CN109524629A - 一种锂离子电池用球形硅碳负极材料的制备方法 - Google Patents

一种锂离子电池用球形硅碳负极材料的制备方法 Download PDF

Info

Publication number
CN109524629A
CN109524629A CN201710840789.5A CN201710840789A CN109524629A CN 109524629 A CN109524629 A CN 109524629A CN 201710840789 A CN201710840789 A CN 201710840789A CN 109524629 A CN109524629 A CN 109524629A
Authority
CN
China
Prior art keywords
slurry
preparation
silicon
graphite
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710840789.5A
Other languages
English (en)
Other versions
CN109524629B (zh
Inventor
沈龙
马飞
刘海宁
吴玉虎
李虹
娄文君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Shanshan Technology Co Ltd
Original Assignee
Shanghai Shanshan Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Shanshan Technology Co Ltd filed Critical Shanghai Shanshan Technology Co Ltd
Priority to CN201710840789.5A priority Critical patent/CN109524629B/zh
Publication of CN109524629A publication Critical patent/CN109524629A/zh
Application granted granted Critical
Publication of CN109524629B publication Critical patent/CN109524629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及锂离子电池技术领域,具体地说是一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,采用如下制备步骤:磷片石墨料表面羟基化;纳米硅粉料表面羟基化;制作石墨浆料;制作纳米硅粉浆料;石墨浆料、纳米硅粉浆料混合制备混合浆料;混合浆料干燥制粉;球形设备整形处理;分级处理;包覆处理;过筛得成品。本发明同现有技术相比,制备工艺简单;制备的材料在充当锂电池负极材料所用时材料结构稳定;制备的材料与常规的通过一次颗粒简单造粒的二次颗粒材料相比,循环稳定性得到提升,延长了材料的使用寿命。

Description

一种锂离子电池用球形硅碳负极材料的制备方法
技术领域
本发明涉及锂离子电池技术领域,具体地说是一种锂离子电池用球形硅碳负极材料的制备方法。
背景技术
锂离子二次电池在我们生活中扮演的角色越来越重要。从3C产品到电动汽车再到储能领域,处处可见锂离子二次电池的身影。锂离子二次电池负极材料多为天然石墨、人造石墨、中间相等各种石墨类材料。石墨的理论嵌锂比容量为372mAh/g,而目前石墨类负极材料在半电池中的实际脱锂容量已达365mAh/g,很难进一步提升。以18650圆柱电池为例,若以石墨为负极,通常只能设计出2.9Ah的电池,如继续提高能量密度,石墨类负极材料无法满足要求,因此,必须开发新型的负极材料。作为新型负极材料,单质硅、氧化亚硅或者两者的复合材料显示出了较高的比容量。单质硅的理论比容量为4200mAh/g,氧化亚硅理论比容量2043mAh/g,脱锂电位平台0.45V左右,在容量和安全性能上都要优于石墨。
硅或者氧化亚硅这类硅基材料,其电性能缺陷也很明显,主要是硅基材料在脱嵌锂过程中会产生100~300%的体积膨胀,巨大的体积变化会导致集流体上的活性物质结构破裂、粉化,活性物质从集流体上脱落,电池的使用寿命会急遽下降。氧化亚硅与硅单质相比,其理论比容量低,但在脱嵌锂过程中结构稳定性优于硅单质,因此,氧化亚硅较单质硅在循环上具有优势。缺点是氧化亚硅中存在氧元素,会与锂发生反应,造成不可逆容量高,首次效率低。而对于另一种材料单质硅来说,其结构中不存在氧,在充放电过程冲,不会消耗过多的锂,因此,首次效率高。
对于基于单质硅为原料出发的硅碳制备方法,通常采用纳米级单质硅为硅源,将纳米单质硅和其它高分子碳源或石墨进行复合造粒。这种制备工艺的核心思想是将几种不同种类的颗粒进行简单粘结复合造粒,而这种复合材料的结构不稳定。在锂电池中随着循环次数的增加,结构被破坏,容量快速下降。例如喷雾造粒等,这种二次颗粒在脱锂过程中,结构不稳定,颗粒内部粉化,颗粒的离子通道受阻,锂电池的容量衰减快。
发明内容
本发明的目的主要针对解决现有复合材料的结构稳定性差、导致锂电池容量衰减快的问题,提供了一种采用基于纳米单质硅为硅源的新型稳定结构的硅碳复合材料。
为实现上述目的,设计一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,采用如下制备步骤:
(1)取中值粒径D50=5~25um、碳含量99.0%的磷片石墨,置于具有加热功能的滚筒炉中,通入水蒸气,水蒸气流量0.5~0.8ml/min;滚筒炉以3~5℃/min升温至200℃~500℃,恒温0.5~1h,恒温结束,自然降温,得到表面已羟基化的磷片石墨料A;
(2)取中值粒径D50=30~150nm、纯度99.9%的纳米硅粉,置于具有加热功能的滚筒炉中,通入水蒸气,水蒸气流量0.2~0.5ml/min;滚筒炉以3~5℃/min升温至500℃~700℃,恒温0.5~1h,恒温结束,自然降温,得到表面已羟基化的纳米硅粉料B;
(3)取已羟基化的磷片石墨料A,溶于无水乙醇溶剂中,搅拌分散30min,搅拌电机转速:100~300rmp,得到石墨浆料C,石墨浆料C中石墨固含量为50%;
(4)取已羟基化的纳米硅粉料B,溶于无水乙醇溶剂中,搅拌分散30min,搅拌电机转速:200~400rmp,得到纳米硅粉浆料D,纳米硅粉浆料D中纳米硅固含量为50%;
(5)将纳米硅粉浆料D投入到正在搅拌的石墨浆料C中,纳米硅粉浆料D与石墨浆料C的体积比为1∶1,待浆料D全部加入浆料C中后,继续搅拌分散0.5~2h,得混合浆料;
(6)将上述制备的混合浆料在80℃下进行搅拌烘干除去溶剂乙醇,得到粉料E;
(7)将粉料E投入球形化设备中,处理30~40min,得球化硅碳材料;
(8)将球化硅碳材料在分级装置中进行多级分级,所述多级分级装置是3级分级;所述分级时间为3min,分别得到中值粒径D50=25~35um、收率10~15%的球化料;中值粒径8~15um、收率70~75%的球化料;中值粒径3~7um、收率4~8%的球化料;而颗粒最小的微粉随尾气进入除尘袋中收集;
(9)选取中值粒径为8~15um或3~7um的分级球化料,与低温沥青混合,按照球化料与低温沥青90∶10~95∶5质量配比,进行包覆处理;所述包覆处理为在通有惰性气氛的包覆设备中进行如下升温处理:以3~5℃/min升温至90℃~120℃,再恒温0.5~1h,然后以3~5℃/min升温至400~500℃,再恒温3~5h后,自然降温后出料;
(10)包覆釜中的出料,过60目标准筛,筛下料炭化处理,炭化料筛分,得到球形“硅碳”复合材料。
所述的低温沥青软化点在90~120℃。
所述炭化处理为:以3~5℃/min升温至900℃~1150℃,恒温3~5h。
所述炭化处理的气氛为氮气,氮气的流量0.1~0.8mL/min。
所述炭化处理采用的炭化设备是具有加热到1300℃功能的炭化设备。
所述炭化料筛分采用标准筛为300~350目。
所述包覆设备中的惰性气氛为氮气,通入氮气的流量0.1~0.8mL/min。
本发明同现有技术相比,制备工艺简单;制备的材料在充当锂电池负极材料所用时材料结构稳定;制备的材料与常规的通过一次颗粒简单造粒的二次颗粒材料相比,循环稳定性得到提升,延长了材料的使用寿命。
具体实施方式
下面结合实施例对本发明做进一步的描述。
实施例1
(1)取中值粒径D50=20um、碳含量99.0%的磷片石墨1kg,置于具有加热功能的滚筒炉中,通入水蒸气,水蒸气流量0.8ml/min;滚筒炉以5℃/min升温至500℃,恒温1h,恒温结束,自然降温,得到表面已羟基化的磷片石墨料A;
(2)取中值粒径D50=150nm、纯度99.9%的纳米硅粉1kg,置于具有加热功能的滚筒炉中,通入水蒸气,水蒸气流量0.5ml/min;滚筒炉以5℃/min升温至700℃,恒温1h,恒温结束,自然降温,得到表面已羟基化的纳米硅粉料B;
(3)取0.5kg已羟基化的磷片石墨料A,分散于0.634L无水乙醇中,搅拌分散30min,搅拌电机转速300rmp,得到石墨浆料C;
(4)取0.5kg已羟基化的纳米硅粉料B,分散于0.634L无水乙醇中,搅拌分散30min,搅拌电机转速400rmp,得到纳米硅粉浆料D;
(5)将纳米硅粉浆料D投入到正在搅拌的石墨浆料C中,待纳米硅粉浆料D全部加入石墨浆料C中后,继续搅拌分散2h;
(6)将上述制备的混合浆料在80℃下进行搅拌烘干除去溶剂乙醇,得到粉料E;
(7)将粉料E投入球形化设备中,处理40min,得球化硅碳材料;
(8)将球化硅碳材料在3级分级装置中进行3级分级,分级时间为3min,分别得到30um球化料收率15%;15um球化料收率75%、7um球化料收率7%。
(9)选取15um球化料,与低温沥青混合,按照球化料与低温沥青90∶10质量配比,进行包覆处理;低温沥青软化点位120℃;
包覆设备为立式包覆釜;氮气气氛保护,流量0.1mL/min;;立式包覆釜的升温程序为:以5℃/min升温至120℃,恒温1h,以5℃/min升温至500℃,恒温5h,恒温结束,自然降温后出料;
(10)将包覆釜中的出料,过60目标准筛,筛下料炭化处理,炭化料筛分,得到球形“硅碳”复合材料;炭化程序为:以5℃/min升温至1150℃,恒温5h,恒温结束,自然降温至室温,氮气气氛保护,流量0.1mL/min;炭化出料筛分,所用的标准筛为350目标准筛。筛下料中值粒径D50=17um,筛下料供电性能测试用。
电化学性能测试:
采用扣式电池CR2430型,以锂片为对电极,采用隔膜为Celgard 2300 PP/PE/PP三层微孔复合膜,以1M LiPF6/EC+DMC+EMC溶液为支持电解质。将上述过350目标准筛后的样品∶SP∶CMC∶SBR按91∶2∶4.5∶2.5比例配合成浆料,然后涂覆到导电铜箔上,120℃干燥2h,使用滚压机,在10MPa的压力下辊压成型。将正、负电极片、隔膜及电解液组装后,冲压封口。所有装配过程均在充满氩气的干燥手套箱中进行。
上述构造的锂离子电池允许在室温下保温过夜。利用Arbin冲/放电测试仪测试电池充放电性能。测试充放电电流密度为0.6mA/cm2,截止充放电电压为0.005-2.000V。测定所述锂离子蓄电池的初始容量和库仑效率,通过重复上述操作,在所述锂离子二次电池上进行充/放电测试50周循环,首周初始脱锂容量及50周循环容量保持率结果见表1。
实施例2
步骤(1)-(8)同实施例1;
步骤(9):选取7um球化料,与低温沥青混合包覆处理,方法同实施例1;后续包覆、炭化、筛分等步骤皆同实施例1;炭化后筛下料中值粒径D50=8.5um,筛下料供电性能测试用。
电化学性能测试同实施例1。
实施例3
(1)取中值粒径D50=5um、碳含量99.0%的磷片石墨2kg,置于具有加热功能的滚筒炉中,通入水蒸气,水蒸气流量0.5ml/min;滚筒炉以3℃/min升温至200℃,恒温0.5h,恒温结束,自然降温,得到表面已羟基化的磷片石墨料A;
(2)取中值粒径D50=30nm、纯度99.9%的纳米级硅粉1kg,置于具有加热功能的滚筒炉中,通入水蒸气,水蒸气流量0.2ml/min;滚筒炉以3℃/min升温至500℃,恒温0.5h,恒温结束,自然降温,得到表面已羟基化的纳米硅粉料B;
(3)取0.5kg已羟基化的磷片石墨料A,分散于0.634L无水乙醇中,搅拌分散30min,搅拌电机转速100rmp,得到石墨浆料C;
(4)取0.5kg已羟基化的纳米硅粉料B,分散于0.634L无水乙醇中,搅拌分散30min,搅拌电机转速200rmp,得到纳米硅粉浆料D;
(5)将纳米硅粉浆料D投入到正在搅拌的石墨浆料C中,待浆料D全部加入浆料C中后,继续搅拌分散1h,得混合浆料;
(6)将混合浆料在80℃下进行搅拌烘干,除去溶剂乙醇,得到粉料E;
(7)将粉料E投入球形化设备中处理40min,得球化硅碳材料;
(8)将球化硅碳材料在分级装置中进行3分级,分级时间为3min,分别得到中值粒径D50=25um球化料,收率14%;中值粒径D50=12um球化料,收率73%、中值粒径D50=6um球化料收率6%。
(9)选取12um球化料,与低温沥青混合包覆处理,方法同实施例1;后续包覆、炭化、筛分等步骤皆同实施例1;炭化后筛下料中值粒径D50=13.4um,筛下料供电性能测试用。
电化学性能测试同实施例1。
对比例1
(1)取中值粒径D50=20um、碳含量99.0%的磷片石墨0.5kg,放入0.634L乙醇溶剂中,搅拌分散30min,搅拌电机转速300rmp,得到石墨浆料E;
(2)取中值粒径D50=150nm、纯度99.9%的纳米硅粉0.5kg,放入0.634L乙醇中,搅拌分散30min,搅拌电机转速400rmp,得到纳米硅粉浆料F;
(3)将纳米硅粉浆料F投入到正在搅拌的石墨浆料E中,待纳米硅粉浆料F全部加入石墨浆料E中后,继续搅拌分散2h;
(4)将上述混合浆料通过喷雾造粒方式进行干燥造粒,所述喷雾干燥设备是闭式造粒设备;
(5)上述喷雾造粒样品,经350目标准筛过筛,与低温沥青混合,将喷雾造粒料与低温沥青90∶10质量配比,进行包覆处理。
所述后续包覆、炭化、筛分等步骤同实施例1;炭化后筛下料中值粒径D50=25.6um,筛下料供电性能测试用。
电化学性能测试同实施例1。
表1 实施例1~3及对比实施例1电池测试结果表

Claims (7)

1.一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,采用如下制备步骤:
(1)取中值粒径D50=5~25um、碳含量99.0%的磷片石墨,置于具有加热功能的滚筒炉中,通入水蒸气,水蒸气流量0.5~0.8ml/min;滚筒炉以3~5℃/min升温至200℃~500℃,恒温0.5~1h,恒温结束,自然降温,得到表面已羟基化的磷片石墨料A;
(2)取中值粒径D50=30~150nm、纯度99.9%的纳米硅粉,置于具有加热功能的滚筒炉中,通入水蒸气,水蒸气流量0.2~0.5ml/min;滚筒炉以3~5℃/min升温至500℃~700℃,恒温0.5~1h,恒温结束,自然降温,得到表面已羟基化的纳米硅粉料B;
(3)取已羟基化的磷片石墨料A,溶于无水乙醇溶剂中,搅拌分散30min,搅拌电机转速:100~300rmp,得到石墨浆料C,石墨浆料C中石墨固含量为50%;
(4)取已羟基化的纳米硅粉料B,溶于无水乙醇溶剂中,搅拌分散30min,搅拌电机转速:200~400rmp,得到纳米硅粉浆料D,纳米硅粉浆料D中纳米硅固含量为50%;
(5)将纳米硅粉浆料D投入到正在搅拌的石墨浆料C中,纳米硅粉浆料D与石墨浆料C的体积比为1∶1,待浆料D全部加入浆料C中后,继续搅拌分散0.5~2h,得混合浆料;
(6)将上述制备的混合浆料在80℃下进行搅拌烘干除去溶剂乙醇,得到粉料E;
(7)将粉料E投入球形化设备中,处理30~40min,得球化硅碳材料;
(8)将球化硅碳材料在分级装置中进行多级分级,所述多级分级装置是3级分级;所述分级时间为3min,分别得到中值粒径D50=25~35um、收率10~15%的球化料;中值粒径8~15um、收率70~75%的球化料;中值粒径3~7um、收率4~8%的球化料;而颗粒最小的微粉随尾气进入除尘袋中收集;
(9)选取中值粒径为8~15um或3~7um的分级球化料,与低温沥青混合,按照球化料与低温沥青90∶10~95∶5质量配比,进行包覆处理;所述包覆处理为在通有惰性气氛的包覆设备中进行如下升温处理:以3~5℃/min升温至90℃~120℃,再恒温0.5~1h,然后以3~5℃/min升温至400~500℃,再恒温3~5h后,自然降温后出料;
(10)包覆釜中的出料,过60目标准筛,筛下料炭化处理,炭化料筛分,得到球形“硅碳”复合材料。
2.如权利要求1所述的一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,所述的低温沥青软化点在90~120℃。
3.如权利要求1所述的一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,所述炭化处理为:以3~5℃/min升温至900℃~1150℃,恒温3~5h。
4.如权利要求1所述的一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,所述炭化处理的气氛为氮气,氮气的流量0.1~0.8mL/min。
5.如权利要求1所述的一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,所述炭化处理采用的炭化设备是具有加热到1300℃功能的炭化设备。
6.如权利要求1所述的一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,所述炭化料筛分采用标准筛为300~350目。
7.如权利要求1所述的一种锂离子电池用球形硅碳负极材料的制备方法,其特征在于,所述包覆设备中的惰性气氛为氮气,通入氮气的流量0.1~0.8mL/min。
CN201710840789.5A 2017-09-18 2017-09-18 一种锂离子电池用球形硅碳负极材料的制备方法 Active CN109524629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710840789.5A CN109524629B (zh) 2017-09-18 2017-09-18 一种锂离子电池用球形硅碳负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710840789.5A CN109524629B (zh) 2017-09-18 2017-09-18 一种锂离子电池用球形硅碳负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN109524629A true CN109524629A (zh) 2019-03-26
CN109524629B CN109524629B (zh) 2021-09-10

Family

ID=65767694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710840789.5A Active CN109524629B (zh) 2017-09-18 2017-09-18 一种锂离子电池用球形硅碳负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN109524629B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571424A (zh) * 2019-09-23 2019-12-13 七台河万锂泰电材有限公司 鳞片石墨硅碳复合负极材料及其制备方法
CN110844908A (zh) * 2019-11-26 2020-02-28 湖南中科星城石墨有限公司 一种锂离子电池用高性能硅碳-石墨复合负极材料的制备方法
CN111430673A (zh) * 2020-04-09 2020-07-17 盛蕾 一种负极的制备方法
WO2022178637A1 (en) * 2021-02-24 2022-09-01 Focus Graphite Inc. Advanced anode materials comprising spheroidal additive-enhanced graphite particles and process for making same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098418A (zh) * 1993-05-21 1995-02-08 Pcd聚合物有限公司 高活性烯烃聚合催化剂和使用这类催化剂的聚合方法
JP2006004662A (ja) * 2004-06-15 2006-01-05 Nissan Motor Co Ltd 燃料電池用触媒および燃料電池用触媒層の製造方法
CN104319367A (zh) * 2014-10-09 2015-01-28 奇瑞汽车股份有限公司 一种硅/石墨复合负极材料及其制备方法
CN104319366A (zh) * 2014-10-09 2015-01-28 奇瑞汽车股份有限公司 一种硅/石墨/钛酸锂复合负极材料及其制备方法
CN105789578A (zh) * 2016-03-16 2016-07-20 奇瑞汽车股份有限公司 一种硅基负极材料的制备方法及该硅基负极材料
CN106169564A (zh) * 2016-04-25 2016-11-30 中国科学院长春应用化学研究所 一种硅‑碳纳米管球体及其制备方法、电池负极和锂离子电池
CN106257716A (zh) * 2016-08-30 2016-12-28 浙江超威创元实业有限公司 一种硅碳复合负极材料的制备方法及锂离子电池
CN106299277A (zh) * 2016-08-30 2017-01-04 浙江超威创元实业有限公司 一种锂离子电池硅碳复合负极材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1098418A (zh) * 1993-05-21 1995-02-08 Pcd聚合物有限公司 高活性烯烃聚合催化剂和使用这类催化剂的聚合方法
JP2006004662A (ja) * 2004-06-15 2006-01-05 Nissan Motor Co Ltd 燃料電池用触媒および燃料電池用触媒層の製造方法
CN104319367A (zh) * 2014-10-09 2015-01-28 奇瑞汽车股份有限公司 一种硅/石墨复合负极材料及其制备方法
CN104319366A (zh) * 2014-10-09 2015-01-28 奇瑞汽车股份有限公司 一种硅/石墨/钛酸锂复合负极材料及其制备方法
CN105789578A (zh) * 2016-03-16 2016-07-20 奇瑞汽车股份有限公司 一种硅基负极材料的制备方法及该硅基负极材料
CN106169564A (zh) * 2016-04-25 2016-11-30 中国科学院长春应用化学研究所 一种硅‑碳纳米管球体及其制备方法、电池负极和锂离子电池
CN106257716A (zh) * 2016-08-30 2016-12-28 浙江超威创元实业有限公司 一种硅碳复合负极材料的制备方法及锂离子电池
CN106299277A (zh) * 2016-08-30 2017-01-04 浙江超威创元实业有限公司 一种锂离子电池硅碳复合负极材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571424A (zh) * 2019-09-23 2019-12-13 七台河万锂泰电材有限公司 鳞片石墨硅碳复合负极材料及其制备方法
CN110844908A (zh) * 2019-11-26 2020-02-28 湖南中科星城石墨有限公司 一种锂离子电池用高性能硅碳-石墨复合负极材料的制备方法
CN110844908B (zh) * 2019-11-26 2021-06-11 湖南中科星城石墨有限公司 一种锂离子电池用高性能硅碳-石墨复合负极材料的制备方法
CN111430673A (zh) * 2020-04-09 2020-07-17 盛蕾 一种负极的制备方法
WO2022178637A1 (en) * 2021-02-24 2022-09-01 Focus Graphite Inc. Advanced anode materials comprising spheroidal additive-enhanced graphite particles and process for making same

Also Published As

Publication number Publication date
CN109524629B (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN107369823B (zh) 一种锂离子电池用人造石墨复合负极材料及其制备方法
CN101916844B (zh) 一种锂离子电池用准球形负极材料及其制备方法
CN103887502B (zh) 一种人造石墨锂离子电池负极材料及其制备方法
CN107994225A (zh) 一种多孔硅碳复合负极材料及其制备方法、锂离子电池
CN106654235A (zh) 一种复合石墨材料、其制备方法及包含该复合石墨材料的锂离子电池
CN106410177B (zh) 一种椭球形SiOx/石墨负极复合材料及其制备方法和应用
CN109524629A (zh) 一种锂离子电池用球形硅碳负极材料的制备方法
CN103904307A (zh) 硅碳复合材料及其制备方法和应用
CN102983317A (zh) 硅基复合材料及其制备方法、硅碳复合材料、锂离子电池
CN109704323A (zh) 一种电极材料及二次电池
CN101908627B (zh) 锂离子二次电池负极材料及其制备方法
CN108448080A (zh) 一种石墨烯包覆硅/金属复合负极材料及其制备方法
CN108682787B (zh) 一种锂离子电池极片及其制备方法
CN108807896B (zh) 一种氮掺杂碳包覆硅碳复合材料的制备方法
CN103811717A (zh) 核壳结构的动力锂离子电池负极材料及其制备方法
CN103187556B (zh) 锂离子电池及其负极材料、制备方法
CN105742695B (zh) 一种锂离子电池及其制备方法
CN106602067A (zh) 一种石墨基复合材料、其制备方法及包含该复合材料的锂离子电池
CN109704324A (zh) 一种电极材料及二次电池
CN106532010B (zh) 一种硅-氮化硅-碳复合材料及制备方法及应用方法
CN111029558A (zh) 一种中空核壳结构硅碳复合负极材料及其制备方法
CN111370654A (zh) 复合石墨负极材料、锂离子电池及其制备方法和应用
CN107732192B (zh) 锂离子电池负极用硅碳复合材料及其制备方法
CN114314580A (zh) 一种复合石墨负极材料及其制备方法和应用
CN109428050B (zh) 正极活性材料、制备方法、正极和锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant