷达超分辨成像方法
CN103487803A (zh) * 2013-09-25 2014-01-01 电子科技大学 迭代压缩模式下机载扫描雷达成像方法
CN103616679A (zh) * 2013-11-19 2014-03-05 北京航空航天大学 基于差波束调制和波形分析的pd雷达测距测角方法
CN106324595A (zh) * 2016-09-14 2017-01-11 电子科技大学 一种基于多角度探测成像的多径假目标抑制方法
CN107121677A (zh) * 2017-06-02 2017-09-01 太原理工大学 基于超宽带认知cppm信号的避障雷达方法及装置
CN107346986A (zh) * 2017-07-12 2017-11-14 电子科技大学 一种基于稀疏频控传感器天线阵列的多波束形成方法
CN108226899A (zh) * 2018-01-17 2018-06-29 上海禾赛光电科技有限公司 激光雷达及其工作方法
CN207992440U (zh) * 2018-03-22 2018-10-19 苏州速感智能科技有限公司 一种实现毫米波雷达广域远距离目标探测的装置
CN108437923A (zh) * 2018-03-27 2018-08-24 浙江吉利控股集团有限公司 一种行人保护***及方法
CN109765529A (zh) * 2018-12-30 2019-05-17 成都汇蓉国科微***技术有限公司 一种基于数字波束形成的毫米波雷达抗干扰方法及***
CN109975807A (zh) * 2019-03-27 2019-07-05 东南大学 一种适用于毫米波车载雷达的降维子空间测角方法
CN110161474A (zh) * 2019-05-09 2019-08-23 中科宇达(北京)科技有限公司 一种基于数字波束形成技术的低慢小目标探测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
12.9m高分辨率合成孔径激光雷达成像;吴谨 等;《光学学报》;20151231;第35卷(第12期);第1-6页 *
基于自适应天线实现信号的方向性筛选;周可籍;《信息通信》;20160915(第9期);第94-96页 *

Also Published As

Publication number Publication date
CN111175753A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
CN109946665B (zh) 基于阵列雷达的获取真实目标的方法
CN108549059B (zh) 一种复杂地形条件下的低空目标仰角估计方法
CN111537966A (zh) 一种适用于毫米波车载雷达领域的阵列天线误差校正方法
CN110673086A (zh) 一种基于数字阵列雷达的二维角度超分辨方法
CN111175753B (zh) 一种车载防撞雷达分波目标探测方法
CN107121670A (zh) 一种基于合成孔径雷达的反无人机防御***
CN108535698B (zh) 基于波束空间的米波雷达低仰角估计方法
CN103969629A (zh) 一种基于主瓣杂波配准的机载雷达杂波自适应抑制方法
CN110196414A (zh) 一种基于补偿天线方向图误差的天线波束指向方法
CN111896913B (zh) 高频雷达单极子/交叉环天线通道增益校准方法及装置
CN114879139B (zh) 一种车载4d毫米波雷达的联合测角方法、装置及相关设备
CN111736126A (zh) 一种基于低成本安防雷达的信号处理方法
CN113050059A (zh) 利用互质阵雷达的群目标聚焦超分辨波达方向估计方法
CN115327473B (zh) 等效多快拍的4d毫米波雷达测角方法、装置及相关设备
CN112834980A (zh) 一种基于传播算子的涡旋电磁波超分辨测向方法
CN111521968A (zh) 基于目标空间分集的欠定doa估计方法
CN109188373B (zh) 基于子阵阻塞矩阵预处理的抗主瓣干扰方法
CN112363108B (zh) 信号子空间加权超分辨的波达方向检测方法及***
CN112698267A (zh) 一种干扰源测试定位方法
CN109581366B (zh) 一种基于目标导向矢量失配的离散旁瓣杂波识别方法
CN112415469B (zh) 一种两维数字阵列雷达快速干扰测向方法
CN114152939B (zh) 一种同时多波束雷达点迹凝聚方法
CN109613474A (zh) 一种适用于短距离车载雷达的测角补偿方法
CN112526472A (zh) 基于波束空间的阵列雷达复杂地形低仰角估计方法
US11733367B1 (en) Chromatic correlation interferometry direction finding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant