CN109510539B - 一种基于增益矩阵的模型预测磁链控制***及方法 - Google Patents

一种基于增益矩阵的模型预测磁链控制***及方法 Download PDF

Info

Publication number
CN109510539B
CN109510539B CN201811166715.9A CN201811166715A CN109510539B CN 109510539 B CN109510539 B CN 109510539B CN 201811166715 A CN201811166715 A CN 201811166715A CN 109510539 B CN109510539 B CN 109510539B
Authority
CN
China
Prior art keywords
stator
rotating speed
reference value
pole
flux linkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811166715.9A
Other languages
English (en)
Other versions
CN109510539A (zh
Inventor
张永昌
黄朋
白宇宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Technology
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN201811166715.9A priority Critical patent/CN109510539B/zh
Publication of CN109510539A publication Critical patent/CN109510539A/zh
Application granted granted Critical
Publication of CN109510539B publication Critical patent/CN109510539B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/28Stator flux based control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种基于增益矩阵的模型预测磁链控制***及方法。通过数学模型构造观测器模型、求解异步电机极点、模型求解观测器的极点以及模型求解增益矩阵等一系列的方法,提供了一种全新的增益矩阵设计方法以代替传统增益矩阵,解决了现有技术中增益矩阵作用的局限性。不仅扩大了所使用的设计方法的适用性,而且在相较于传统的极点移动类配置方法的增益矩阵时,其阻尼比更大,更有利于电机的稳定。

Description

一种基于增益矩阵的模型预测磁链控制***及方法
技术领域
本发明涉及电机领域,特别是指一种基于增益矩阵的模型预测磁链控制***及方法。
背景技术
在高性能异步电机调速控制***中,获取准确的磁链信息对于控制***的性能至关重要。然而,异步电机的内部磁场信息难以直接测量,在实际应用中通常利用软件算法进行估计。
现有技术主要应用的方法有电流模型法、电压模型法、滑模观测器、全阶观测器、卡尔曼滤波等方法。在这些方法中,全阶观测器由于在较宽的速度范围内具有良好的观测精度并且可以实现无速度运行而受到广泛关注,同时,全阶观测器具有良好的参数鲁棒性甚至可以进一步实现参数辨识,使得它可以适应实际工业应用中的复杂工况。与此同时,全阶观测器应用中的一个难点是反馈增益矩阵的设计,然而现有技术中的增益矩阵往往所使用的范围较为局限,即传统的极点移动类配置方法的增益矩阵只可以看作是增益矩阵的特例而不能很好地适用于多变的情况中。
发明内容
有鉴于此,本发明的目的在于提出一种基于增益矩阵的模型预测磁链控制***及方法,用以解决现有技术中的传统矩阵适用范围较窄且在电机转速较高时电机容易失稳的问题。
基于上述目的,本发明提供了一种基于增益矩阵的模型预测磁链控制***及方法。一种基于增益矩阵的模型预测磁链控制***,包括变参数PI调节器模块、参考值转化模块、空间矢量脉冲宽度调制模块、第一αβ/abc模块、转速自适应全阶观测器模块、低通滤波器模块、三电平逆变器模块、第二αβ/abc模块和异步电机;所述转速自适应全阶观测器模块用于检测静止坐标系下的定子电压、定子电流以输出所述异步电机的定子磁链、电磁转矩以及电机转速;
所述低通滤波器模块用于接收所述电机转速并滤掉所述电机转速中的高频以输出滤后电机转速;
所述变参数PI调节器模块用于接收电机转速参考值、所述滤后电机转速并检测所述电机转速参考值与所述滤后电机转速的差值以输出相应的电磁转矩参考值;
所述参考值转化模块用于接收定子磁链参考值、所述定子磁链、所述电磁转矩、所述电磁转矩参考值并转化为磁链矢量参考值而求得输出静止坐标系下的定子电压参考值;
所述空间矢量脉冲宽度调制模块用于接收所述定子电压参考值以输出所述三电平逆变器的开关信号;
所述三电平逆变器模块用于接收所述开关信号以输出三相交流电实现对所述异步电机转速和磁链的控制。
在一些可选的实施方式中,所述空间矢量脉冲宽度调制模块与所述三电平逆变器之间通过延迟模块相连接。
一种基于增益矩阵的模型预测磁链控制***的控制方法,包括:
所述转速自适应全阶观测器模块检测静止坐标系下的定子电压、定子电流,输出所述异步电机的定子磁链、电磁转矩以及电机转速;
所述低通滤波器模块接收所述电机转速,滤掉所述电机转速中的高频以输出滤后电机转速;
所述变参数PI调节器模块接收电机转速参考值、所述滤后电机转速,通过检测所述电机转速参考值与所述滤后电机转速的差值而输出相应的电磁转矩参考值;
所述参考值转化模块接收定子磁链参考值、所述定子磁链、所述电磁转矩、所述电磁转矩参考值,转化为磁链矢量参考值而求得输出静止坐标系下的定子电压参考值;
所述空间矢量脉冲宽度调制模块接收所述定子电压参考值,输出所述三电平逆变器的开关信号;
所述三电平逆变器模块接收所述开关信号,输出为三相交流电,通过对所述三电平逆变器开关状态的控制,实现对所述异步电机转速和磁链的控制。
在一些可选的实施方式中,所述转速自适应全阶观测器,包括建立所述异步电机在两相静止坐标系下的数学模型:
Figure GDA0002731411100000031
y=Cx
其中状态变量x=[is ψs]T,is为所述定子电流矢量,ψs为所述定子磁链矢量。
Figure GDA0002731411100000032
ωr为所述电机转速,Ls为定子电感,Lr为转子电感,Rs定子电阻,Rr转子电阻。
Figure GDA0002731411100000033
为输入变量,us为所述定子电压矢量;C=[1 0],y=[is]为输出变量。
在一些可选的实施方式中,根据所述数学模型构造转速自适应全阶观测器模型包括:
Figure GDA0002731411100000034
其中状态矢量
Figure GDA0002731411100000035
us为所述定子电压矢量,G1为增益矩阵,以所述定子电流矢量is和自身估计电流
Figure GDA0002731411100000036
之差作为校正项;将所述状态变量
Figure GDA0002731411100000037
逐步收敛至与***真实值相同,得所述定子磁链矢量参考值;根据所述定子磁链矢量参考值求得所述定子电压参考值。
在一些可选的实施方式中,根据所述数学模型,按照线性***特征根求解公式|sI-A|=0,求得异步电机的极点S1和极点S2
Figure GDA0002731411100000038
其中:
Figure GDA0002731411100000041
其中,t'σ为暂态时间常数,tr为转子时间常数,t's为定子暂态时间常数,ωr为所述电机转速。
在一些可选的实施方式中,根据所述异步电机的极点S1和极点S2,求得对应的观测器极点过程包括:异步电机的极点pIM为所述极点S1或者极点S2,与所述对应的观测器的极点POb间满足关系:Pob=kPIM+b,(k>0,b<0)。
在一些可选的实施方式中,根据所述数学模型和所述转速自适应全阶观测器模型得矩阵特征方程:
eig(A-G1C)=keig(A)+b
其中,eig()表示求所述矩阵特征方程的矩阵特征值,求取方程得所述增益矩阵G1的表达式:
Figure GDA0002731411100000042
从上面所述可以看出,本发明提供的一种基于增益矩阵的模型预测磁链控制***及方法。通过数学模型构造观测器模型、数学模型求解异步电机极点、求解观测器的极点以及根据模型求解增益矩阵等一系列的方法,提供了一种全新的增益矩阵设计方法以代替传统增益矩阵,解决了现有技术中增益矩阵作用的局限性。不仅扩大了所使用的设计方法的适用性,而且在相较于传统的极点移动类配置方法的增益矩阵时,其阻尼比更大,更有利于电机的稳定。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的控制***结构示意图
图2是转速自适应全阶观测器的结构框图;
图3是两种不同增益矩阵的极点配置情况,对应转速范围-3000rpm至3000rpm;
图4是使用普通观测器G的MPFC控制算法下异步电机从静止启动到1500rpm的实验波形;
图5是使用增益矩阵观测器G1的MPFC控制算法下异步电机从静止启动到1500rpm的实验波形。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
需要说明的是,本实用实施例中所有使用“第一”、“第二”的表述均是为了区分两个相同名称非相同的实体或者非相同的参量,可见“第一”、“第二”仅为了表述的方便,不应理解为对本实用实施例的限定,后续实施例对此不再一一说明。
本发明提供的是一种基于增益矩阵的模型预测磁链控制***及方法。
一种基于增益矩阵的模型预测磁链控制***,参考图1,包括变参数PI调节器模块、参考值转化模块、空间矢量脉冲宽度调制模块、第一αβ/abc模块、转速自适应全阶观测器模块、低通滤波器模块、三电平逆变器模块、第二αβ/abc模块和异步电机;转速自适应全阶观测器模块用于检测静止坐标系下的定子电压、定子电流以输出所述异步电机的定子磁链、电磁转矩以及电机转速;
低通滤波器模块用于接收电机转速并滤掉电机转速中的高频以输出滤后电机转速;
变参数PI调节器模块用于接收电机转速参考值、滤后电机转速并检测电机转速参考值与滤后电机转速的差值以输出相应的电磁转矩参考值;
参考值转化模块用于接收定子磁链参考值、定子磁链、电磁转矩、电磁转矩参考值并转化为磁链矢量参考值而求得输出静止坐标系下的定子电压参考值;
空间矢量脉冲宽度调制模块用于接收定子电压参考值以输出三电平逆变器的开关信号;
三电平逆变器模块用于接收开关信号以输出三相交流电实现对异步电机转速和磁链的控制。
在本实施例中,在空间矢量脉冲宽度调制模块与第一αβ/abc模块、三电平逆变器模块连接之间可设置延迟模块,用于空间脉冲宽度调制模块的输出延迟传输。
在本实施例中,低通滤波器模块通过滤掉转速中的高频谐波,从而使得观测器获得的电机转速更加平稳。
其中,在本实施例中,αβ/abc模块中的αβ表示两相静止坐标系,即直角坐标系;abc表示三相静止坐标系,即坐标系的三条轴在空间互成120度。第一αβ/abc模块为用于输出定子电压,其中,输出的定子电压为重构电压,非直接测得;第二αβ/abc模块为用于输出定子电流,其中,输出的定子电流为直接测得。显而易见,在其他实施例实施例中“第一”和“第二”并不必然限制为输出定子电流或者定子电压,在此仅做区分。
参考图1,一种基于增益矩阵的模型预测磁链控制***的控制方法,包括以下步骤:
步骤101:所述通过观测器获得电机转速检测静止坐标系下的定子电压、定子电流,输出所述异步电机的定子磁链、电磁转矩以及电机转速;
步骤102:所述低通滤波器模块接收所述电机转速,滤掉所述电机转速中的高频以输出滤后电机转速;
步骤103:所述变参数PI调节器模块接收电机转速参考值、所述滤后电机转速,通过检测所述电机转速参考值与所述滤后电机转速的差值而输出相应的电磁转矩参考值;
步骤104:所述参考值转化模块接收定子磁链参考值、所述定子磁链、所述电磁转矩、所述电磁转矩参考值,转化为磁链矢量参考值而求得输出静止坐标系下的定子电压参考值;
步骤105:所述空间矢量脉冲宽度调制模块接收所述定子电压参考值,输出所述三电平逆变器的开关信号;
步骤106:所述三电平逆变器模块接收所述开关信号,输出为三相交流电,通过对所述三电平逆变器开关状态的控制,实现对所述异步电机转速和磁链的控制。
传统的获得电机转速的方式主要是通过速度传感器等单独的测量技术以实现对电机转速的测量,此种测量方式需要在所操作的***中安装速度传感器等测量装置。本发明所提出的增益矩阵观测器属于的是无速度传感器技术中的一种,仅通过观测器模块即可获得电机转速,减少了速度传感器等速度模型预测控制的设置,具有降低硬件成本,增强***环境适应性和提高***可靠性等优点。
参考图2,在本实施例中,所述转速自适应全阶观测器,包括建立所述异步电机在两相静止坐标系下的数学模型:
Figure GDA0002731411100000071
y=Cx
其中状态变量x=[is ψs]T,is为所述定子电流矢量,ψs为所述定子磁链矢量。
Figure GDA0002731411100000072
ωr为所述电机转速,Ls为定子电感,Lr为转子电感,Rs定子电阻,Rr转子电阻。
Figure GDA0002731411100000073
为输入变量,us为所述定子电压矢量;C=[1 0],y=[is]为输出变量。
在本实施例中,根据所述数学模型构造转速自适应全阶观测器模型包括:
Figure GDA0002731411100000074
其中状态矢量
Figure GDA0002731411100000081
us为所述定子电压矢量,G1为增益矩阵,以所述定子电流矢量is和自身估计电流
Figure GDA0002731411100000082
之差作为校正项;将所述状态变量
Figure GDA0002731411100000083
逐步收敛至与***真实值相同,得所述定子磁链矢量参考值;根据所述定子磁链矢量参考值求得所述定子电压参考值。
在本实施例中,根据所述数学模型,按照线性***特征根求解公式|sI-A|=0,求得异步电机的极点S1和极点S2
Figure GDA0002731411100000084
其中:
Figure GDA0002731411100000085
其中,t'σ为暂态时间常数,tr为转子时间常数,t's为定子暂态时间常数,ωr为所述电机转速。
在本实施例中,根据所述异步电机的极点S1和极点S2,求得对应的观测器极点过程包括:异步电机的极点pIM为所述极点S1或者极点S2,与所述对应的观测器的极点POb间满足关系:Pob=kPIM+b,(k>0,b<0)。
在本实施例中,根据所述数学模型和所述转速自适应全阶观测器模型得矩阵特征方程:
eig(A-G1C)=keig(A)+b
其中,eig()表示求所述矩阵特征方程的矩阵特征值,求取方程得所述增益矩阵G1的表达式:
Figure GDA0002731411100000086
现有技术中在通过电机极点计算观测器极点时,往往采用的是将观测器极点配置为电机极点的k倍的方法,此时k值的取值范围往往只能大于1,当k<1时,观测器极点在电机极点右侧,而导致算法不收敛而失效,对于0~1的情况并不能当然地包含所运用的具体模型中,因而所适用的范围较为局限。本发明的计算方式中,采取了算法上的优化,使得k值的取值范围为大于0,在0<k<1之间时,可通过调节b的值来移动极点,保证观测器的极点在电机极点左侧。因而,本发明给出的增益矩阵的表达式可以看作是一种统一的、一般化的表达式,可用于较为一般的情况,传统的极点移动类配置方法的增益矩阵则只可看作是该增益矩阵的特例。
同时,本发明所通过配置的反馈增益矩阵G1使得观测器的极点都具有负实部,这样观测器观测到的状态与***实际状态之差可以在有限时间收敛到0,从而保证观测器的稳定性与准确性。
参考图1,在本实施例参考值转化模块部分,转化的核心思想是将转矩参考值
Figure GDA0002731411100000091
和定子磁链参考值
Figure GDA0002731411100000092
转化为一个等效的磁链矢量参考值
Figure GDA0002731411100000093
按照无差拍策略,假设定子磁链在控制周期结束时达到等效的磁链矢量参考值
Figure GDA0002731411100000094
选出最优的电压矢量,即求得在静止坐标系下的定子电压参考值
Figure GDA0002731411100000095
这种转化方法时在静止坐标系下实现的,不涉及坐标变换。
图1中的参考值转化部分具体由以下公式得到。由异步电机方程可知,电磁转矩Te可表示为:
Figure GDA0002731411100000096
其中,
Figure GDA0002731411100000097
表示转子磁链ψr和定子磁链ψs的向量积。
根据上述电磁转矩的公式可以得到定转子之间的角度关系:
Figure GDA0002731411100000101
其中,Np是电机的极对数,∠ψr是转子磁链的角度,其余参数见表1。
表1常用参数
Figure GDA0002731411100000102
将电磁转矩参考值
Figure GDA0002731411100000103
和定子磁链幅值参考值
Figure GDA0002731411100000104
代入上式,可以求得定子磁链复矢量的角度
Figure GDA0002731411100000105
为:
Figure GDA0002731411100000106
至此,就可将电磁转矩参考值
Figure GDA0002731411100000107
和定子磁链幅值参考值
Figure GDA0002731411100000108
转化成定子磁链矢量参考值:
Figure GDA0002731411100000109
最后使用无差拍策略,假设定子磁链矢量在控制周期结束时达到参考值
Figure GDA0002731411100000111
根据定子电压方程
Figure GDA0002731411100000112
并对其离散化可以求得在静止坐标系下的定子电压参考值
Figure GDA0002731411100000113
Figure GDA0002731411100000114
其中
Figure GDA0002731411100000115
表示下一时刻的定子电流,
Figure GDA0002731411100000116
表示下一时刻的定子磁链,Tsc表示控制周期。
参考图3,对应转速范围-3000rpm至3000rpm,rpm表示转每分钟。其中G是将观测器的极点移动至电机极点的左侧b个单位所得到的传统增益矩阵(其中b=-40),G1是本发明所提出的增益矩阵(其中k=0.8,b=-40),从图3中可以清晰地看出各增益矩阵极点间的关系:本发明提出的增益矩阵G1在相同转速下的磁链分支的虚部更小,阻尼比最大,有利于控制***的稳定。
参考图4和图5,分别是使用普通观测器G和增益矩阵观测器G1的MPFC控制方法的异步电机空载启动实验波形,从上到下各通道的波形依次是转子转速、电磁转矩、a相电流、估计转速与实际转速之差。从图4和图5可以看到,基于两种观测器的***均有良好的动态性能,进入稳态后电流比较正弦。进一步对比图4和图5的第4通道可以看出,使用普通观测器G的MPFC控制方法在动态过程有较大的转速误差,转速估计的收敛时间较长,而使用增益矩阵观测器G1的MPFC控制方法有效降低了转速估计误差,并且转速估计的收敛速度更快。因此,采用增益矩阵G1能更好地实现对异步电机定子磁链和转速的精确观测,从而提高电机闭环控制的动态和稳态性能。
上述实施例的***用于实现前述实施例中相应的方法,并且具有相应的方法实施例的有益效果,在此不再赘述。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本公开的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。
另外,为简化说明和讨论,并且为了不会使本发明难以理解,在所提供的附图中可以示出或可以不示出与异步电机和其它部件的公知的连接(即,这些细节应当完全处于本领域技术人员的理解范围内)。在阐述了具体细节以描述本发明的示例性实施例的情况下,对本领域技术人员来说显而易见的是,可以在没有这些具体细节的情况下或者这些具体细节有变化的情况下实施本发明。因此,这些描述应被认为是说明性的而不是限制性的。
尽管已经结合了本发明的具体实施例对本发明进行了描述,但是根据前面的描述,这些实施例的很多替换、修改和变型对本领域普通技术人员来说将是显而易见的。
本发明的实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于增益矩阵的模型预测磁链控制***,其特征在,包括变参数PI调节器模块、参考值转化模块、空间矢量脉冲宽度调制模块、第一αβ/abc模块、转速自适应全阶观测器模块、低通滤波器模块、三电平逆变器模块、第二αβ/abc模块和异步电机;所述转速自适应全阶观测器模块用于检测静止坐标系下的定子电压、定子电流以输出所述异步电机的定子磁链、电磁转矩以及电机转速;
所述转速自适应全阶观测器模块,包括建立所述异步电机在两相静止坐标系下的数学模型:
Figure FDA0002907916180000011
y=Cx
其中状态变量x=[is ψs]T,is为定子电流矢量,ψs为定子磁链矢量,
Figure FDA0002907916180000012
ωr为所述电机转速,λ为漏感因子,Ls为定子电感,Lr为转子电感,Rs定子电阻,Rr转子电阻,
Figure FDA0002907916180000013
u=[us]为输入变量,us为定子电压矢量;C=[1 0],y=[is]为输出变量;
根据所述数学模型构造转速自适应全阶观测器模型包括:
Figure FDA0002907916180000014
其中状态变量
Figure FDA0002907916180000015
us为定子电压矢量,G1为增益矩阵,
Figure FDA0002907916180000016
为所述定子磁链矢量的估计值,以所述定子电流矢量is和自身估计电流
Figure FDA0002907916180000017
之差作为校正项;将所述状态变量
Figure FDA0002907916180000018
逐步收敛至与***真实值相同,得定子磁链;
根据所述数学模型,按照线性***特征根求解公式|sI-A|=0,求得异步电机的极点S1和极点S2
Figure FDA0002907916180000021
其中:
Figure FDA0002907916180000022
其中,t'σ为暂态时间常数,tr为转子时间常数,t's为定子暂态时间常数,ωr为所述电机转速;
根据所述异步电机的极点S1和极点S2,求得对应的观测器极点过程包括:异步电机的极点pIM为所述极点S1或者极点S2,异步电机的极点pIM与观测器的极点Pob间满足关系:Pob=kPIM+b,(0<k<1,b<0),k表示观测器极点相对于电机极点的倍数,b表示截距;
根据所述数学模型和所述转速自适应全阶观测器模型得矩阵特征方程:
eig(A-G1C)=keig(A)+b
其中,eig()表示求矩阵特征值,求取方程得所述增益矩阵G1的表达式:
Figure FDA0002907916180000023
所述低通滤波器模块用于接收所述电机转速并滤掉所述电机转速中的高频以输出滤后电机转速;
所述变参数PI调节器模块用于接收电机转速参考值、所述滤后电机转速并检测所述电机转速参考值与所述滤后电机转速的差值以输出相应的电磁转矩参考值;
所述参考值转化模块用于接收定子磁链参考值、所述定子磁链、所述电磁转矩、所述电磁转矩参考值并转化为磁链矢量参考值而求得输出静止坐标系下的定子电压参考值;
所述空间矢量脉冲宽度调制模块用于接收所述定子电压参考值以输出所述三电平逆变器的开关信号;
所述三电平逆变器模块用于接收所述开关信号以输出三相交流电实现对所述异步电机转速和磁链的控制。
2.如权利要求1所述基于增益矩阵的模型预测磁链控制***,其特征在于,所述空间矢量脉冲宽度调制模块与所述三电平逆变器之间通过延迟模块相连接。
3.一种权利要求1或2所述的模型预测磁链控制***的控制方法,其特征在于,包括:
所述转速自适应全阶观测器模块检测静止坐标系下的定子电压、定子电流,输出所述异步电机的定子磁链、电磁转矩以及电机转速;
所述转速自适应全阶观测器模块,包括建立所述异步电机在两相静止坐标系下的数学模型:
Figure FDA0002907916180000031
y=Cx
其中状态变量x=[is ψs]T,is为所述定子电流矢量,ψs为所述定子磁链矢量,
Figure FDA0002907916180000032
ωr为所述电机转速,λ为漏感因子,Ls为定子电感,Lr为转子电感,Rs定子电阻,Rr转子电阻,
Figure FDA0002907916180000033
u=[us]为输入变量,us为所述定子电压矢量;C=[1 0],y=[is]为输出变量;
根据所述数学模型构造转速自适应全阶观测器模型包括:
Figure FDA0002907916180000034
其中状态变量
Figure FDA0002907916180000035
us为所述定子电压矢量,G1为增益矩阵,
Figure FDA0002907916180000036
为所述定子磁链矢量的估计值,以所述定子电流矢量is和自身估计电流
Figure FDA0002907916180000037
之差作为校正项;将所述状态变量
Figure FDA0002907916180000038
逐步收敛至与***真实值相同,得所述定子磁链;
根据所述数学模型,按照线性***特征根求解公式|sI-A|=0,求得异步电机的极点S1和极点S2
Figure FDA0002907916180000041
其中:
Figure FDA0002907916180000042
其中,t'σ为暂态时间常数,tr为转子时间常数,t's为定子暂态时间常数,ωr为所述电机转速;
根据所述异步电机的极点S1和极点S2,求得对应的观测器极点过程包括:异步电机的极点pIM为所述极点S1或者极点S2,异步电机的极点pIM与观测器的极点Pob间满足关系:Pob=kPIM+b,(0<k<1,b<0),k表示观测器极点相对于电机极点的倍数,b表示截距;
根据所述数学模型和所述转速自适应全阶观测器模型得矩阵特征方程:
eig(A-G1C)=keig(A)+b
其中,eig()表示求矩阵特征值,求取方程得所述增益矩阵G1的表达式:
Figure FDA0002907916180000043
所述低通滤波器模块接收所述电机转速,滤掉所述电机转速中的高频以输出滤后电机转速;
所述变参数PI调节器模块接收电机转速参考值、所述滤后电机转速,通过检测所述电机转速参考值与所述滤后电机转速的差值而输出相应的电磁转矩参考值;
所述参考值转化模块接收定子磁链参考值、所述定子磁链、所述电磁转矩、所述电磁转矩参考值,转化为磁链矢量参考值而求得输出静止坐标系下的定子电压参考值;
所述空间矢量脉冲宽度调制模块接收所述定子电压参考值,输出所述三电平逆变器的开关信号;
所述三电平逆变器模块接收所述开关信号,输出为三相交流电,通过对所述三电平逆变器开关状态的控制,实现对所述异步电机转速和磁链的控制。
CN201811166715.9A 2018-10-08 2018-10-08 一种基于增益矩阵的模型预测磁链控制***及方法 Expired - Fee Related CN109510539B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811166715.9A CN109510539B (zh) 2018-10-08 2018-10-08 一种基于增益矩阵的模型预测磁链控制***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811166715.9A CN109510539B (zh) 2018-10-08 2018-10-08 一种基于增益矩阵的模型预测磁链控制***及方法

Publications (2)

Publication Number Publication Date
CN109510539A CN109510539A (zh) 2019-03-22
CN109510539B true CN109510539B (zh) 2021-03-23

Family

ID=65746357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811166715.9A Expired - Fee Related CN109510539B (zh) 2018-10-08 2018-10-08 一种基于增益矩阵的模型预测磁链控制***及方法

Country Status (1)

Country Link
CN (1) CN109510539B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429891B (zh) * 2019-07-26 2021-01-08 中国科学院电工研究所 一种无位置传感器永磁电机直驱发电控制方法
CN110802602B (zh) * 2019-11-29 2023-01-10 东北大学 一种基于pi控制策略的机械臂柔性关节位姿变换抑振方法
CN111293933A (zh) * 2020-02-23 2020-06-16 西安理工大学 基于全阶自适应观测器的pmsm传感器抗扰控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1635448B1 (en) * 2004-09-09 2006-12-20 ABB Oy Speed sensorless control of an induction machine using a PWM inverter with output LC filter
CN103259486B (zh) * 2013-05-07 2015-08-12 上海大学 基于状态轨迹外推的模型预测三电平直接转矩控制方法
CN103701386B (zh) * 2014-01-03 2016-02-03 哈尔滨工业大学 基于观测磁链误差的异步电机无速度传感器的全阶磁链观测器的获取方法
CN107196569B (zh) * 2017-02-28 2020-10-27 常州联力自动化科技有限公司 一种基于dsp的转速估计pi参数定量整定方法
CN107994826B (zh) * 2017-12-12 2020-07-14 合肥工业大学 一种基于误差加权的全阶观测器无速度传感器控制***
CN108551285A (zh) * 2018-04-23 2018-09-18 武汉理工大学 基于双滑膜结构的永磁同步电机直接转矩控制***及方法

Also Published As

Publication number Publication date
CN109510539A (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
KR101087581B1 (ko) 영구자석형 동기 전동기의 센서리스 제어방법
CN109510539B (zh) 一种基于增益矩阵的模型预测磁链控制***及方法
CN112217428B (zh) 水下机器人推进***无位置传感器控制方法
CN111786606A (zh) 同步磁阻电机自适应调节无传感器控制方法
CN111181458A (zh) 基于扩展卡尔曼滤波器的表贴式永磁同步电机转子磁链观测方法
CN113708693A (zh) 一种永磁同步电机补偿控制方法及***
CN110912480A (zh) 基于扩张状态观测器的永磁同步电机无模型预测控制方法
CN112054730B (zh) 永磁同步电机在线参数辨识方法
CN108649850B (zh) Ude的内置式永磁同步电机电流控制方法
CN111193448A (zh) 基于扩展卡尔曼滤波器的表贴式永磁同步电机负载转矩观测方法
CN111769779A (zh) 基于改进型Luenberger观测器的PMSM直接转矩控制方法
CN107370432B (zh) 一种基于arc的超高速永磁同步电机转速控制方法
CN110649851B (zh) 异步电机多参数解耦在线辨识方法
Stănică et al. A brief review of sensorless AC motors control
CN111371360A (zh) 一种基于抗扰观测器的三相鼠笼式异步电机控制方法
CN108574440A (zh) 一种基于滑模参考自适应的永磁同步电机状态估计方法
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动***控制方法
CN116094383A (zh) 永磁同步电机时变非线性扰动观测器及电流约束控制方法
CN115425901A (zh) 一种开关磁阻电机控制***
CN113965129A (zh) 一种永磁同步电机控制***电流测量偏移误差的补偿方法
CN114696695A (zh) 永磁同步直线电机无传感器控制性能的提升方法
CN110649850B (zh) 双模式电压模型定子磁链的确定方法
CN114614724B (zh) 一种同步磁阻电机的磁链观测器无传感器控制方法
Liao et al. Research on Speed Sensorless Vector Control System of Asynchronous Motor Based on MRAS
CN116191969B (zh) 基于谐波电流注入的同步电机转矩密度提升方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210323