CN109471192A - 一种全自动重力测试仪高精度动态数据处理方法 - Google Patents

一种全自动重力测试仪高精度动态数据处理方法 Download PDF

Info

Publication number
CN109471192A
CN109471192A CN201811553674.9A CN201811553674A CN109471192A CN 109471192 A CN109471192 A CN 109471192A CN 201811553674 A CN201811553674 A CN 201811553674A CN 109471192 A CN109471192 A CN 109471192A
Authority
CN
China
Prior art keywords
gravity
moment
error
noise
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811553674.9A
Other languages
English (en)
Other versions
CN109471192B (zh
Inventor
金莹
陈家俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Original Assignee
Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials filed Critical Hunan Aerospace Institute of Mechanical and Electrical Equipment and Special Materials
Priority to CN201811553674.9A priority Critical patent/CN109471192B/zh
Publication of CN109471192A publication Critical patent/CN109471192A/zh
Application granted granted Critical
Publication of CN109471192B publication Critical patent/CN109471192B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/02Details
    • G01V7/06Analysis or interpretation of gravimetric records

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种全自动重力测试仪高精度动态数据处理方法,包括步骤:A.获得重力测量仪的输出信号y(k)=s(k)+v(k);B.设根据时间序列分析方法建立的重力测试仪随机误差p阶AR模型为将***方程表示为:

Description

一种全自动重力测试仪高精度动态数据处理方法
技术领域
本发明属于惯性技术领域,特别涉及一种全自动重力测试仪高精度动态数据处理方法。
背景技术
在航空重力测量中,通常需要采用卡尔曼滤波来对比力测量误差进行估计。针对航空重力测量只需要进行事后处理的特点,提出了两种新方法来提高比力测量的精度:一是最优卡尔曼滤波平滑算法,该算法的估计值是前向/反向卡尔曼滤波器的估计值的最优组合。二是迭代算法,由于在滤波模型中通常不对重力异常进行建模,而模型误差的存在会降低滤波精度,迭代算法的基本思想是将重力异常估计值代入新的导航解算,以此降低重力异常对滤波估计精度的影响。仿真分析表明,现有方法虽然在一定程度上能有效提高比力测量的精度,但其滤波估计是有偏的,因此还需要采用网格平差等方法来消除***误差。
在海洋重力测量理论与方法中,通过时间序列分析方法建立随机误差模型逼近真实情况的实时卡尔曼滤波技术,但其具有以下缺点:1、需要稳定平台。2、需要陀螺提供姿态信息。3、海洋波动有一定规律可以设定模型,但是车载怠速等情况更为复杂,仅靠模型逼近并不准确。4、没有关联平滑及滤波后剩余的动态干扰加速度,模型缺失了部分真实有效信息。
发明内容
本发明的目的在于,针对上述现有技术的不足,提供一种全自动重力测试仪高精度动态数据处理方法,在仅仅采用三轴加速度计的基础上,能够实时、高精度地对重力测试仪的输出数据进行动态滤波,在保证精度的同时,使得滤波后的数据更加逼近真实重力情况,适用于静态、车载或海洋动态条件。
为解决上述技术问题,本发明所采用的技术方案是:
一种全自动重力测试仪高精度动态数据处理方法,其特点是包括以下步骤:
步骤A.获得重力测量仪的输出信号y(k)=s(k)+v(k),其中,s(k)为重力异常特征信号,k为采样时刻且k=1,2,…,N,v(k)为k时刻测量噪声;N为采样点的数目;
步骤B.设根据时间序列分析方法建立的重力测试仪随机误差p阶AR模型为
其中,{e(k)}为干扰噪声序列, v(k)⊥e(k);
将***方程表示为:
y(k)=H(k)·x(k)+v(k),
其中,x(k+1)为k+1时刻***待估计的状态变量;y(k)为k时刻重力测试仪的观测值;为k时刻到k+1时刻***状态一步转移矩阵;w(k)为k时刻***噪声向量;Γ(k+1,k)为***噪声矩阵;H(k)为k时刻***量测转移矩阵;
步骤C.建立状态一步预测方程:
一步预测均方误差:
误差序列:v(k)=y(k)-H(k)·x(k/k-1),
估计量测噪声:
R(k)=R(k-1)+(v(k)·vT(k)-H(k)·P(k/k-1)·HT(k)),
滤波增益:
K(k)=P(k/k-1)·HT(k)·(H(k)·P(k/k-1)·HT(k)+R(k))-1
状态估计:
估计均方误差:P(k)=(I-K(k)·H(k))·P(k/k-1)。
与现有技术相比,本发明为了有效滤除背景干扰噪声以及动态下干扰加速度对重力测量值的影响,并考虑滤波方法的实时性要求,采用自适应卡尔曼滤波对干扰噪声背景下的重力异常值做滤波处理,根据重力测试输出值的随机噪声及动态干扰加速度作为估计值建立基于时间序列的卡尔曼滤波模型,用实际输出值与估计输出值的差作为观测量进行动态滤波,在仅仅采用三轴加速度计的基础上,能够实时、高精度地对重力测试仪的输出数据进行动态滤波,在保证精度的同时,使得滤波后的数据更加逼近真实重力情况,适用于静态、车载或海洋动态条件。
附图说明
图1为利用本发明处理前的重力测量精度图。
图2为利用本发明处理后的重力测量精度图。
具体实施方式
为了有效滤除背景干扰噪声对重力测量值的影响,并考虑滤波方法的实时性要求,采用自适应卡尔曼滤波对干扰噪声背景下的重力异常值做滤波处理,但是车载、海洋等环境动态状况复杂多变,很难建立物理意义上的***方程,因此考虑根据重力仪输出的随机误差以及预测干扰加速度建立模型来逼近测量***的***方程。
全自动重力测试仪高精度动态数据处理方法包括以下步骤:
步骤A.获得重力测量仪的输出信号y(k)=s(k)+v(k),其中,s(k)为重力异常特征信号,k为采样时刻且k=1,2,…,N,v(k)为k时刻测量噪声;N为采样点的数目;
步骤B.设根据时间序列分析方法建立的重力测试仪随机误差p阶AR模型为
其中,{e(k)}为干扰噪声序列, v(k)⊥e(k);
将***方程表示为:
y(k)=H(k)·x(k)+v(k),
其中,x(k+1)为k+1时刻***待估计的状态变量;y(k)为k时刻重力测试仪的观测值;为k时刻到k+1时刻***状态一步转移矩阵;w(k)为k时刻***噪声向量;Γ(k+1,k)为***噪声矩阵;H(k)为k时刻***量测转移矩阵;
根据实际海洋动态情况建立相应阶次的AR模型,加入干扰加速度状态量,可以建立实时卡尔曼滤波模型。有
步骤C.自适应卡尔曼滤波针对测量***以及它们的统计特性,利用测量值y(k)和前一时刻求出的估值估计当前的其递推方程为:
状态一步预测方程:
一步预测均方误差:
误差序列:v(k)=y(k)-H(k)·x(k/k-1),
估计量测噪声:
R(k)=R(k-1)+(v(k)·vT(k)-H(k)·P(k/k-1)·HT(k)),
滤波增益:
K(k)=P(k/k-1)·HT(k)·(H(k)·P(k/k-1)·HT(k)+R(k))-1
状态估计:
估计均方误差:P(k)=(I-K(k)·H(k))·P(k/k-1)。
从图1~图2的仿真结果可以看出,经过本发明方法的动态滤波后,重力测量精度从10-3g0提高到10-6g0,且不存在滤波延时,本发明所述方法具有较好的实时性以及较高的滤波精度。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是局限性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (1)

1.一种全自动重力测试仪高精度动态数据处理方法,其特征在于,包括以下步骤:
步骤A.获得重力测量仪的输出信号y(k)=s(k)+v(k),其中,s(k)为重力异常特征信号,k为采样时刻且k=1,2,…,N,v(k)为k时刻测量噪声;N为采样点的数目;
步骤B.设根据时间序列分析方法建立的重力测试仪随机误差p阶AR模型为
其中,{e(k)}为干扰噪声序列, v(k)⊥e(k);
将***方程表示为:
y(k)=H(k)·x(k)+v(k),
其中,x(k+1)为k+1时刻***待估计的状态变量;y(k)为k时刻重力测试仪的观测值;为k时刻到k+1时刻***状态一步转移矩阵;w(k)为k时刻***噪声向量;Γ(k+1,k)为***噪声矩阵;H(k)为k时刻***量测转移矩阵;
步骤C.建立状态一步预测方程:
一步预测均方误差:
误差序列:v(k)=y(k)-H(k)·x(k/k-1),
估计量测噪声:
R(k)=R(k-1)+(v(k)·vT(k)-H(k)·P(k/k-1)·HT(k)),
滤波增益:
K(k)=P(k/k-1)·HT(k)·(H(k)·P(k/k-1)·HT(k)+R(k))-1
状态估计:
估计均方误差:P(k)=(I-K(k)·H(k))·P(k/k-1)。
CN201811553674.9A 2018-12-19 2018-12-19 一种全自动重力测试仪高精度动态数据处理方法 Active CN109471192B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811553674.9A CN109471192B (zh) 2018-12-19 2018-12-19 一种全自动重力测试仪高精度动态数据处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811553674.9A CN109471192B (zh) 2018-12-19 2018-12-19 一种全自动重力测试仪高精度动态数据处理方法

Publications (2)

Publication Number Publication Date
CN109471192A true CN109471192A (zh) 2019-03-15
CN109471192B CN109471192B (zh) 2021-09-14

Family

ID=65676332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811553674.9A Active CN109471192B (zh) 2018-12-19 2018-12-19 一种全自动重力测试仪高精度动态数据处理方法

Country Status (1)

Country Link
CN (1) CN109471192B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729982A (zh) * 2019-09-30 2020-01-24 中国船舶重工集团公司第七0七研究所 一种基于矩阵稀疏性的Kalman滤波算法优化的方法
CN110909502A (zh) * 2019-11-20 2020-03-24 王宪玉 基于误差迭代的时空分组流量软测量方法及***
CN111722302A (zh) * 2020-06-29 2020-09-29 宁夏大学 用于auv载重力仪的垂直加速度改正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290326A (zh) * 2008-06-13 2008-10-22 哈尔滨工程大学 石英挠性加速度计测量组件的参数辨识标定方法
US20160282121A1 (en) * 2015-03-27 2016-09-29 Water Resources Facilties & Maintenace Co., Ltd. Method of tracing position of pipeline using mapping probe
CN106123921A (zh) * 2016-07-10 2016-11-16 北京工业大学 动态干扰条件下捷联惯导***的纬度未知自对准方法
CN107014386A (zh) * 2017-06-02 2017-08-04 武汉云衡智能科技有限公司 一种飞行器姿态解算的干扰加速度测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290326A (zh) * 2008-06-13 2008-10-22 哈尔滨工程大学 石英挠性加速度计测量组件的参数辨识标定方法
US20160282121A1 (en) * 2015-03-27 2016-09-29 Water Resources Facilties & Maintenace Co., Ltd. Method of tracing position of pipeline using mapping probe
CN106123921A (zh) * 2016-07-10 2016-11-16 北京工业大学 动态干扰条件下捷联惯导***的纬度未知自对准方法
CN107014386A (zh) * 2017-06-02 2017-08-04 武汉云衡智能科技有限公司 一种飞行器姿态解算的干扰加速度测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵池航: "高精度海洋重力仪误差分析及数据处理方法研究", 《万方数据知识服务平台》 *
陆秀平 等: "海空重力测量技术体系构建与研究若干进展( 二) :数据归算与误差分析处理技术", 《海洋测绘》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729982A (zh) * 2019-09-30 2020-01-24 中国船舶重工集团公司第七0七研究所 一种基于矩阵稀疏性的Kalman滤波算法优化的方法
CN110729982B (zh) * 2019-09-30 2023-03-10 中国船舶重工集团公司第七0七研究所 一种基于矩阵稀疏性的Kalman滤波算法优化的方法
CN110909502A (zh) * 2019-11-20 2020-03-24 王宪玉 基于误差迭代的时空分组流量软测量方法及***
CN110909502B (zh) * 2019-11-20 2023-06-02 王宪玉 基于误差迭代的时空分组流量软测量方法及***
CN111722302A (zh) * 2020-06-29 2020-09-29 宁夏大学 用于auv载重力仪的垂直加速度改正方法

Also Published As

Publication number Publication date
CN109471192B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
RU2701194C2 (ru) Способ оценки навигационного состояния в условиях ограниченной возможности наблюдения
CN108489498A (zh) 一种基于最大互相关熵无迹粒子滤波的auv协同导航方法
CN109471192A (zh) 一种全自动重力测试仪高精度动态数据处理方法
CN109974714A (zh) 一种Sage-Husa自适应无迹卡尔曼滤波姿态数据融合方法
CN107290742B (zh) 一种非线性目标跟踪***中平方根容积卡尔曼滤波方法
CN110398782A (zh) 一种重力数据和重力梯度数据联合正则化反演方法
CN110779518A (zh) 一种具有全局收敛性的水下航行器单信标定位方法
CN105675901A (zh) 用于估计飞行器空速的方法和设备
WO2008117081A2 (en) Terrain correction systems
KR20110125803A (ko) 비행체 위치 추적 자료 융합 장치 및 이를 이용한 융합 방법
CN103604430A (zh) 一种基于边缘化ckf重力辅助导航的方法
CN110779519A (zh) 一种具有全局收敛性的水下航行器单信标定位方法
WO2012001388A2 (en) Gravity survey data processing
CN104048676A (zh) 基于改进粒子滤波的mems陀螺随机误差补偿方法
CN109737958A (zh) 一种声学测速辅助的极区格网惯性导航误差抑制方法
Marinov et al. Analysis of sensors noise performance using Allan deviation
CN110703205B (zh) 基于自适应无迹卡尔曼滤波的超短基线定位方法
CN110186483B (zh) 提高惯性制导航天器落点精度的方法
CN116026325A (zh) 一种基于神经过程与卡尔曼滤波的导航方法及相关装置
CN114091180B (zh) 基于飞行数据的扰动风定制化建模和大气数据估计方法
CN109765402A (zh) 一种基于双加速度计的加速度测量装置和卡尔曼滤波算法
RU2419775C1 (ru) Способ идентификации аэродинамических характеристик летательного аппарата по результатам испытаний
JP6867072B2 (ja) 気象予測データ作成プログラム、気象予測データ作成方法、及び、移動体
RU2594631C1 (ru) Способ определения углов пространственной ориентации летательного аппарата и устройство для его осуществления
CN107664499B (zh) 一种船用捷联惯导***的加速度计在线降噪方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant