CN109402656A - 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法 - Google Patents

一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法 Download PDF

Info

Publication number
CN109402656A
CN109402656A CN201811540907.1A CN201811540907A CN109402656A CN 109402656 A CN109402656 A CN 109402656A CN 201811540907 A CN201811540907 A CN 201811540907A CN 109402656 A CN109402656 A CN 109402656A
Authority
CN
China
Prior art keywords
optoelectronic pole
pucherite
preparation
molybdenum
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811540907.1A
Other languages
English (en)
Other versions
CN109402656B (zh
Inventor
刘长海
罗恒
陈智栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201811540907.1A priority Critical patent/CN109402656B/zh
Publication of CN109402656A publication Critical patent/CN109402656A/zh
Application granted granted Critical
Publication of CN109402656B publication Critical patent/CN109402656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/115Deposition methods from solutions or suspensions electro-enhanced deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Hybrid Cells (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法,先在导电玻璃表面采用沉积法制作出碘氧化铋光电极,于碘氧化铋光电极上滴加钒源和钼源溶液,退火清洗后得到掺钼钒酸铋光电极,再在三电极体系中通过光辅助电沉积磷化钴于掺钼钒酸铋光电极表面,即得所制新型钒酸铋光电极,本发明还公开了该复合钼钒酸铋光电极在光电催化分解水中的应用。本发明制得的光电极用于光电催化分解水制氢,掺钼可以有效的增大载流子的浓度,增大光电流,而电沉积钴磷可以有效延缓光电极中的复合损失,增长光生载流子的寿命,促进光电极表面氧析出反应,从而提高半导体光电极的太阳能光氢转换效率。

Description

一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
技术领域
本发明属于光电材料技术领域,具体涉及种磷化钴修饰钼掺杂钒酸铋光电极的制备方法及其在光电催化分解水中的应用。
背景技术
为了实现可持续发展战略,开发和利用可再生能源产业已经成为了世界各国的重要战略目标。其中太阳能作为一种清洁的可再生能源,其储量是其他可再生能源的数万倍;同时太阳能在使用过程中几乎不释放温室气体,有助于缓解石油大量使用导致的环境污染及燃料燃烧所促使的温室效应等环境问题,这让太阳能在可再生能源行业中占据了重要地位。
半导体光电功能材料由于具有光电导和光伏效应,其光电错话火星在本质上是由半导体材料受到足够能量的光激发后产生光生载流子的行为特性决定的,因此为太阳能的利用提供了可能。利用半导体光电功能材料将太阳能转化为化学能,对于解决当前能源危机和环境问题具有重要的研究意义和实用价值。
目前主要研究的光电功能材料包括非氧化物材料和氧化物材料,非氧化物材料制备成本高及光腐蚀现象严重,目前已经很少人关注。氧化物材料由于电极通常较稳定,制备方法简单,成本低廉,广受人们关注,主要集中在二氧化钛、氧化锌、氧化铁、钒酸铋等。其中钒酸铋(BiVO4)具有储量丰富和在中性溶液稳定性很好的特点,并且其具有相对于标准氢电极2.4V的价带边,可很好地用来催化分解水,同时其具有2.4eV的窄带隙,能够吸收可见光516nm以下的太阳光。钒酸铋的理论光解水效率为9.2%,相当于光电流密度7.5mA cm-2,但是钒酸铋实际的光解水效率远低于其理论效率,本征钒酸铋光电极的电流密度仅为0.42mAcm-2,这只要是有以下三个方面造成:①电子运输差和表面缺陷高造成的高达60~80%的电荷复合;②氧析出动力学过程慢;③导带边略低于可逆氢电位。
为了解决以上三个方面的问题,研究者一方面从提高光生载流子分离效率出发,将钒酸铋与其他半导体结合,另一方面通过溅射法、水热合成法或光辅助电沉积法等在钒酸铋表面修饰助催化剂。因此,通过掺杂来提升光生载流子浓度和电沉积复合上助催化剂将有望提高钒酸铋的光电流密度,同时促进其光催化分解水效率。
发明内容
为了促进钒酸铋光电极光催化分解水效率,本发明的目的在于提供了种磷化钴修饰钼掺杂钒酸铋光电极的制备方法,通过钴磷助催化剂和掺杂钼来提高光电极的光电流。
本发明还提供了种磷化钴修饰钼掺杂钒酸铋光电极的制备方法,以及光辅助电沉积钴磷修饰掺钼钒酸铋光电极在光电催化分解水中的应用。
为了实现上述目的,本发明采用的技术方案为:
种磷化钴修饰钼掺杂钒酸铋光电极的制备方法,包括以下步骤:
(1)以导电玻璃为基底,电沉积法制作出碘氧化铋光电极;
(2)在步骤(1)所得碘氧化铋电极上滴加上乙酰丙酮钼和乙酰丙酮氧钒的二甲基亚砜溶液,然后升温至400~500℃,恒温保持1.5~2.5小时,冷却至室温,用碱溶液浸泡后,清洗、干燥,得到掺钼钒酸铋光电极;
(3)以步骤(2)所得掺钼钒酸铋光电极为工作电极,铂片为对电极,Ag/AgCl电极为参比电极构成三电极体系,以含有4~6mmol/L硝酸钴、0.075~0.15mol/L磷酸钠的水溶液为电解质,辅以模拟太阳光照射,采用恒电位法以0.35~0.45V为恒电位,沉积时间取120~140s之间,待沉积后取出工作电极,经洗涤、干燥,即得。
优选地,步骤(2)中所述乙酰丙酮钼的二甲基亚砜溶液中乙酰丙酮钼的浓度为2~3mmol/L,而所述的乙酰丙酮氧钒的二甲基亚砜溶液中乙酰丙酮氧钒的浓度为0.15~0.25mol/L。
优选地,步骤(2)中所述的升温指将150~400μL二甲基亚砜溶液直接滴加至碘氧化铋表面后于马弗炉中升温,升温速率控制为1.5~3℃/min。
优选地,步骤(3)中所述的模拟太阳光照射,采用的是强度为一太阳光(1.5AM)。
优选地,步骤(3)中采用的沉积时间需将钴磷沉积时间为120~140 s后停止。
采用上述方法制备得到的钴磷修饰掺钼钒酸铋(CoPi/Mo/BiVO4)光电极。
本发明将BiVO4生长到FTO导电玻璃表面,且在生长的同时进行掺杂钼元素,然后将CoPi附着在半导体BiVO4的表面,形成均匀的助催化层。采用CoPi修饰Mo/BiVO4光电极用于光电催化分解水制氢,可以有效延缓光生载流子的自我复合,增大光生载流子的密度,从而促进光电极表面的析出反应。
附图说明
图1为所得的CoPi/Mo/BiVO4光电极的扫描电镜照片;
图2为所得的CoPi/Mo/BiVO4光电极的高清透射电镜照片;
图3为所得的CoPi/Mo/BiVO4光电极与对比电极在光照下的线性扫描伏安曲线;
图4为所得的CoPi/Mo/BiVO4光电极与对比电极的莫特肖特基曲线和拟合直线。
具体实施方式
为了使本发明的技术目的、技术方案和有益效果更加清楚,下面结合具体实施例对本发明的技术方案作进一步的说明,但所述实施例旨在解释本发明,而不能理解为对本发明的限制,实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法,包括以下步骤:
(1)以FTO导电玻璃为工作电极,铂片为对电极,Ag/AgCl电极(饱和KCl溶液)为参比电极构成三电极体系,以含硝酸铋和碘化钾的酸性溶液与对苯醌的乙醇溶液混合作为电解液,与-0.1V(vs. Ag/AgCl)的恒电位沉积180s,将工作电极取出,用去离子水洗涤,并干燥,得到碘氧化铋光电极;
(2)取400μL含0.2M乙酰丙酮氧钒和2.5mM乙酰丙酮钼的二甲基亚砜溶液滴加在步骤(1)所得碘氧化铋电极的碘氧化铋表面,以使乙酰丙酮钼和乙酰丙酮氧钒的二甲基亚砜溶液均匀铺平在碘氧化铋材料表面,再置于马弗炉中加热,以2℃/min的速率升温至450℃,恒温保持2小时,自然冷却至室温,得到负载了Mo/BiVO4薄膜的电极;将负载了Mo/BiVO4薄膜的电极置于1mol/L的NaOH水溶液中,搅拌30分钟,以除去负载Mo/BiVO4薄膜的电极表面的残余V2O5,然后用去离子水洗涤,并干燥,得到Mo/BiVO4电极。
(3)以步骤(2)所得掺钼钒酸铋光电极为工作电极,铂片为对电极,Ag/AgCl电极为参比电极构成三电极体系,以含有5mmol/L硝酸钴、0.1mol/L磷酸钠的水溶液为电解质,辅以1.5AM光强的模拟太阳光照射,采用恒电位法以0.4V为恒电位,沉积电荷量为0.07C,待沉积后取出工作电极,经洗涤、干燥,即得CoPi/Mo/BiVO4光电极。
其中,步骤(1)所述电解液是含硝酸铋和碘化钾的酸性水溶液与对苯醌的乙醇溶液按照体积比5:2混匀而成;其中,含硝酸铋和碘化钾的酸性水溶液中硝酸铋的浓度为0.04M、碘化钾的浓度为0.4M,使用5wt%的稀硝酸将硝酸铋和碘化钾的混合溶液PH调节至1.7,对苯醌的乙醇溶液中对苯醌的浓度为0.23M。
图1是CoPi/Mo/BiVO4光电极上组织放大30000倍的扫描电镜照片,明显可见,所制而成的CoPi/Mo/BiVO4组织是棒状结构,且大小较为均匀,棒状组织直径均在100~200nm之间。图2是CoPi/Mo/BiVO4组织的微观结构,明显可见沉积上的CoPi是以密集胞状均匀地分布在基底掺钼钒酸铋的表面。
为了帮助理解BiVO4与CoPi/Mo/BiVO4的光电催化性能差异,图3是BiVO4、Mo/BiVO4、CoPi/BiVO4及CoPi/Mo/BiVO4在光照条件下的线性扫描伏安曲线,由图中可知,在1.23V vs.RHE(0.6V vs.Ag/AgCl)电压下,CoPi/Mo/BiVO4的光电流高达2.38mA cm-2,是BiVO4光电流的2.975倍。
为了验证钼元素在掺杂过程中成功掺杂进入钒酸铋基体,测试了BiVO4、Mo/BiVO4、CoPi/BiVO4及CoPi/Mo/BiVO4光电极的莫特肖特基曲线,结果如图4所示。由图4可知,掺杂了钼元素的光电极光生载流子密度明显比未掺杂的更大,其莫特肖特基曲线拟合直线的斜率更小。光生载流子密度增大,就意味着同程度光照下的光电流密度更大,其作用的析出反应更加强烈。
最后说明的是,本发明中,制备复合光电极的参数可以在相应范围内调整,明显的增流体、半导体材料和助催化剂用量都可以做出相应的更换和改性。以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域的普通技术人员应当理解,可以在形式上和细节上对其做出各种各样的改变,而不偏离所附权利要求书所限制的本发明的精神和范围。

Claims (8)

1.一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法,其特征在于,包括以下步骤:
以导电玻璃为基底,通过电沉积法制作出碘氧化铋光电极;
在步骤(1)所得碘氧化铋电极上滴加上乙酰丙酮钼和乙酰丙酮氧钒的二甲基亚砜溶液,然后升温至450℃,恒温保持1.5~2.5小时,冷却至室温,用碱溶液浸泡后,清洗、干燥,得到掺钼钒酸铋光电极;
以步骤(2)所得掺钼钒酸铋光电极为工作电极,铂片为对电极,Ag/AgCl电极为参比电极构成三电极体系,以含有4~6mmol/L金属钴盐、0.075~0.15mol/L磷酸盐的水溶液为电解质,在模拟太阳光照射下,采用恒电位法进行沉积,沉积时间取120~140s之间,待沉积后取出工作电极,经去离子水洗涤、干燥,即得磷化钴修饰钼掺杂钒酸铋光电极。
2.根据权利要求1所述的磷化钴修饰钼掺杂钒酸铋光电极的制备方法,其特征在于:步骤(2)中所述乙酰丙酮钼的二甲基亚砜溶液中乙酰丙酮钼的浓度为2~3mmol/L,而所述的乙酰丙酮氧钒的二甲基亚砜溶液中乙酰丙酮氧钒的浓度为0.15~0.25mol/L。
3.根据权利要求1所述的磷化钴修饰钼掺杂钒酸铋光电极的制备方法,其特征在于:步骤(2)中所述的高温处理条件为空气气氛中450℃,保温1.5~2.5 小时。
4.根据权利要求1所述的磷化钴修饰钼掺杂钒酸铋光电极的制备方法,其特征在于:步骤(2)中所述的升温速率控制为1.5~3℃/min。
5.根据权利要求1所述的磷化钴修饰钼掺杂钒酸铋光电极的制备方法,其特征在于:步骤(2)中所述的碱溶液为氢氧化钠或氢氧化钾溶液的一种。
6.根据权利要求1所述的磷化钴修饰钼掺杂钒酸铋光电极的制备方法,其特征在于:步骤(3)中所述的金属钴盐为硝酸钴、硫酸钴、氯化钴中的一种,浓度为4~6mmol/L。
7.根据权利要求1所述的磷化钴修饰钼掺杂钒酸铋光电极的制备方法,其特征在于:步骤(3)中所述的磷酸盐为磷酸钠或磷酸钾中的一种0.075~0.15mol/L,浓度为4~6mmol/L。
8.根据权利要求1所述的磷化钴修饰钼掺杂钒酸铋光电极的制备方法,其特征在于:步骤(3)中所述的恒电位为0.35 V~ 0.45 V之间的任一电位,沉积时间为120 ~ 140 s。
CN201811540907.1A 2018-12-17 2018-12-17 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法 Active CN109402656B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811540907.1A CN109402656B (zh) 2018-12-17 2018-12-17 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811540907.1A CN109402656B (zh) 2018-12-17 2018-12-17 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法

Publications (2)

Publication Number Publication Date
CN109402656A true CN109402656A (zh) 2019-03-01
CN109402656B CN109402656B (zh) 2021-01-29

Family

ID=65460423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811540907.1A Active CN109402656B (zh) 2018-12-17 2018-12-17 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法

Country Status (1)

Country Link
CN (1) CN109402656B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109865525A (zh) * 2019-03-05 2019-06-11 西北师范大学 一种CoPi/Ag/钒酸铋复合光电阳极材料的制备方法
CN110042407A (zh) * 2019-03-15 2019-07-23 江苏大学 磷酸钴-聚多巴胺-钒酸铋三元复合光电极的制备方法及应用
CN110586130A (zh) * 2019-10-12 2019-12-20 南京大学 一种基于晶面能级差异与空穴阱协同效应的z体系可见光催化材料及其制备方法
CN111302650A (zh) * 2020-03-17 2020-06-19 吉林大学 一种利用纳米粒子溶液旋涂制备钒酸铋光电阳极的方法
CN111705333A (zh) * 2020-05-19 2020-09-25 江苏大学 Ag-Pi/BiVO4异质结合成方法及其应用于光电解水
CN114164448A (zh) * 2021-10-31 2022-03-11 吉林大学 一种异相磷化镍材料及其制备方法
CN114250472A (zh) * 2021-04-08 2022-03-29 台州学院 一种BiVO4/CoP薄膜电极及其制备方法和应用
CN114411168A (zh) * 2022-01-24 2022-04-29 中国矿业大学 一种钴镧共掺杂可见光响应BiVO4光电极及其制备方法
CN116854470A (zh) * 2023-05-31 2023-10-10 四川省新材料研究中心 用作直接式x射线阵列化成像器件的掺杂改性钒酸铋材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266045A (zh) * 2020-09-21 2021-01-26 华南理工大学 利用无定形磷酸钴Co-Pi减缓光电催化废水处理过程中腐蚀的光阳极及制备方法与应用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109865525A (zh) * 2019-03-05 2019-06-11 西北师范大学 一种CoPi/Ag/钒酸铋复合光电阳极材料的制备方法
CN110042407A (zh) * 2019-03-15 2019-07-23 江苏大学 磷酸钴-聚多巴胺-钒酸铋三元复合光电极的制备方法及应用
CN110586130A (zh) * 2019-10-12 2019-12-20 南京大学 一种基于晶面能级差异与空穴阱协同效应的z体系可见光催化材料及其制备方法
CN111302650A (zh) * 2020-03-17 2020-06-19 吉林大学 一种利用纳米粒子溶液旋涂制备钒酸铋光电阳极的方法
CN111705333A (zh) * 2020-05-19 2020-09-25 江苏大学 Ag-Pi/BiVO4异质结合成方法及其应用于光电解水
CN114250472A (zh) * 2021-04-08 2022-03-29 台州学院 一种BiVO4/CoP薄膜电极及其制备方法和应用
CN114164448A (zh) * 2021-10-31 2022-03-11 吉林大学 一种异相磷化镍材料及其制备方法
CN114164448B (zh) * 2021-10-31 2022-12-16 吉林大学 一种异相磷化镍材料及其制备方法
CN114411168A (zh) * 2022-01-24 2022-04-29 中国矿业大学 一种钴镧共掺杂可见光响应BiVO4光电极及其制备方法
CN114411168B (zh) * 2022-01-24 2024-02-09 中国矿业大学 一种钴镧共掺杂可见光响应BiVO4光电极及其制备方法
CN116854470A (zh) * 2023-05-31 2023-10-10 四川省新材料研究中心 用作直接式x射线阵列化成像器件的掺杂改性钒酸铋材料及其制备方法

Also Published As

Publication number Publication date
CN109402656B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
CN109402656A (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
Khoomortezaei et al. Triple layer heterojunction WO3/BiVO4/BiFeO3 porous photoanode for efficient photoelectrochemical water splitting
Li et al. Photoelectrochemical splitting of natural seawater with α-Fe2O3/WO3 nanorod arrays
Tong et al. Cobalt-Phosphate modified TiO2/BiVO4 nanoarrays photoanode for efficient water splitting
Chen et al. Nano-architecture and material designs for water splitting photoelectrodes
CN106498372B (zh) 光沉积制备Bi/BiVO4复合光电阳极材料的方法
Rodríguez-Gutiérrez et al. Photoelectrochemical water oxidation at FTO| WO3@ CuWO4 and FTO| WO3@ CuWO4| BiVO4 heterojunction systems: an IMPS analysis
Bashiri et al. Photoelectrochemical water splitting with tailored TiO2/SrTiO3@ g-C3N4 heterostructure nanorod in photoelectrochemical cell
CN108103525B (zh) 氮掺杂碳点修饰三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
CN105803476B (zh) 铁酸铋修饰钒酸铋的光阳极和制备方法及其在光解水制氢的应用
Li et al. Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods
CN110047657A (zh) 一种mil系列mof复合掺钼钒酸铋光阳极的制备方法
Yang et al. Enhanced photoelectrochemical water oxidation on WO3 nanoflake films by coupling with amorphous TiO2
CN108906080B (zh) 一种CdS/Cu2S/Co基光电催化材料及其制备方法
CN108193219B (zh) 磷化铜修饰二氧化钛光电极及其制备方法和在光电催化分解水中的应用
Huang et al. TiO2-rutile/anatase homojunction with enhanced charge separation for photoelectrochemical water splitting
Liu et al. Branched multiphase TiO2 with enhanced photoelectrochemical water splitting activity
Lv et al. Enhanced photoelectrochemical charge transfer on Mn-doped CdS/TiO2 nanotube arrays: The roles of organic substrates
Guo et al. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes
Wang et al. Construction of electron transport channels in type-I heterostructures of Bi2MoO6/BiVO4/g-C3N4 for improved charge carriers separation efficiency
CN107761127A (zh) 一种多酸和酞菁共同修饰的纳米多孔钒酸铋析氧电极的制备方法
CN108511198B (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
Burungale et al. Surface modification of p/n heterojunction based TiO2-Cu2O photoanode with a cobalt-phosphate (CoPi) co-catalyst for effective oxygen evolution reaction
Yin et al. Cascaded multiple-step hole transfer for enhancing photoelectrochemical water splitting
Ma et al. Interface modulation of BiVO4 based photoanode with Bi (III) Bi (V) O4 for enhanced solar water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant