CN109494368A - 一种碳质纳米复合材料的制备方法及其应用 - Google Patents

一种碳质纳米复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN109494368A
CN109494368A CN201811470997.1A CN201811470997A CN109494368A CN 109494368 A CN109494368 A CN 109494368A CN 201811470997 A CN201811470997 A CN 201811470997A CN 109494368 A CN109494368 A CN 109494368A
Authority
CN
China
Prior art keywords
carbonaceous
preparation
carbonaceous nanocomposite
nanocomposite
xerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811470997.1A
Other languages
English (en)
Other versions
CN109494368B (zh
Inventor
王慧奇
王泽霖
崔向前
李莹
李宁
王延忠
常青
薛超瑞
胡胜亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201811470997.1A priority Critical patent/CN109494368B/zh
Publication of CN109494368A publication Critical patent/CN109494368A/zh
Application granted granted Critical
Publication of CN109494368B publication Critical patent/CN109494368B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种碳质纳米复合材料的制备方法及其应用,涉及炭材料。一种碳质纳米复合材料的制备方法,步骤为:将含硼化合物和金属锑的化合物分别溶解于去离子水和无水乙醇的混合溶液中,加入高分子材料,升温至80~100℃,恒温0.5~2h,冷却制得凝胶态物质;冷冻干燥10~48h,制得干凝胶;置于管式炉中,抽真空,以100~300ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至600~1200℃,恒温2~5h,冷却至室温制得碳质纳米复合材料。本发明制备过程简单,原料成本低,制备过程中无环境污染,结构与性能可控,可获得不同储钠性能的碳质纳米复合材料。

Description

一种碳质纳米复合材料的制备方法及其应用
技术领域
本发明涉及炭材料,具体涉及一种基于水热反应及炭化工艺制备的碳质纳米复合材料的制备方法及其应用。
背景技术
传统石墨材料因对钠离子脱嵌效率低、动力学速率缓慢、体积膨胀大,限制了其在钠离子电池中的直接应用,导致大容量、高钠扩散率和良好循环性能钠离子电池负极材料的严重匮乏。由于钠离子尺寸比锂大,多数锂离子电池负极材料在钠离子电池中表现不佳,存在嵌入效率低、动力学速率缓慢以及体积膨胀严重等问题,因此,设计和制备新型钠离子电池负极材料显得尤为关键。
在现有钠离子电池负极材料体系中(炭材料、合金材料、金属氧化物等),炭材料存在:成本低、结构多样、可逆容量高、循环性能稳定,且具有灵活的空间构筑特性的优点。其中,硬碳具有较大的碳层间距和无序的微孔,拥有更多的储钠位点,从而硬碳作为储钠负极材料引起了众多研究者们的极大关注。
然而硬碳的储钠容量、循环性能和倍率性能还有待提高,本发明中即是研发一种高储钠能力的碳质纳米复合材料。
发明内容
本发明的目的是提供一种碳质纳米复合材料的制备方法。
本发明的另一个目的是提供碳质纳米复合材料的应用。
本发明的发明思路是:利用水热反应及高温炭化,制备具有高的可逆容量和倍率性能的碳质纳米复合材料,并将其用于钠离子电池负极材料的制备。
本发明是通过以下技术方案实现的:
一种碳质纳米复合材料的制备方法,步骤为:
1)制备凝胶态物质:将含硼化合物和金属锑的化合物分别溶解于去离子水和无水乙醇的混合溶液中,加入高分子材料,搅拌均匀,升温至80~100℃,恒温0.5~2h,冷却制得凝胶态物质;
2)制备干凝胶:将凝胶态物质冷冻干燥10~48h,制得干凝胶;
3)制备碳质纳米复合材料:将干凝胶置于管式炉中,抽真空,以100~300ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至600~1200℃,恒温2~5h,冷却至室温制得碳质纳米复合材料。
进一步地,所述的含硼化合物为四苯硼钠、五硼酸铵、或者二甲胺基甲硼烷。
所述的金属锑的化合物为乙酸锑、三氯化锑、或者五氟化锑。
所述的去离子水与无水乙醇的体积比为3~6:1。
所述的高分子材料为淀粉、或者纤维素。
所述的含硼化合物:金属锑的化合物:高分子材料的质量体积比为12~26g:18g:100mL。
所述的惰性气体为高纯氩气或者氮气。
更进一步地,本发明还提供了碳质纳米复合材料的应用,所述的碳质纳米复合材料可以用作钠离子电池负极材料。
本发明利用水热反应和高温炭化的方法,将杂原子硼元素引入硬碳结构中,作为电子受体的替代位硼原子,能够使得碳结构更容易从钠得到电子,增强了对碱金属离子的吸附作用,以及产生了更宽的碳层间距,有利于更多的钠离子吸附和快速脱嵌,进而提高了硬碳负极材料的能量密度和倍率特性,同时将具有高储钠容量的锑引入到硼掺杂的硬碳材料基体中,形成了具备高储钠能力、高可逆容量和倍率性能的碳质纳米复合材料,该复合材料可用作钠离子电池负极材料。
为了验证碳质纳米复合材料的性能,分别对碳质纳米复合材料通过扫描电镜、透射电镜、X射线光电子能谱、X射线衍射谱、储钠性能进行测定;其中图2为碳质纳米复合材料扫描电镜图片,从图中能够清晰看出本发明中得到的碳质纳米复合材料呈水母状的微观形貌;图3为碳质纳米复合材料透射电镜图片,从图中所示的透射电镜照片分析表明碳质纳米复合材料具有水母状的微观结构;图4为碳质纳米复合材料X射线光电子能谱图,从图中可以得出碳质纳米复合材料中含有碳、硼、锑、氧、氮五种元素;图5为碳质纳米复合材料X射线衍射谱图,通过对本发明中制备材料的物相组成进行分析,证明了所制备的材料中含有无定型碳和金属单质锑;图6为碳质纳米复合材料储钠性能,从图中可以看出本发明中制备的材料具有高的比容量和优异的循环稳定性。
与现有技术相比,本发明具有以下有益效果:
(1)制备过程简单,原料成本低,且无需对原料进行预处理,通过水热反应及高温炭化,即可得到碳质钠离子电池负极材料;
(2)制备过程中无环境污染,工艺环保,不产生废气、废液、废渣等;
(3)结构与性能可控,通过简单调节高分子材料与惰性金属化合物的比例,即可获得不同储钠性能的碳质纳米复合材料。
附图说明
图1是本发明制备方法的流程图。
图2是本发明实施例1中制备的碳质纳米复合材料扫描电镜图片。
图3是本发明实施例1中制备的碳质纳米复合材料透射电镜图片。
图4是本发明实施例1中制备的碳质纳米复合材料X射线光电子能谱图。
图5是本发明实施例1中制备的碳质纳米复合材料X射线衍射谱图。
图6是本发明实施例1中制备的碳质纳米复合材料储钠性能。
具体实施方式
下面将结合附图和实施例对本发明技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
将5.300g四苯硼钠和4.500g乙酸锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为3:1)中,再加入13.500g淀粉,搅拌均匀后将上述混合溶液升温至80℃,恒温0.5h后冷却形成了凝胶态物质;再经冷冻干燥10h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以100 ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至600℃,恒温2h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例2
将3.300g五硼酸铵,2.000g二甲胺基甲硼烷和4.500g乙酸锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为3:1)中,再加入13.500g淀粉,搅拌均匀后将上述混合溶液升温至90℃,恒温1.5h后冷却形成了凝胶态物质;再经冷冻干燥24h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以150ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至900℃,恒温3.5h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例3
将5.300g二甲胺基甲硼烷和2.000g五氟化锑、2.500g乙酸锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为4:1)中,再加入13.500g纤维素,搅拌均匀后将上述混合溶液升温至100℃,恒温2h后冷却形成了凝胶态物质;再经冷冻干燥48h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以300ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温1200℃,恒温5h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例4
将4.800g二甲胺基甲硼烷和4.500g乙酸锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为5:1)中,再加入12.500g淀粉,搅拌均匀后将上述混合溶液升温至100℃,恒温1.5h后冷却形成了凝胶态物质;再经冷冻干燥36h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以200 ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至1000℃,恒温4h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例5
将4.300g五硼酸铵和4.500g三氯化锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为6:1)中,再加入4.500g淀粉、7.000纤维素,搅拌均匀后将上述混合溶液升温至95℃,恒温0.5h后冷却形成了凝胶态物质;再经冷冻干燥48h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以300 ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至1100℃,恒温3h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例6
将3.500g四苯硼钠和4.500g乙酸锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为3:1)中,再加入8.500g淀粉,搅拌均匀后将上述混合溶液升温至100℃,恒温0.5h后冷却形成了凝胶态物质;再经冷冻干燥48h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以100ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至800℃,恒温5h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例7
将3.000g五硼酸铵和4.500g五氟化锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为5:1)中,再加入12.500g纤维素,搅拌均匀后将上述混合溶液升温至90℃,恒温1.5h后冷却形成了凝胶态物质;再经冷冻干燥36h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以200 ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至1000℃,恒温2h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例8
将6.500g五硼酸铵和4.500g乙酸锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为3:1)中,再加入13.500g淀粉,搅拌均匀后将上述混合溶液升温至80℃,恒温0.5h后冷却形成了凝胶态物质;再经冷冻干燥48h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以300 ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至700℃,恒温3h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例9
将6.000g五硼酸铵和4.500g三氯化锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为4:1)中,再加入12.500g纤维素,搅拌均匀后将上述混合溶液升温至90℃,恒温1.5h后冷却形成了凝胶态物质;再经冷冻干燥24h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以100ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至900℃,恒温2~5h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
实施例10
将5.500g四苯硼钠和4.500g乙酸锑分别溶解于25ml去离子水和无水乙醇的混合溶液(体积比为6:1)中,再加入13.500g淀粉,搅拌均匀后将上述混合溶液升温至100℃,恒温0.5h后冷却形成了凝胶态物质;再经冷冻干燥48h后形成了干凝胶;取干燥后的干凝胶置于管式炉中,抽真空后,以300ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至1200℃,恒温5h后冷却至室温;最后获得碳质纳米复合材料,并将其作为活性材料用于制作钠离子电池负极。
上述的实施例仅例示性说明本发明创造的原理及其功效,以及部分运用的实施例,而非用于限制本发明;应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (8)

1.一种碳质纳米复合材料的制备方法,其特征在于,步骤为:
1)制备凝胶态物质:将含硼化合物和金属锑的化合物分别溶解于去离子水和无水乙醇的混合溶液中,加入高分子材料,搅拌均匀,升温至80~100℃,恒温0.5~2h,冷却制得凝胶态物质;
2)制备干凝胶:将凝胶态物质冷冻干燥10~48h,制得干凝胶;
3)制备碳质纳米复合材料:将干凝胶置于管式炉中,抽真空,以100~300ml/min的速度通入惰性气体,反复抽真空、通入惰性保护气数次后,以5~10℃/min速率升温至600~1200℃,恒温2~5h,冷却至室温制得碳质纳米复合材料。
2.根据权利要求1所述的一种碳质纳米复合材料的制备方法,其特征在于,所述的含硼化合物为四苯硼钠、五硼酸铵、二甲胺基甲硼烷的任意一种或者几种的混合物。
3.根据权利要求1或2所述的一种碳质纳米复合材料的制备方法,其特征在于,所述的金属锑的化合物为乙酸锑、三氯化锑、五氟化锑的任意一种或者几种的混合物。
4.根据权利要求1或2所述的一种碳质纳米复合材料的制备方法,其特征在于,所述的去离子水与无水乙醇的体积比为3~6:1。
5.根据权利要求1或2所述的一种碳质纳米复合材料的制备方法,其特征在于,所述的高分子材料为淀粉、纤维素、或者两者的混合物。
6.根据权利要求1或2所述的一种碳质纳米复合材料的制备方法,其特征在于,所述的含硼化合物:金属锑的化合物:高分子材料的质量体积比为12~26g:18g:100mL。
7.根据权利要求1或2所述的一种碳质纳米复合材料的制备方法,其特征在于,所述的惰性气体为高纯氩气或者氮气。
8.权利要求1所述的碳质纳米复合材料的应用,其特征在于,所述的碳质纳米复合材料用作钠离子电池负极材料。
CN201811470997.1A 2018-12-04 2018-12-04 一种碳质纳米复合材料的制备方法及其应用 Active CN109494368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811470997.1A CN109494368B (zh) 2018-12-04 2018-12-04 一种碳质纳米复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811470997.1A CN109494368B (zh) 2018-12-04 2018-12-04 一种碳质纳米复合材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109494368A true CN109494368A (zh) 2019-03-19
CN109494368B CN109494368B (zh) 2021-07-23

Family

ID=65699225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811470997.1A Active CN109494368B (zh) 2018-12-04 2018-12-04 一种碳质纳米复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109494368B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663157A (zh) * 2022-11-16 2023-01-31 晖阳(贵州)新能源材料有限公司 一种锂离子电池用硬碳复合材料及其制备方法
CN115974045A (zh) * 2022-12-06 2023-04-18 江西师范大学 一种化学凝胶协同碱性金属氧化物模板法制备硬碳的方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324497A (zh) * 2011-09-21 2012-01-18 上海大学 一种石墨烯负载碳包覆锡锑的锂电池负极材料的制备方法
CN102760867A (zh) * 2012-07-25 2012-10-31 哈尔滨工业大学 包含石墨烯基水凝胶的超级电池极板、其制备方法以及由其组装的铅酸超级电池
CN104617281A (zh) * 2015-02-12 2015-05-13 中南大学 一种钠离子电池锑/掺氮碳纳米片负极复合材料的制备方法
CN104900858A (zh) * 2015-06-15 2015-09-09 中南大学 一种钠离子电池蛋黄-蛋壳结构锑/碳负极复合材料的制备方法
CN106887572A (zh) * 2017-03-08 2017-06-23 东华大学 一种锑‑碳复合材料及其制备方法和应用
CN107346821A (zh) * 2016-05-06 2017-11-14 苏州汉瀚储能科技有限公司 一种硼掺杂多孔碳球的制备方法
CN108689397A (zh) * 2017-04-10 2018-10-23 中国科学院苏州纳米技术与纳米仿生研究所 一种碳空心球气凝胶、其制备方法与应用
CN108899504A (zh) * 2018-06-29 2018-11-27 东华大学 一种锑-碳纳米管-碳复合材料、制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324497A (zh) * 2011-09-21 2012-01-18 上海大学 一种石墨烯负载碳包覆锡锑的锂电池负极材料的制备方法
CN102760867A (zh) * 2012-07-25 2012-10-31 哈尔滨工业大学 包含石墨烯基水凝胶的超级电池极板、其制备方法以及由其组装的铅酸超级电池
CN104617281A (zh) * 2015-02-12 2015-05-13 中南大学 一种钠离子电池锑/掺氮碳纳米片负极复合材料的制备方法
CN104900858A (zh) * 2015-06-15 2015-09-09 中南大学 一种钠离子电池蛋黄-蛋壳结构锑/碳负极复合材料的制备方法
CN107346821A (zh) * 2016-05-06 2017-11-14 苏州汉瀚储能科技有限公司 一种硼掺杂多孔碳球的制备方法
CN106887572A (zh) * 2017-03-08 2017-06-23 东华大学 一种锑‑碳复合材料及其制备方法和应用
CN108689397A (zh) * 2017-04-10 2018-10-23 中国科学院苏州纳米技术与纳米仿生研究所 一种碳空心球气凝胶、其制备方法与应用
CN108899504A (zh) * 2018-06-29 2018-11-27 东华大学 一种锑-碳纳米管-碳复合材料、制备方法及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663157A (zh) * 2022-11-16 2023-01-31 晖阳(贵州)新能源材料有限公司 一种锂离子电池用硬碳复合材料及其制备方法
CN115663157B (zh) * 2022-11-16 2023-09-01 晖阳(贵州)新能源材料有限公司 一种锂离子电池用硬碳复合材料及其制备方法
CN115974045A (zh) * 2022-12-06 2023-04-18 江西师范大学 一种化学凝胶协同碱性金属氧化物模板法制备硬碳的方法及其应用
CN115974045B (zh) * 2022-12-06 2024-02-13 江西师范大学 一种化学凝胶协同碱性金属氧化物模板法制备硬碳的方法及其应用

Also Published As

Publication number Publication date
CN109494368B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
Xiong et al. Red phosphorus nanoparticle@ 3D interconnected carbon nanosheet framework composite for potassium‐ion battery anodes
Li et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries
CN103700859B (zh) 锂硫电池正极用石墨烯基氮掺杂多级孔碳纳米片/硫复合材料及其制备方法和应用
CN108183039B (zh) 碳修饰铌酸钛材料的制备方法、碳修饰铌酸钛材料、锂离子电容器及其负极浆料
CN109728246A (zh) 一种氮磷共掺杂有序介孔碳材料及其制备方法和应用
CN108666570B (zh) 多孔碳纳米带锂硫电池正极材料及其制备方法和应用
CN111293301B (zh) 一种钠离子电池用软硬碳复合多孔负极材料及其制备方法
Zhang et al. Highly reversible aluminium–sulfur batteries obtained through effective sulfur confinement with hierarchical porous carbon
CN109755482A (zh) 硅/碳复合材料及其制备方法
Liu et al. Superior potassium storage in natural O/N–doped hard carbon derived from maple leaves
CN112072101A (zh) 一种硼掺杂MXene材料及其制备方法
CN108166103A (zh) 一种利用几丁质为碳源制备氮掺杂非晶碳纳米纤维的工艺及其在能源储存中的应用
US20240097138A1 (en) Composite material and preparation method thereof, negative electrode material, and lithium ion battery
CN110600713A (zh) 一种掺杂多孔碳负极材料、其制备方法及碱金属离子电池
Hu et al. A lightweight nitrogen/oxygen dual-doping carbon nanofiber interlayer with meso-/micropores for high-performance lithium-sulfur batteries
CN110336003A (zh) 一种多孔硅基复合材料及其制备方法和应用
Zhao et al. Nitrogen/oxygen codoped hierarchical porous Carbons/Selenium cathode with excellent lithium and sodium storage behavior
Wang et al. Facile synthesis of boron-doped porous carbon as anode for lithium–ion batteries with excellent electrochemical performance
CN109494368A (zh) 一种碳质纳米复合材料的制备方法及其应用
CN108987733A (zh) 一种锂离子电池负极材料活性多孔碳@FeS的制备方法
Zhang et al. Flaky N-doped hard carbon anode material for sodium-ion batteries
CN113363452A (zh) 自支撑磷/碳三维导电网络复合电极材料及其制备方法和应用
CN112374484A (zh) 一种制备锂硫电池正极材料S/CeO2/多孔生物质碳的方法
CN116854075A (zh) 一种化学表面改性生物质硬碳材料及其制备方法和应用
Li et al. Assembly of GO Nanosheets–Coated Zeolitic Imidazolate Framework‐67 Nanocubes via Electrospinning and Their Derivatives for Enhanced Lithium‐Ion Storage Performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant