CN107370432B - 一种基于arc的超高速永磁同步电机转速控制方法 - Google Patents

一种基于arc的超高速永磁同步电机转速控制方法 Download PDF

Info

Publication number
CN107370432B
CN107370432B CN201710750690.6A CN201710750690A CN107370432B CN 107370432 B CN107370432 B CN 107370432B CN 201710750690 A CN201710750690 A CN 201710750690A CN 107370432 B CN107370432 B CN 107370432B
Authority
CN
China
Prior art keywords
motor
stator
speed
torque
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710750690.6A
Other languages
English (en)
Other versions
CN107370432A (zh
Inventor
郭健
沈宏丽
吴益飞
周梦兰
洪宇
林立斌
黄迪
王天野
薛舒严
钱抒婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710750690.6A priority Critical patent/CN107370432B/zh
Publication of CN107370432A publication Critical patent/CN107370432A/zh
Application granted granted Critical
Publication of CN107370432B publication Critical patent/CN107370432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种基于ARC的超高速永磁同步电机转速控制方法。ARC控制器设计包括:建立电机数学模型,转换成状态方程,作出相关假设,进行电机速度环、转矩和磁链环设计,最终求得电压控制量;将电压控制量作用于SVPWM模块,进而控制电机转速。本发明提高了电机***的鲁棒性和控制精度,有效实现超高速永磁同步电机平稳、可靠的转速控制。

Description

一种基于ARC的超高速永磁同步电机转速控制方法
技术领域
本发明属于电机智能控制技术领域,特别是一种基于ARC的超高速永磁同步电机转速控制方法。
背景技术
现代工业对整个社会和国民经济的发展起到了关键性的支撑作用,随着科学技术的发展,超高速加工和超精度加工成为未来工业的两大发展方向,这就要求极高的生产率和加工质量,普通电机无法满足这些加工要求,人们对超高速电机需求日益剧增,其在工业制造、航空航天、能源、医疗和国防等领域的应用愈来愈广泛,具有广阔的应用前景。超高速永磁同步电机及其驱动控制技术成为了当前国内外电工相关领域的研究热点。
目前在实际工程中,常将传统PID控制器用于超高速永磁同步电机控制***中,但是传统的PID控制器适合于低阶线性***,针对超高速电机这样的强耦合、高阶的非线性复杂***,较难达到高性能的控制指标。因为电机在超高速情况下的负载转矩扰动,以及在无传感器技术下的转速估计的精确程度增大了***的扰动量,都会对电机转速的稳定性产生影响;同时电机高速运转时的温升使得电阻、电感等参数发生变化,这些参数的不确定性对对超高速电机的动力学和运动特性产生显著影响,进而影响电机控制整体性能。所以需要采用自适应性强、鲁棒性强、稳定性好的控制策略来控制电机转速。
发明内容
本发明的目的在于提供一种基于ARC的超高速永磁同步电机控制方法,针对超高速永磁同步电机非线性、参数不确定性、负载扰动等因素,采用自适应鲁棒控制器(ARC)对电机转速进行控制,提高了电机***的鲁棒性和控制性能。
解决上述技术问题的技术方案为:一种基于ARC的超高速永磁同步电机转速控制方法,在直接转矩控制的基础上,辅以ARC控制器,使电机在负载扰动时转速得到稳定的控制;其特征在于,使用ARC控制器,根据转子磁链给定值ψs *、电机转速给定值w*、电机转速反馈w、定子电流在电机两相静止坐标系α-β轴上的分量iα和iβ、电机电磁转矩Te、以及定子磁链在电机两相静止坐标系α-β轴上的分量ψα和ψβ此8个控制量得到电压控制量,即定子电压在电机两相静止坐标系α-β轴上的分量uα、uβ;具体包括以下步骤:
步骤1,建立两相静止坐标系下的超高速永磁同步电机的数学模型,转换成状态方程,并作出相关假设;
步骤2,根据电机转速给定值w*、电机转速反馈值w,设计电机速度环,计算获得电磁转矩给定值其中转速误差e1=ω-ω*,中间变量中间变量中间变量x2=Te为电机电磁转矩,k1为大于0的可调正数,为负载转矩估计值,ε1为一大于0的正数,h1的上界值,为中间常量,为定子电阻的估计误差,为负载转矩估计误差,T为矩阵的转置,pn为电机极对数,B为阻转矩阻尼系数,J为机械转动惯量;
步骤3,根据电磁转矩给定值和电磁转矩Te,定子磁链在电机两相静止坐标系α-β轴上的分量ψα和ψβ,转子磁链给定值ψs *,设计电机转矩环和磁链环,求得控制输出的电压控制量uα、uβ
步骤4,根据电压控制量uα、uβ,结合逆变器对电机进行电压空间矢量(SVPWM)控制;
步骤5,重复步骤2-4,直至电机转速达到给定指标。
本发明与现有技术相比,其显著优点为:
(1)本发明在直接转矩控制的基础上,通过自适应鲁棒控制器对电机转速、磁链、转矩进行控制,有助于对超高速永磁同步电机非线性模型进行解耦控制,采用自适应控制率抑制运行过程中电阻、电感等参数发生变化带来的扰动;
(2)本发明通过设计鲁棒控制量,避免了电机在超高速情况下的负载转矩扰动对电机转速的影响,提高了电机转速的稳定性;
(3)本发明适用于无传感器转速估计的超高速电机***,通过在模型中设计补偿量减小转速估计误差对***控制性能的影响,提高了超高速电机***的自适应性和鲁棒性。
附图说明
图1为适用本发明的基于ARC的超高速永磁同步电机转速控制***示意图。
图2为本发明的自适应鲁棒控制器(ARC)的设计流程图。
具体实施方式
下面结合附图对本发明作进一步说明。
结合图1~2,一种基于ARC的超高速永磁同步电机转速控制***,将ARC(自适应鲁棒控制算法)应用于基于SVPWM(电压空间矢量)的直接转矩控制***中,其工作过程包括以下步骤:
步骤1,建立两相静止坐标系下的超高速永磁同步电机的数学模型,转换成状态方程,并作出相关假设;
步骤1-1:建立两相静止坐标系下的超高速永磁同步电机的数学模型如式(1)所示,
其中,Rs电机定子的电阻,Ld、Lq为定子绕组在电机两相旋转坐标系d-q轴上的等效电感,uα、uβ、iα、iβ、ψα、ψβ分别为定子电压、定子电流和定子磁链在电机两相静止坐标系α-β轴上的分量,为定子电压、定子电流和定子磁链在电机两相静止坐标系α-β轴上的分量的导数,ψ为定子磁链,J为机械转动惯量,B为阻转矩阻尼系数,pn为电机极对数,ω、为转子角速度及其导数,θ为转子的角度,ψf为转子磁链,Tl为负载转矩,Te为电磁转矩,Eα、Eβ为磁动势在电机两相静止坐标系α-β轴上的分量。
步骤1-2:引入建模误差和不确定干扰的未知非线性因素对式(1)所示电机数学模型进行优化,确定状态变量将数学模型转换成状态模型:
考虑到Ld=Lq,定义的中间变量如下:
处理后***的模型可描述为:
式中,不确定参数选取定子电组Rs和负载转矩Tl(即令);***状态变量x1、x2、x3为电机转速、电磁转矩和定子磁链平方,为电机转速、电磁转矩和定子磁链平方的导数;Δ1、Δ2分别为电磁转矩和定子磁链平方下的建模误差和***扰动等未知非线性因素。
步骤1-3:针对电机ARC控制器设计要求,作出相应的假设:
假设1:不确定参数和未知非线性因素Δi(i=1,2)均是有界的,即:
式中,δi>0为较小的常数、的取值集合,为不确定参数的最小值矩阵,为不确定参数的最大值矩阵,分别为Rs、Tl的最小值,分别为Rs、Tl的最大值。
假设2:***状态变量x=[x1 x2 x3]T可估计得到,***期望信号即转速设定值和定子磁链设定值平方已知,并且
步骤2:定义电机的转速误差e1、转矩误差e2和定子磁链误差e3,并进行电机速度环的设计:
步骤2-1:定义转速误差e1、转矩误差e2和定子磁链误差e3如下,其中为计算方便,e3取定子磁链平方的误差。
其中,为转速设定值,为定子磁链设定值平方,为计算得到的电磁转矩给定值。
步骤2-2:进行速度环设计,获得电磁转矩的给定值,对转速误差e1求导得:
电磁转矩给定值为:
式中,αa为模型补偿量,αs1为线性反馈控制量,αs2为非线性鲁棒反馈量,k1为可调参数,为估计得到的Tl值。
此时有:
式中,为参数估计误差。选取自适应率控制量设计非线性鲁棒反馈量αs2为:
式中,ε1为一大于0的正数,h1的上界值,为一中间变量。
综上,得到速度环输出的电磁转矩控制量为
步骤3,将速度环输出的电磁转矩控制量作为电磁转矩设定值,进行电机转矩环和磁链环设计,最终求得控制输出的电压控制量uα、uβ
作为电磁转矩设定值,λ*为定子磁链设定值的平方,具体为:
对转矩误差e2和定子磁链误差e3求导得:
由于虚拟控制量uα、uβ存在耦合,可将uα、uβ的线性组合看做一个整体,之后再通过方程分别求得uα、uβ各自大小。基于此,得:
此时为:
式中,为转矩误差导数,为定子磁链误差导数, 选取自适应函数为设计非线性鲁棒反馈量us2、us3为:
式中,h2、h3分别为的上界值,δ1和δ2为大于0的正数。最终可求得自适应鲁棒控制律uα、uβ为:
步骤4,根据输出信号uα、uβ,确定扇区,计算基本电压矢量及其工作时间,计算出电压空间矢量的切换点,结合逆变器,对电机进行PWM控制。
步骤5,重复步骤1-4,直至电机转速达到给定指标。

Claims (2)

1.一种基于ARC的超高速永磁同步电机转速控制方法,其特征在于,使用ARC控制器,根据转子磁链给定值ψs *、电机转速给定值w*、电机转速反馈w、定子电流在电机两相静止坐标系α-β轴上的分量iα和iβ、电机电磁转矩Te、以及定子磁链在电机两相静止坐标系α-β轴上的分量ψα和ψβ此8个控制量得到电压控制量,即定子电压在电机两相静止坐标系α-β轴上的分量uα、uβ;具体包括以下步骤:
步骤1,建立两相静止坐标系下的超高速永磁同步电机的数学模型,转换成状态方程,并作出相关假设;步骤1具体为:
步骤1-1:建立两相静止坐标系下的超高速永磁同步电机的数学模型,如下式所示,
其中,Rs电机定子电阻,Ld、Lq为定子绕组在电机两相旋转坐标系d-q轴上的等效电感,uα、uβ、iα、iβ、ψα、ψβ分别为定子电压、定子电流和定子磁链在电机两相静止坐标系α-β轴上的分量,为定子电压、定子电流和定子磁链在电机两相静止坐标系α-β轴上的分量的导数,ψ为定子磁链,J为机械转动惯量,B为阻转矩阻尼系数,pn为电机极对数,为转子角速度及其导数,θ为转子的角度,ψf为转子磁链,Tl为负载转矩,Te为电磁转矩,Eα、Eβ为磁动势在电机两相静止坐标系α-β轴上的分量;
步骤1-2:引入建模误差和不确定干扰的未知非线性因素对电机数学模型进行优化,确定状态变量并将数学模型转换成状态模型:其中,
首先,在Ld=Lq的基础上,定义变量如下:
x1=ω,x2=Te,x3=ψ21=Rs2=Tl
a5=2ψαiα+2ψβiβ,a6=2ψα,a7=2ψβ
然后,将电机数学模型按下式所示方式进行描述,
式中,不确定参数θ1、θ2选取定子电组Rs和负载转矩Tl,即令θ1=Rs,θ2=Tl;***状态变量x1、x2、x3为电机转速、电磁转矩和定子磁链平方,为电机转速、电磁转矩和定子磁链平方的导数;Δ1、Δ2分别为电磁转矩和定子磁链平方下的模型误差和***扰动;
步骤1-3:针对电机ARC控制器设计要求,作出以下的假设:
假设1:不确定参数θ=[θ12]和未知非线性因素Δi,i=1,2均是有界的,即:
式中,δi>0为较小的常数、Ωθ为θ的取值集合,θmin为不确定参数的最小值矩阵,θmax为不确定参数的最大值矩阵,θ1min、θ2min分别为Rs、Tl的最小值,θ1max、θ2max分别为Rs、Tl的最大值;
假设2:***状态变量x=[x1 x2 x3]T可估计得到,***期望信号即转速设定值和定子磁链设定值平方已知,并且
步骤2,根据电机转速给定值w*、电机转速反馈值w,设计电机速度环,计算获得电磁转矩给定值其中转速误差e1=ω-ω*,中间变量中间变量中间变量x2=Te为电机电磁转矩,k1为大于0的可调正数,为负载转矩估计值,ε1为一大于0的正数,h1的上界值,为中间常量, 为定子电阻的估计误差,为负载转矩估计误差,T为矩阵的转置,pn为电机极对数,B为阻转矩阻尼系数,J为机械转动惯量;
步骤3,根据电磁转矩给定值和电磁转矩Te,定子磁链在电机两相静止坐标系α-β轴上的分量ψα和ψβ,转子磁链给定值ψs *,设计电机转矩环和磁链环,求得控制输出的电压控制量uα、uβ
步骤4,根据电压控制量uα、uβ,结合逆变器对电机进行电压空间矢量控制;
步骤5,重复步骤2-4,直至电机转速达到给定指标。
2.根据权利要求1所述超高速永磁同步电机转速控制方法,其特征在于,步骤3中,电压控制量uα、uβ的计算方法如下式所示,
其中,a1~a7、b1~b2为已定义的中间变量,e1为转速误差、e2为转矩误差、e3定子磁链误差;k1~k3为大于0的可调正数,分别用于调节转速误差、转矩误差及定子磁链误差的衰减速率;ε1~ε3为大于0的常数,分别为用于调节转速环、转矩环及定子磁链环的非线性鲁棒反馈量;x1~x3分别为电机转速、电磁转矩和定子磁链平方状态变量,h1~h3是中间变量,分别为的上界值,均为中间常量, 为参数估计误差,为估计的定子电阻值,为负载转矩估计值。
CN201710750690.6A 2017-08-28 2017-08-28 一种基于arc的超高速永磁同步电机转速控制方法 Active CN107370432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710750690.6A CN107370432B (zh) 2017-08-28 2017-08-28 一种基于arc的超高速永磁同步电机转速控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710750690.6A CN107370432B (zh) 2017-08-28 2017-08-28 一种基于arc的超高速永磁同步电机转速控制方法

Publications (2)

Publication Number Publication Date
CN107370432A CN107370432A (zh) 2017-11-21
CN107370432B true CN107370432B (zh) 2019-02-05

Family

ID=60310521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710750690.6A Active CN107370432B (zh) 2017-08-28 2017-08-28 一种基于arc的超高速永磁同步电机转速控制方法

Country Status (1)

Country Link
CN (1) CN107370432B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678902B (zh) * 2018-05-02 2019-08-27 曾喆昭 直驱pmsm风力发电***mppt的扰动感知控制方法
CN108983618A (zh) * 2018-09-17 2018-12-11 江南大学 基于凸多胞形的pmsm鲁棒h∞输出反馈控制设计方法
CN110026731A (zh) * 2019-05-24 2019-07-19 盐城工学院 一种变位机的旋转变位装置及方法、变位机
CN110165959B (zh) * 2019-05-29 2020-11-13 哈尔滨工业大学 一种永磁同步电机自抗扰无位置传感器控制方法及控制装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683403A (ja) * 1992-07-17 1994-03-25 Fanuc Ltd 適応pi制御方式
CN104333280B (zh) * 2014-09-17 2017-05-17 南京理工大学 一种直驱电机***的鲁棒自适应控制方法
CN104270053A (zh) * 2014-10-21 2015-01-07 南京理工大学 基于状态估计的电机位置伺服***的输出反馈控制方法
CN105790660B (zh) * 2016-03-03 2019-02-22 南京理工大学 超高速永磁同步电机转速自适应鲁棒控制***及方法

Also Published As

Publication number Publication date
CN107370432A (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
CN107370432B (zh) 一种基于arc的超高速永磁同步电机转速控制方法
CN105790660B (zh) 超高速永磁同步电机转速自适应鲁棒控制***及方法
CN107086836B (zh) 一种改进的永磁同步电机弱磁调速方法
CN107482982B (zh) 一种基于铁损模型的异步电机矢量控制方法
CN109510539B (zh) 一种基于增益矩阵的模型预测磁链控制***及方法
CN105471329B (zh) 交流同步电机***转矩冲量平衡控制方法
CN104135197A (zh) 一种无传感器永磁同步电机调速控制策略
CN108377117A (zh) 基于预测控制的永磁同步电机复合电流控制***及方法
Kumar et al. Direct field oriented control of induction motor drive
CN111585488B (zh) 一种永磁电机无速度传感器控制方法及***
CN110649851B (zh) 异步电机多参数解耦在线辨识方法
Yujie et al. Model reference adaptive control system simulation of permanent magnet synchronous motor
CN104135203A (zh) 基于带隙变步长法的异步电机弱磁控制方法
CN111371360A (zh) 一种基于抗扰观测器的三相鼠笼式异步电机控制方法
Li et al. Composite fractional order sliding mode control of permanent magnet synchronous motor based on disturbance observer
Luo et al. A speed adaptive scheme-based full-order observer for sensorless induction motor drives in low-speed regenerating operation range
CN116094383A (zh) 永磁同步电机时变非线性扰动观测器及电流约束控制方法
He et al. Design of induction motor speed-sensorless vector control system
CN104935233B (zh) 永磁直驱风力发电机电磁扭矩控制方法及装置
CN108448976B (zh) 一种永磁同步电机最大转矩电流比控制装置
CN107359835A (zh) 一种基于自适应鲁棒控制的超高速永磁同步电机转速控制方法
CN110460279B (zh) 一种基于辅助变量的扩展转速自适应观测器低速控制方法
Pan et al. A high-order sliding mode stator flux observer for asynchronous motor based on feedback linearization
Huang et al. Research on the Inertia Identification of AC Servo System Based on Asynchronous Motor
Humod et al. Direct Torque control of induction motor based on Particle Swarm Optimization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant