CN109849896A - 一种基于参数观测的混合动力汽车自适应e-h切换协调控制方法 - Google Patents

一种基于参数观测的混合动力汽车自适应e-h切换协调控制方法 Download PDF

Info

Publication number
CN109849896A
CN109849896A CN201910150927.6A CN201910150927A CN109849896A CN 109849896 A CN109849896 A CN 109849896A CN 201910150927 A CN201910150927 A CN 201910150927A CN 109849896 A CN109849896 A CN 109849896A
Authority
CN
China
Prior art keywords
torque
motor
engine
clutch
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910150927.6A
Other languages
English (en)
Other versions
CN109849896B (zh
Inventor
陈龙
汪佳佳
汪若尘
蔡英凤
施德华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910150927.6A priority Critical patent/CN109849896B/zh
Publication of CN109849896A publication Critical patent/CN109849896A/zh
Application granted granted Critical
Publication of CN109849896B publication Critical patent/CN109849896B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本发明公开了一种基于参数观测的混合动力汽车自适应E‑H切换协调控制方法,属于汽车动态控制领域。本发明针对混合动力汽车由E(Electric drive mode,纯电动模式)‑H(Hybrid drive mode,混合驱动模式)的模式切换过程中产生的纵向冲击问题及***参数摄动现象,引入一种融合参数不确定性观测器的多动力源协调控制策略,通过实时监测***参数变化,及时修正协调控制器参数,使得车辆始终自动地工作在最优或次最优的状态下。同时,由于协调控制器的自校正特性,可实现适用于不同路面、不同驾驶员的高水平切换控制。本发明可有效降低模式切换冲击,并使其协调控制策略具有一定的抗干扰性及自适应性。

Description

一种基于参数观测的混合动力汽车自适应E-H切换协调控制 方法
技术领域
本发明涉及一种基于参数观测的混合动力汽车自适应E-H切换协调控制策略,属于汽车动态控制领域。
背景技术
众所周知,混合动力汽车具有多种行驶模式,并且可以根据不同的行驶工况选择合适的驱动/制动模式以实现良好的燃油经济性及动力性,这就不可避免地涉及到模式切换,相应的动力源需求转矩也会发生突变,如果不施加合理的控制,易造成明显冲击感,甚至会发生动力中断的现象。发动机、电机以及离合器作为主要的冲击来源,合理协调三者的输出响应有利于提升整车模式切换品质。当前混合动力汽车动态协调控制研究主要采用电机动态转矩补偿发动机转矩响应速度的不足,但极少考虑模型本身存在的不确定性及外界干扰,此外,由于车辆实际工作环境复杂多变,协调控制策略必须能适应各种状态变量的变化。
发明内容
为克服以上技术缺陷,本发明提出一种能适应各种状态变量变化的基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其技术方案包括步骤:
一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,包括以下步骤:
步骤1)混合动力汽车初始状态以纯电动模式行驶,此时,制动器CB1锁止,发动机关闭,电机MG2完全负担车辆驱动所需扭矩;同时,混合动力汽车上的车速传感器及加速踏板位置传感设备实时监测当前车速信息及加速踏板、制动踏板位置信号,并输入到车辆控制器VCU,根据已设定的切换车速阈值vthr,VCU判断是否进行模式切换;
步骤2)若车速v≥vthr时;
此时混合动力汽车满足模式切换条件,需要进行模式切换,VCU控制制动器CB1迅速断开,车辆由纯电动模式进入发动机拖转;发动机拖转阶段控制目标为:尽快增大离合器CR1压力,电机MG1需在短时间内通过离合器拖转发动机直至怠速转速widle,同时降低纵向冲击。考虑到该阶段控制目标及控制对象数量较多,设计了基于动态规划的最优协调控制器,通过离散化上述目标函数及变量范围,运用动态规划全局优化算法求解最优控制量(TMG1,TCR1,TMG2);其中,TCR1为离合器传递扭矩,TMG1和TMG2分别为电机MG1和MG2的输出转矩;
步骤3)当发动机的转速we≥widle时;
此时车辆进入转速同步阶段,发动机开始点火,同时最优协调控制器控制(Te,TMG1,TCR1,TMG2),其中,Te为发动机输出转矩,以保证离合器端速差|wcl-in-wcl-out|小于设定阈值ε0,实现转速同步;
步骤4)当|wcl-in-wcl-out|≤ε0时;此时认为离合器进入滑磨阶段,此阶段最优协调控制器控制目标为进一步降低端速差及滑磨功,该阶段目标函数及其变量限制条件同步骤3);
步骤5)当|wcl-in-wcl-out|≤ε1时;此时离合器端速差足够小,认为离合器完全接合,车辆进入混合驱动模式,电机MG1调速发动机于最优转速,整车由发动机与电机MG2共同驱动,多动力源最优转矩分配由能量管理确定,模式切换过程结束;
步骤6)混合动力汽车模式切换过程中,设计相应的不确定性参数观测器,通过在Cruise模型中进行多组数据输入,应用数据驱动理论,构建出参数变化预测模型,从而识别当前***参数变化规律。
本发明的有益效果为:本发明仅基于Cruise模型的输入输出数据直接搭建数据驱动预测器,能妥善处理***中的多约束问题及高阶非线性,非常适合于具有快速复杂动态特性的HEV模式切换过程中的参数摄动预测。通过对***参数及其变化率的实时观测,可相应调整车辆模式切换过程协调控制器参数,进而获得平顺性较高,鲁棒性较好的模式切换品质。
附图说明
图1为本发明所述混合动力汽车动力***布局图。
图2为本发明所述混合动力汽车E-H模式切换流程图。
图3为本发明所述的基于参数观测的混合动力汽车自适应E-H切换协调控制策略的总体控制方案图。
图4为本发明所述***不确定参数观测器设计架构图。
具体实施方式
以下结合附图及具体实施例对本发明做进一步说明。如图1所示为本专利研究的双行星排式混合动力***,主要包括前排齿圈R1、前排行星架C1、前排太阳轮S1、后排齿圈R2、后排行星架C2、后排太阳轮S2。其中发动机通过离合器CR1和制动器CB1与前排行星架C1相连,电机MG1的转子轴通过制动器CB2与前排太阳轮S1相连,电机MG2的转子轴与后排太阳轮S2相连。另外前排行星架C1与后排齿圈R2相连,前排齿圈R1、后排行星架C2、输出轴三者相连。混合动力汽车初始以纯电动模式行驶,制动器CB1锁止,发动机关闭,电机MG2完全负担车辆驱动所需扭矩。同时,混合动力汽车上的车速传感器及加速踏板位置传感设备实时监测当前车速信息及加速踏板、制动踏板位置信号,并输入到车辆控制器(VCU),根据已设定的切换车速阈值vthr,VCU判断是否进行模式切换;
若v>vthr时,表明混合动力汽车满足模式切换条件,需要进行模式切换,VCU控制制动器CB1迅速断开,车辆由纯电动模式进入发动机拖转。发动机拖转阶段控制目标为:尽快增大离合器CR1压力,电机MG1需在0.5s内通过离合器拖转发动机直至怠速转速widle,同时降低纵向冲击。考虑到该阶段控制目标及控制对象数量较多,设计了基于动态规划的最优协调控制器。
目标函数
相应的变量限制条件为:
通过离散化上述目标函数及变量范围,运用动态规划全局优化算法求解最优控制量(TMG1,TCR1,TMG2)。由于发动机低速转动时存在显著的转矩波动,以及离合器传递扭矩过程存在的不连续性均会传递到驱动轴从而带来冲击,增设电机MG2转矩PID补偿模块抵消这部分转矩波动。
当we≥widle时,此时车辆进入转速同步阶段,发动机开始点火,同时最优协调控制器控制(Te,TMG1,TCR1,TMG2),以降低离合器端速差|wcl-in-wcl-out|,实现转速同步。同样,设计了电机MG2转矩补偿模块抵消发动机点火后的转矩波动。
相应目标函数为
受到的限制条件为
如图2所示,当|wcl-in-wcl-out|≤ε0时,此时离合器端速差低于设定阈值ε0(本文设定为0.1rad/s),认为离合器进入滑磨阶段,此阶段最优协调控制器控制目标为进一步降低端速差及滑磨功。该阶段目标函数及其变量限制条件同上。
当|wcl-in-wcl-out|≤ε1时,此时离合器端速差足够小,即ε1等于0,认为离合器完全接合,车辆进入混合驱动模式。电机MG1调速发动机于最优转速,整车由发动机与电机MG2共同驱动,多动力源最优转矩分配由能量管理策略确定,完成E-H模式切换过程。
整个切换过程涉及的协调控制策略的总体控制方案如图3所示。当混合动力汽车车速超过设定阈值vthr,车辆控制器接收到纯电动切换至混合驱动的模式切换信号,此时能量管理策略根据车辆行驶工况和燃油经济性要求确定出混合驱动模式稳态下发动机目标转矩Te-set、电机目标转矩Tm-set、离合器目标转矩Tc-set,于是发动机、离合器、电机的执行机构分别通过调整节气门开度、离合器接合压力、三相绕组电流来驱使各动力源过渡至目标转矩。为了减小由上述转矩突变带来的驱动轴冲击振动,设计了如权利要求1所述的分阶段协调控制策略,通过最优控制和电机补偿综合求解整个切换过程中发动机、离合器、电机的需求转矩Te-dem、Tc-dem、Tm-dem,并考虑到执行器的实际操作限制,分别设计了扭矩限制模块和迟滞模块,其中发动机的扭矩限制模块为
Te-min(ω)≤Te(ω)≤Te-max(ω)
发动机迟滞模块为
Te(ω)根据发动机当前转速通过稳态查表模型获得,查表模型基于发动机台架实验数据建立,τe为发动机一阶惯性环节的时间常数。
相似地,离合器执行器的扭矩限制及迟滞模块为
TCR1-min≤TCR1≤TCR1-max
电机的扭矩限制和迟滞模块为
TM-min(ω)≤TM(ω)≤TM-max(ω)
τc、τm分别为离合器和电机的一阶惯性环节的时间常数。经过“实际化”后的发动机执行扭矩Te-in、离合器执行扭矩Tc-in、电机执行扭矩Tm-in输入至HEV整车模型中(即图1所示的***架构),最终的输出扭矩真值信号Te-act、Tc-act、Tm-act经由传感器测量反馈至协调控制器中。传感器测量模块主要模拟其测量误差,相应地数学表达为
其中,Δe、Δc、Δm分别为发动机、离合器、电机的误差比例系数。值得注意的是,整个E-H模式切换过程相对动态,存在多种时变***参数,如各部件转动惯量、电机内阻、发动机启动阻力矩、离合器摩擦系数等。由于***参数时变易造成控制器效果恶化,基于此,设计相应的不确定性参数观测器,如图4所示,首先应用软件Cruise搭建了本专利所研究的如图1所示的双行星排式混合动力汽车的整车模型,该模型可较好地刻画车辆的瞬态动力学特性。随后通过在Cruise模型中进行多组数据输入,应用数据驱动理论,考虑E-H切换过程的离散状态方程,在第k个采样时刻,有如下状态空间表达式
x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)
其中x(k)是***的状态变量,u(k)是***的输入变量,y(k)是***的输出变量,A、B、C分别是***的状态、输入、输出增益矩阵。
***的输入为发动机、离合器、电机转矩及电机工作温度,即u(k)=[Te(k) Tc(k)Tm(k) Qm(k)]T,***输出为离合器端速差、离合器摩擦系数、电机内阻,即y(k)=[Δω(k)μc(k) Rm(k)]T,通过迭代运算有
则对于离散时间δ,有如下矩阵方程
当k=1,δ=0,1,2,...,j-1时,有如下矩阵方程
Ys=ψiXsiUs
其中,
Xs=[x(1) x(2) x(3) … x(j)]
ψi=[C CA CA2 … CAi-1]T
当k=1,δ=0,1,2,...,j-1时,有如下矩阵方程
Yf=ψiXfiUf
其中
Xf=[x(i+1) x(i+2) x(i+3) … x(i+j)]
由于
Xf=AiXsiUs
σi=[Ai-1B Ai-2B … B 0]
即有
Yf=ψiAiψi -1Ysii-Aiψi -1φi)UsjUf
应用上述迭代递归的方法即可建立输入-输出的控制间预测方程,通过采集足够的测量数据便可构建出参数变化预测模型,从而识别当前***参数变化规律。
如图3所示,通过上述不确定性观测器识别,在***参数摄动的状况下,可以同时进行最优协调控制器参数α、β、γ、λ和PID参数kp、kd、ki、k′p、k′d和k′i修正,从而使得***始终自动地工作在最优或次最优的运行状态下。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (8)

1.一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其特征在于,包括以下步骤:
步骤1)混合动力汽车初始状态以纯电动模式行驶,此时,制动器CB1锁止,发动机关闭,电机MG2完全负担车辆驱动所需扭矩;同时,混合动力汽车上的车速传感器及加速踏板位置传感设备实时监测当前车速信息及加速踏板、制动踏板位置信号,并输入到车辆控制器VCU,根据已设定的切换车速阈值vthr,VCU判断是否进行模式切换;
步骤2)若车速v≥vthr时;
此时混合动力汽车满足模式切换条件,需要进行模式切换,VCU控制制动器CB1迅速断开,车辆由纯电动模式进入发动机拖转;发动机拖转阶段控制目标为:尽快增大离合器CR1压力,电机MG1需在短时间内通过离合器拖转发动机直至怠速转速widle,同时降低纵向冲击。考虑到该阶段控制目标及控制对象数量较多,设计了基于动态规划的最优协调控制器,通过离散化上述目标函数及变量范围,运用动态规划全局优化算法求解最优控制量(TMG1,TCR1,TMG2);其中,TCR1为离合器传递扭矩,TMG1和TMG2分别为电机MG1和MG2的输出转矩;
步骤3)当发动机的转速we≥widle时;
此时车辆进入转速同步阶段,发动机开始点火,同时最优协调控制器控制(Te,TMG1,TCR1,TMG2),其中,Te为发动机输出转矩,以保证离合器端速差|wcl-in-wcl-out|小于设定阈值ε0,实现转速同步;
步骤4)当|wcl-in-wcl-out|≤ε0时;此时认为离合器进入滑磨阶段,此阶段最优协调控制器控制目标为进一步降低端速差及滑磨功,该阶段目标函数及其变量限制条件同步骤3);
步骤5)当|wcl-in-wcl-out|≤ε1时;此时离合器端速差足够小,认为离合器完全接合,车辆进入混合驱动模式,电机MG1调速发动机于最优转速,整车由发动机与电机MG2共同驱动,多动力源最优转矩分配由能量管理确定,模式切换过程结束;
步骤6)混合动力汽车模式切换过程中,设计相应的不确定性参数观测器,通过在Cruise模型中进行多组数据输入,应用数据驱动理论,构建出参数变化预测模型,从而识别当前***参数变化规律。
2.根据权利要求1所述的一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其特征在于,步骤2)中,基于动态规划的最优协调控制器运用动态规划全局优化算法求解最优控制量为:
该控制器的目标函数:
相应的变量限制条件为:
其中,t0和t1分别为制动器CB1完全断开,发动机转速等于怠速转速的瞬时时刻,j为车辆纵向冲击度,α和β分别为冲击度和发动机拖转时间的权重系数,ωe为发动机转速,TCR1为离合器传递扭矩,Tef为发动机启动阻力矩,TMG1和TMG2分别为电机MG1和MG2的输出转矩,TMG1-min和TMG1-max分别为电机MG1的输出最小转矩和最大转矩限制,同理,TMG2-min和TMG2-max为电机MG2的最小转矩和最大转矩。
3.根据权利要求1所述的一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其特征在于,步骤2)中,由于发动机低速转动时存在显著的转矩波动,以及离合器传递扭矩过程存在的不连续性均会传递到驱动轴从而带来冲击,增设电机MG2转矩PID补偿模块抵消这部分转矩波动。
4.根据权利要求1所述的一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其特征在于,步骤3)中,最优协调控制器控制的目标函数为:
受到的限制条件为
其中,Te-max为发动机输出转矩最大值,ωcl_in和ωcl_out分别为离合器主动盘,从动盘端转速,t2为离合器端速差等于ε0的瞬时时刻,γ和λ分别为离合器端速差和滑磨功的权重系数,TCR1-min和TCR1-max分别为离合器传递扭矩的最小值和最大值,同样,设计了电机MG2转矩PID补偿模块抵消发动机点火后的转矩波动。
5.根据权利要求1所述的一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其特征在于,步骤6)的具体过程为:首先应用软件Cruise搭建双行星排式混合动力汽车的整车模型,随后通过在Cruise模型中进行多组数据输入,应用数据驱动理论,考虑E-H切换过程的离散状态方程,在第k个采样时刻,有如下状态空间表达式
x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)
其中x(k)是***的状态变量,u(k)是***的输入变量,y(k)是***的输出变量,A、B、C分别是***的状态、输入、输出增益矩阵;
***的输入为发动机、离合器、电机转矩及电机工作温度,即u(k)=[Te(k) Tc(k) Tm(k) Qm(k)]T,***输出为离合器端速差、离合器摩擦系数、电机内阻,即y(k)=[Δω(k) μc(k) Rm(k)]T,通过迭代运算得出参数变化预测模型:
Yf=ψiAiψi -1Ysii-Aiψi -1φi)UsiUf
其中,
ψi=[C CA CA2…CAi-1]T
6.根据权利要求5所述的一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其特征在于,不确定性参数观测器的设计中应着重考虑电动机内阻、离合器摩擦系数、各构件转动惯量、传动轴等效刚度及阻尼的摄动,相应的Cruise模型数据输入为电动机内部工作温度、发动机、电机MG1和MG2的转矩。
7.根据权利要求3所述的一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其特征在于,电机MG2转矩PID补偿模块可由下式表达:
其中,kp、kd和ki为车速跟踪误差Δv的比例、微分及积分系数,k′p、k′d和k′i为加速度误差Δα的比例、微分及积分系数。通过调整车速跟踪误差Δv和加速度误差Δα的比例、积分及微分系数,输出当前时刻的电机MG2转矩补偿信号δT
8.根据权利要求1所述的一种基于参数观测的混合动力汽车自适应E-H切换协调控制方法,其特征在于,底层执行器在执行上层命令时不可避免地存在时滞与限制,通过分别引入发动机扭矩限制模块和扭矩迟滞模块、离合器扭矩限制及扭矩迟滞模块、电机扭矩限制模块与迟滞模块,使得协调控制器的设计更具合理性。
CN201910150927.6A 2019-02-28 2019-02-28 一种基于参数观测的混合动力汽车自适应e-h切换协调控制方法 Active CN109849896B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910150927.6A CN109849896B (zh) 2019-02-28 2019-02-28 一种基于参数观测的混合动力汽车自适应e-h切换协调控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910150927.6A CN109849896B (zh) 2019-02-28 2019-02-28 一种基于参数观测的混合动力汽车自适应e-h切换协调控制方法

Publications (2)

Publication Number Publication Date
CN109849896A true CN109849896A (zh) 2019-06-07
CN109849896B CN109849896B (zh) 2020-11-03

Family

ID=66899330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910150927.6A Active CN109849896B (zh) 2019-02-28 2019-02-28 一种基于参数观测的混合动力汽车自适应e-h切换协调控制方法

Country Status (1)

Country Link
CN (1) CN109849896B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435635A (zh) * 2019-08-30 2019-11-12 吉林大学 一种带湿式离合器的行星混动***模式切换协调控制方法
CN111806424A (zh) * 2020-06-24 2020-10-23 同济大学 基于状态估计的功率分流混合动力***模式切换控制方法
CN112697426A (zh) * 2020-12-28 2021-04-23 北京理工大学 基于线性回归拟合提高液粘调速离合器调速准确度的方法
CN113022548A (zh) * 2021-03-08 2021-06-25 江苏大学 一种混合动力汽车模式切换控制***及其控制方法
CN113619562A (zh) * 2021-08-23 2021-11-09 同济大学 一种混合动力汽车模式切换工况下瞬态冲击抑制方法
CN114179778A (zh) * 2021-12-30 2022-03-15 扬州大学 基于时滞预估的混合动力汽车e-h切换协调控制方法
CN114347972A (zh) * 2022-01-07 2022-04-15 扬州大学 基于干扰补偿的混合动力汽车e-h切换协调控制方法
CN116027672A (zh) * 2023-03-28 2023-04-28 山东大学 基于神经网络的模型预测控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104670221A (zh) * 2015-03-06 2015-06-03 奇瑞汽车股份有限公司 混合动力汽车工作模式切换过程动态协调控制方法
CN106080584A (zh) * 2016-06-21 2016-11-09 江苏大学 一种基于模型预测控制算法的混合动力汽车模式切换协调控制方法
CN106585619A (zh) * 2016-12-17 2017-04-26 福州大学 考虑多目标的行星齿轮混合动力***动态协调控制方法
CN107539305A (zh) * 2017-08-25 2018-01-05 吉林大学 一种行星式混联混合动力***的动态扭矩协调控制方法
JP2018149952A (ja) * 2017-03-14 2018-09-27 株式会社豊田中央研究所 ハイブリッド車両の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104670221A (zh) * 2015-03-06 2015-06-03 奇瑞汽车股份有限公司 混合动力汽车工作模式切换过程动态协调控制方法
CN106080584A (zh) * 2016-06-21 2016-11-09 江苏大学 一种基于模型预测控制算法的混合动力汽车模式切换协调控制方法
CN106585619A (zh) * 2016-12-17 2017-04-26 福州大学 考虑多目标的行星齿轮混合动力***动态协调控制方法
JP2018149952A (ja) * 2017-03-14 2018-09-27 株式会社豊田中央研究所 ハイブリッド車両の制御装置
CN107539305A (zh) * 2017-08-25 2018-01-05 吉林大学 一种行星式混联混合动力***的动态扭矩协调控制方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435635B (zh) * 2019-08-30 2020-08-14 吉林大学 一种带湿式离合器的行星混动***模式切换协调控制方法
CN110435635A (zh) * 2019-08-30 2019-11-12 吉林大学 一种带湿式离合器的行星混动***模式切换协调控制方法
CN111806424A (zh) * 2020-06-24 2020-10-23 同济大学 基于状态估计的功率分流混合动力***模式切换控制方法
CN111806424B (zh) * 2020-06-24 2021-09-03 同济大学 基于状态估计的功率分流混合动力***模式切换控制方法
CN112697426B (zh) * 2020-12-28 2021-12-28 北京理工大学 基于线性回归拟合提高液粘调速离合器调速准确度的方法
CN112697426A (zh) * 2020-12-28 2021-04-23 北京理工大学 基于线性回归拟合提高液粘调速离合器调速准确度的方法
CN113022548A (zh) * 2021-03-08 2021-06-25 江苏大学 一种混合动力汽车模式切换控制***及其控制方法
CN113619562A (zh) * 2021-08-23 2021-11-09 同济大学 一种混合动力汽车模式切换工况下瞬态冲击抑制方法
CN113619562B (zh) * 2021-08-23 2024-04-23 同济大学 一种混合动力汽车模式切换工况下瞬态冲击抑制方法
CN114179778A (zh) * 2021-12-30 2022-03-15 扬州大学 基于时滞预估的混合动力汽车e-h切换协调控制方法
CN114179778B (zh) * 2021-12-30 2023-12-01 扬州大学 基于时滞预估的混合动力汽车e-h切换协调控制方法
CN114347972A (zh) * 2022-01-07 2022-04-15 扬州大学 基于干扰补偿的混合动力汽车e-h切换协调控制方法
CN114347972B (zh) * 2022-01-07 2023-11-10 扬州大学 基于干扰补偿的混合动力汽车e-h切换协调控制方法
CN116027672A (zh) * 2023-03-28 2023-04-28 山东大学 基于神经网络的模型预测控制方法

Also Published As

Publication number Publication date
CN109849896B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
CN109849896A (zh) 一种基于参数观测的混合动力汽车自适应e-h切换协调控制方法
CN109849895A (zh) 一种基于神经网络观测器的混合动力汽车自适应e-h切换协调控制方法
Yang et al. Efficient mode transition control for parallel hybrid electric vehicle with adaptive dual-loop control framework
CN100467914C (zh) 混合电动车辆功率流稳定的输入扭矩最佳选择
US7160224B2 (en) Single motor recovery for an electrically variable transmission
CN100385149C (zh) 用于电动变速器扭矩控制的诊断方法
CN102490718B (zh) 双离合器式混合动力汽车电机起动发动机的控制方法
CN101492047B (zh) 混合动力***中调节发动机运行的方法和装置
CN107539305B (zh) 一种行星式混联混合动力***的动态扭矩协调控制方法
CN101634362B (zh) 用于海拔补偿的变速器换挡调度方法
CN101659256B (zh) 基于违约成本控制动力传动系***的方法
CN106080155B (zh) 一种驱动电机与自动变速器的优化集成***及换挡控制方法
CN101519071B (zh) 用于控制汽车动力系的方法和设备
US8494732B2 (en) Method for determining a preferred engine operation in a hybrid powertrain system during blended braking
US7469169B2 (en) Method for control of input power distribution in a motor vehicle with hybrid engine drive
CN107097632A (zh) 一种自动档混合动力环卫车取力结构及其控制方法
CN101429898A (zh) 最优化发动机燃料切断选择及输入转矩的方法
CN110103948A (zh) 基于补偿滑模控制的功率分流式混合动力汽车模式切换协调控制方法
CN101508292A (zh) 用于在动力系内控制电压的方法
CN109131307A (zh) 复合功率分流混合动力***模式切换的h∞鲁棒控制方法
KR100886738B1 (ko) 하이브리드 구동 장치와 그의 조절 방법 및 그의 엔진 제어장치, 및 컴퓨터 프로그램 리코더
CN108215773A (zh) 发动机摩擦模型调整
CN103696857A (zh) 一种用于电动汽车增程器的电子节气门装置和控制方法
CN116394914A (zh) 一种考虑soc轨迹的混合动力汽车预测能量管理方法
Fu et al. Mode transition coordination control for PHEV based on cascade predictive method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant