CN109951085B - 一种新型带缓冲电路和耦合电感的全桥全软开关变换器 - Google Patents

一种新型带缓冲电路和耦合电感的全桥全软开关变换器 Download PDF

Info

Publication number
CN109951085B
CN109951085B CN201910282944.5A CN201910282944A CN109951085B CN 109951085 B CN109951085 B CN 109951085B CN 201910282944 A CN201910282944 A CN 201910282944A CN 109951085 B CN109951085 B CN 109951085B
Authority
CN
China
Prior art keywords
transformer
clamp
voltage
mode
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910282944.5A
Other languages
English (en)
Other versions
CN109951085A (zh
Inventor
易灵芝
廖欢
朱和潇
丁常昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XIANGTAN RADIO CO Ltd
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201910282944.5A priority Critical patent/CN109951085B/zh
Publication of CN109951085A publication Critical patent/CN109951085A/zh
Application granted granted Critical
Publication of CN109951085B publication Critical patent/CN109951085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种新型带缓冲电路和耦合电感的全桥全软开关变换器。它包括以下步骤:该变换器的变压器一次侧全桥逆变电路由开关管S1、S2、S3和S4组成。该变换器的变压器二次侧整流电路由二极管D1、D2、D3和D4组成。Q1、Q2、D5和Cclamp组成缓冲电路。Cr是一个谐振电容器(Cclamp远大于Cr),L1和L2是耦合电感。Llk和Lm分别是变压器的漏磁和励磁电感。假设Co足够大,输出电压vo近似不变。本发明通过缓冲电路的作用,该变换器在轻载条件下可以实现变压器一次侧所有开关管和二次侧整流二极管的软开关。通过耦合电感的作用,实现了缓冲电路所有开关器件的软开关。变压器一次侧所有主开关管采用互补对称控制,解决了占空比丢失和循环电流的问题。

Description

一种新型带缓冲电路和耦合电感的全桥全软开关变换器
技术领域
本发明涉及到电力电子变换器技术,特别是涉及到一些软开关变换器领域。
背景技术
高功率密度高效率开关变换器是高频开关变换器的研究热点之一。提高变换器功率密度的有效途径是提高变换器的开关频率。随着开关频率的增加,传统的硬开关PWM变换器的开关损耗急剧增加,导致变换器效率降低,限制了功率密度的进一步提高。变换器软开关技术可以实现开关管的零电压开关(ZVS)或零电流开关(ZCS),以降低开关损耗,提高变换器的效率和功率密度,因此越来越受到重视。
移相全桥(PSFB)变换器是一种实现变压器一次侧开关管零电压开关的变换器,被研究者广泛应用。然而,传统的PSFB变换器存在一系列问题,如整流二极管寄生振荡和反向恢复问题、占空比丢失和循环电流损耗问题。同时,门极信号的不对称控制方法可能导致变压器的直流偏磁现象,导致变压器的附加损耗和利用率低,从而导致变压器铁心饱和的问题。
为了解决传统PSFB变换器存在的问题,近年来研究者对其进行了深入的研究,并提出了许多改进方案。为了解决占空比丢失的问题,在变压器的一次侧连接了一系列饱和电感,饱和电感的电感随电流的大小变化而变化,由于饱和电感的这一特性,可以有效地降低占空比丢失的情况。但饱和电感工作在双向磁化状态,损耗较大。将全桥电路和LLC谐振电路通过滞后桥臂相结合,拓宽了传统PSFB变换器的软开关范围,但传统PSFB变换器的其他问题仍未得到解决。在二次侧整流器引入两个有源开关,解决了反向恢复问题,实现了变压器一次侧所有开关管的零电压开关,但在轻载时,零电压范围有限,循环电流大。在变压器的一次侧增加二极管钳位电路,降低了二次侧整流二极管电压尖峰的严重性,并增加了附加电感和不对称脉宽调制(APWM)策略,以降低开关器件的损耗。但是,变换器增加了三个额外的电感器,增加电路的成本、尺寸和重量。此外,控制策略变得更加复杂。
发明内容
本发明针对上面存在的问题,为了简化复杂的控制方法,降低成本、重量和体积,本文提出了一种新型带缓冲电路和耦合电感的全桥全软开关变换器。
本发明解决上述技术问题的方案是:
所述变换器的变压器一次侧全桥逆变电路由开关管S1、S2、S3、S4组成,所述变换器的变压器二次侧整流电路由二极管D1、D2、D3、D4组成,所述缓冲电路由Q1、Q2、Cclamp、D5组成,然后并联在整流电路后面,是实现电路软开关的关键部分。开关管Q1的源极连接在耦合电感L1和L2的公共端,其漏极连接在二极管D1和D3的阴极,电容Cr并联在开关管Q1两端,电容Cclamp和Q2串联然后再并联在二极管D3和D4两端,其中电容Cclamp另外一端连接在二极管D3的阴极,Q2另一端连接在D4的阳极。二极管阳极连接在电容Cclamp和Q2的公共端,其阴极连接在电感L2另一端。稳压电容Co并联在负载端,实现输出电压的稳定。
本发明的技术效果在于:通过在变压器二次侧增加缓冲电路和耦合电感,可以实现变换器的变压器所有开关管和二次侧整流电路以及缓冲电路的软开关。变压器一次侧开关管的控制策略是最简单的互补对称控制,避免了PSFB的占空比丢失、二极管寄生振荡和循环电流的问题。
附图说明
图1为本发明提供的一种新型带缓冲电路和耦合电感的全桥全软开关变换器的电路连接示意图。
图2为本发明提供给图1的主要工作波形示意图。
图3为本发明在工作模式1的等效电路图。
图4为本发明在工作模式2的等效电路图。
图5为本发明在工作模式3的等效电路图。
图6为本发明在工作模式4的等效电路图。
图7为本发明在工作模式5的等效电路图。
图8为本发明在工作模式6的等效电路图。
图9为本发明在工作模式7的等效电路图。
图10为本发明在工作模式8的等效电路图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
提出了一种新型带缓冲电路和耦合电感的全桥全软开关变换器,该变换器具有缓冲电路和耦合电感,如图1所示。该变换器变压器一次侧开关管由S1、S2、S3和S4组成。该变换器的整流电路由二极管D1、D2、D3和D4组成。变换器的缓冲电路由Q1、Q2、D5和Cclamp组成。Cr是一个谐振电容器(Cclamp远大于Cr)。L1和L2是耦合电感。Llk和Lm分别是变压器的漏磁和励磁电感。假设Co足够大,输出电压vo近似不变。变换器电压和电流的参考方向如图1所示。变换器的每种模式将详细分析如下。在运行模式分析中,有8种模式,图3~图10中所述变换器的工作原理可以通过图2中的关键波形来解释。
模式1[t0~t1](如图3所示):在此模式下,谐振电容器Cr充电。在t0之前,电能通过开关S1、S4、D1、D4和Q1输送到负载。在t0时,Q1关闭,谐振电容Cr开始充电,并与变压器的漏感Llk和耦合电感L1产生谐振。由于L1>>Llk,电流的谐振频率可近似计算为
Figure BDA0002021406800000041
二极管D5的电压VD5是由于耦合电感L2作用而产生的负值。直到t1时,Cr充电完成,VD5值为正。二极管D5的电流在其两端的电压变为正后缓慢增加,从而实现了二极管D5的ZCS开启。
Figure BDA0002021406800000042
模式2[t1~t2](如图4所示):这是Cclamp充电阶段。此模式与以前的模式类似。区别在于耦合电感L1和L2参与了谐振。电流的谐振频率可以近似地通过
Figure BDA0002021406800000043
计算,随着电容Cr充电,Q2上的电压VQ2减小,可以用以下公式表示:
Figure BDA0002021406800000051
其中
Figure BDA0002021406800000052
是耦合电感的互感。
在t2时,因为钳位电容Cclamp的电压Vc_clamp等于Vrect,电压VQ2值达到零,从而实现了Q2的ZVS开启。
模式3[t2~t3](如图5所示):t2触发Q2。在t2之后,流过二极管D1和D4的电流缓慢下降。在t3时,iD1值降为零,变换器的一次电流降为变压器的励磁电流,从而实现了D1和D4的ZCS关断。由于Q2的导通,Cclamp仅在该模式下与变压器的漏感器谐振。此模式中的ic_clamp可以表示为:
Figure BDA0002021406800000053
模式4[t3~t4](如图6所示):这是耦合电感续流阶段的电流。在t3之后,电流流过Q2和D5。变压器只有很小的励磁电流流过S1和S4,可以忽略不计。耦合电感的电流在t4达到零,从而实现了S1和S4的ZCS关断和D5的ZCS关断。
模式5[t4~t5](如图7所示):这是谐振电容Cr和耦合电感L1的谐振阶段。t4之后,谐振电容Cr与耦合电感L1谐振,向耦合电感L1反向充电。因为Cclamp远大于Cr,主串联谐振是由耦合电感L1与Cr产生的。在t5时,电容Cr两端电压值的Vcr达到零,从而实现了Q1的ZVS开通。在t4时,耦合电感L1的电流为零,谐振电容Cr的电压为:
Figure BDA0002021406800000061
模式6[t5~t6](如图8所示):在t5,开关S1和S4关闭。在t5之后,开关S1、S4和S2、S3与励磁电感Lm发生谐振,励磁电流iLm开始对开关S1和S4的输出电容充电,并对开关S2和S3的输出电容放电,开关S2和S3之间的电压降至零。由于iLm流经S2和S3的体二极管,因此可以达到开关S2和S3的ZVS开启的条件。同时,iLo流过Q1的体二极管。直到t6,变压器一次侧开关寄生电容充放电完毕,开关S2、S3、Q1同时通电。
忽略开关Q1的体二极管电压,耦合电感L1和L2的电压可表示为:
Figure BDA0002021406800000062
耦合电感的斜率在反方向上减少为:k=(vrect-vo)/L1
模式7[t6~t7](如图9所示):此模式为Cclamp给负载充电的阶段。由于电容Cclamp的电压值大于整流器输出电压Vrect,因此电能不能立即传输到负载。直到t7,当Cclamp的电压值等于Vrect时,电能才可以传输到负载。
模式8[t7~t8](如图10所示):在t7,电源通过二极管D2和D3传输到负载。由于Cclamp的放电阶段,可以实现D2、D3的ZCS开通和Q2的ZVS关断。t8时,Cclamp放电完毕,一次电流ipri增加到与输出电感电流iL1相同,此时Q2关闭。
模式8之后,另一半开关周期开始,电路工作方式与前一半开关周期相同。

Claims (1)

1.一种新型带缓冲电路和耦合电感的全桥全软开关变换器,其特征在于:所述变换器包括了缓冲电路和耦合电感电路,所述变换器的变压器一次侧全桥逆变电路由开关管S1、S2、S3、S4组成,电源Vin的正极连接在S1的漏极,Vin的负极连接在S1的源极,其S1的源极和S2的漏极相连,S3的源极和S4的漏极相连,S1的漏极和S3的漏极相连,S2的源极和S4的源极相连;漏感Llk一端连接在S1的源极另外一端连接在变压器原边的同名端,Lm并联在变压器的原边两端,变压器原边的异名端连接在S4的漏极,变压器副边的同名端连接在D1的阳极,变压器异名端连接在D3的阳极;所述变换器的变压器二次侧整流电路由二极管D1、D2、D3、D4组成,其中D1的阳极和D2的阴极相连,D3的阳极和D4的阴极相连,D1的阴极和D3的阴极相连,D2的阳极和D4的阳极相连;所述变换器的缓冲电路由Q1、Q2、Cclamp、D5组成,然后并联在整流电路后面,能够实现变换器的变压器一次侧开关管的软开关和整流二极管的软开关,耦合电感由L1和L2组成,能够实现缓冲电路的软开关,其中开关管Q1的源极连接在耦合电感L1的异名端,其漏极连接在二极管D1和D3的阴极公共端,电容Cr并接在开关管Q1的两端,电容Cclamp一端连接在Q1漏极,Cclamp另外一端连接在开关管Q2的漏极,Q2的源极连接在D4的阳极,二极管D5阳极连接在开关管Q2的漏极,D5阴极连接在电感L2的异名端,L2的同名端连接在Q1的源极,稳压电容Co并联在负载端,同时Co一端连接在L1的同名端,Co另外一端连接在Q2的源极,保持输出电压的稳定;所述变换器的变压器一次侧开关管的控制策略是最简单的互补对称控制,避免了PSFB的占空比丢失、二极管寄生振荡和循环电流的问题;
模式1[t0~t1]:在此模式下,谐振电容器Cr充电,在t0之前,电能通过开关S1、S4、D1、D4和Q1输送到负载,在t0时,Q1关闭,谐振电容Cr开始充电,并与变压器的漏感Llk和耦合电感L1产生谐振,由于L1>>Llk,电流的谐振频率可近似计算为
Figure FDA0002552308410000021
二极管D5的电压VD5是由于耦合电感L2作用而产生的负值,直到t1时,Cr充电完成,VD5值为正,二极管D5的电流在其两端的电压变为正后缓慢增加,从而实现了二极管D5的ZCS开启;
Figure FDA0002552308410000022
模式2[t1~t2]:这是Cclamp充电阶段,此模式与以前的模式类似,区别在于耦合电感L1和L2参与了谐振,电流的谐振频率可以近似地通过
Figure FDA0002552308410000023
计算,随着电容Cr充电,Q2上的电压VQ2减小,可以用以下公式表示:
Figure FDA0002552308410000024
其中
Figure FDA0002552308410000025
是耦合电感的互感,
在t2时,因为钳位电容Cclamp的电压Vc_clamp等于Vrect,电压VQ2值达到零,从而实现了Q2的ZVS开启;
模式3[t2~t3]:t2触发Q2,在t2之后,流过二极管D1和D4的电流缓慢下降,在t3时,iD1值降为零,变换器的一次电流降为变压器的励磁电流,从而实现了D1和D4的ZCS关断,由于Q2的导通,Cclamp仅在该模式下与变压器的漏感器谐振,此模式中的icclamp可以表示为:
Figure FDA0002552308410000031
模式4[t3~t4]:这是耦合电感续流阶段的电流,在t3之后,电流流过Q2和D5,变压器只有很小的励磁电流流过S1和S4,可以忽略不计,耦合电感的电流在t4达到零,从而实现了S1和S4的ZCS关断和D5的ZCS关断;
模式5[t4~t5]:这是谐振电容Cr和耦合电感L1的谐振阶段,t4之后,谐振电容Cr与耦合电感L1谐振,向耦合电感L1反向充电,因为Cclamp远大于Cr,主串联谐振是由耦合电感L1与Cr产生的,在t5时,电容Cr两端电压值的Vcr达到零,从而实现了Q1的ZVS开通,在t4时,耦合电感L1的电流为零,谐振电容Cr的电压为:
Figure FDA0002552308410000032
模式6[t5~t6]:在t5,开关S1和S4关闭,在t5之后,开关S1、S4和S2、S3与励磁电感Lm发生谐振,励磁电流iLm开始对开关S1和S4的输出电容充电,并对开关S2和S3的输出电容放电,开关S2和S3之间的电压降至零,由于iLm流经S2和S3的体二极管,因此可以达到开关S2和S3的ZVS开启的条件,同时,iLo流过Q1的体二极管,直到t6,变压器一次侧开关寄生电容充放电完毕,开关S2、S3、Q1同时通电;
忽略开关Q1的体二极管电压,耦合电感L1和L2的电压可表示为:
Figure FDA0002552308410000041
耦合电感的斜率在反方向上减少为:k=(vrect-vo)/L1
模式7[t6~t7]:此模式为Cclamp给负载充电的阶段,由于电容Cclamp的电压值大于整流器输出电压Vrect,因此电能不能立即传输到负载,直到t7,当Cclamp的电压值等于Vrect时,电能才可以传输到负载;
模式8[t7~t8]:在t7,电源通过二极管D2和D3传输到负载,由于Cclamp的放电阶段,可以实现D2、D3的ZCS开通和Q2的ZVS关断,t8时,Cclamp放电完毕,一次电流ipri增加到与输出电感电流iL1相同,此时Q2关闭;
模式8之后,另一半开关周期开始,电路工作方式与前一半开关周期相同。
CN201910282944.5A 2019-04-09 2019-04-09 一种新型带缓冲电路和耦合电感的全桥全软开关变换器 Active CN109951085B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910282944.5A CN109951085B (zh) 2019-04-09 2019-04-09 一种新型带缓冲电路和耦合电感的全桥全软开关变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910282944.5A CN109951085B (zh) 2019-04-09 2019-04-09 一种新型带缓冲电路和耦合电感的全桥全软开关变换器

Publications (2)

Publication Number Publication Date
CN109951085A CN109951085A (zh) 2019-06-28
CN109951085B true CN109951085B (zh) 2020-08-18

Family

ID=67014130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910282944.5A Active CN109951085B (zh) 2019-04-09 2019-04-09 一种新型带缓冲电路和耦合电感的全桥全软开关变换器

Country Status (1)

Country Link
CN (1) CN109951085B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100550229C (zh) * 2005-12-08 2009-10-14 南车株洲电力机车有限公司 一种聚酰亚胺薄膜超导带材绝缘结构制作方法及装置
CN100446390C (zh) * 2007-03-05 2008-12-24 浙江大学 有源箝位零电压软开关高增益升压型交错并联变换器
US7817452B2 (en) * 2007-08-13 2010-10-19 Stephen William Smith Phase shifted H-Bridge resonant converter with symmetrical currents

Also Published As

Publication number Publication date
CN109951085A (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
US20220209672A1 (en) High-gain quasi-resonant dc-dc converter based on voltage doubling rectifier circuit
CN109217681B (zh) 一种双向谐振变换器
WO2015106701A1 (zh) 一种交流-直流变换电路及其控制方法
CN110707931A (zh) 一种llc谐振变换器及控制方法
CN110190752B (zh) 一种双向clllc-dcx谐振变换器及其控制方法
CN104980037A (zh) 一种副边调整型定频谐振变换器及其控制方法
TW202247587A (zh) 適用於寬範圍輸出電壓的變換器及其控制方法
CN108199579B (zh) 一种带耦合电感的高变比软开关dc-dc降压变换器
Chu et al. A zero-voltage and zero-current switching interleaved two-switch forward converter with passive auxiliary resonant circuit
WO2005076450A1 (en) Zero-voltage switching half-bridge dc-dc converter topology by utilizing the transformer leakage inductance trapped energy
CN109698627B (zh) 一种基于开关电容器的全桥dc/dc变换器及其调制策略
CN109302078B (zh) 基于同步整流模式的dc-dc开关电源
CN114070090A (zh) 一种串联型有源钳位的反激变换器电路
CN108322053B (zh) 一种降压式变换电路
CN113131747A (zh) 反激变换器控制方法及其控制装置
CN210297551U (zh) 一种dcdc升压变换器
CN218482782U (zh) 一种软开关降压变换器
CN112491258A (zh) 一种有源钳位反激变换器的钳位电路及其控制方法
CN111884514A (zh) 正反激式开关电源电路及其控制方法
KR20170059390A (ko) 소프트 스위칭 풀브릿지 컨버터 및 그 구동방법
CN109951085B (zh) 一种新型带缓冲电路和耦合电感的全桥全软开关变换器
CN103546038A (zh) 一种抑制副边电压振荡的软开关全桥直流变换器
WO2023010233A1 (zh) 一种变换器及变换器的控制方法
CN212649361U (zh) 一种直流变换器电压尖峰吸收电路
CN110445392B (zh) 一种交错并联双管正激变换器及其调制策略

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231011

Address after: 411100 No. 778 Shaoshan West Road, Xiangtan City, Hunan Province

Patentee after: XIANGTAN RADIO Co.,Ltd.

Address before: 411105 Xiangtan University, Yuhu District, Xiangtan City, Hunan Province

Patentee before: XIANGTAN University