CN109402169A - 一种spo11基因的敲除方法 - Google Patents

一种spo11基因的敲除方法 Download PDF

Info

Publication number
CN109402169A
CN109402169A CN201811297183.2A CN201811297183A CN109402169A CN 109402169 A CN109402169 A CN 109402169A CN 201811297183 A CN201811297183 A CN 201811297183A CN 109402169 A CN109402169 A CN 109402169A
Authority
CN
China
Prior art keywords
spo11
grna
plasmid dna
sequence
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811297183.2A
Other languages
English (en)
Inventor
张运生
杨品红
刘良国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Arts and Science
Original Assignee
Hunan University of Arts and Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Arts and Science filed Critical Hunan University of Arts and Science
Priority to CN201811297183.2A priority Critical patent/CN109402169A/zh
Publication of CN109402169A publication Critical patent/CN109402169A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种spo11基因的敲除方法,利用CRISPR/Cas9技术对减数***相关基因spo11进行敲除。通过本发明的方法,通过敲除spo11基因,继而可以特异性获得雄性不育个体,可以通过建立敲除家系。

Description

一种spo11基因的敲除方法
技术领域
本发明涉及一种spo11基因的敲除方法,属于分子生物学领域。
背景技术
spo11是Ⅱ型拓扑异构酶的同源蛋白,参与DNA双链断裂复合物(DSBs)的形成,在减数***同源重组的发生中发挥重要功能。在大多数有性生殖的生物的减数***中,重组扮演着至关重要的角色,它是遗传多样性的重要来源,能够产生单倍体的配子,同时姐妹染色单体交叉互换也增加了配子的多样性。发明人在多年的实验中,发现敲除一个减数***相关基因spo11,导致斑马鱼雄性特异性不育,雌性几乎不受影响,而目前还没有人报道基因spo11具有这种功能。
发明内容
针对上述现有技术存在的不足,本发明的目的是提供一种spo11基因的敲除方法。
为实现上述目的,本发明采用的技术方案是:spo11基因的敲除方法,其特征在于,利用CRISPR/Cas9技术对减数***相关基因spo11进行敲除,具体操作如下:
(1)通过ensembl在线数据库查找斑马鱼spo11基因组序列no:ENSDART00000005373.9,在该基因第一个外显子上设计敲除靶位点,靶位点序列为SEQ ID NO:1:TGGAAACGGTCGACAGATGCCAGG;
(2)按常规方法检测靶位点是否存在单核苷酸多态性;
(3)gRNA的获得:
以gRNA-plasmid为模板,以gRNA-F/gRNA-R为引物,gRNA-F的序列为SEQ ID NO:2:TAATACGACTCACTATAGGGTGGAAACGGTCGACAGATGCCGTTTTAGAGCTAGAAATAAG;gRNA-R的序列为SEQID NO:3:AGCACCGACTCGGTGCCACT,利用KOD Plus(TAKARA)高保真酶进行PCR扩增,扩增产物割胶回收,回收产物连接pMD18-T载体(TAKARA)后转化感受态大肠杆菌,挑取5个大肠杆菌单克隆扩大培养后提取质粒DNA,然后质粒DNA测序进行序列验证,序列正确克隆扩大培养后提取质粒DNA作为下一步转录gRNA的模板;再利用MEGAscript® T7 Transcription Kit(InvitrogenTM)将构建好的含有spo11靶序列的质粒体外逆转录20ul反应体系如下:
10x Reaction Buffer 2ul;
Plasmid DNA 4ul (约1ug);
T7 Enzyme 2ul;
10mmol/L NTP 1ul;
DEPC water 11ul;
以上体系37℃反应一个小时后纯化备用;
(4)体外转录获得Cas9 mRNA :
Cas9质粒来自AddgeneTM(#63154),使用MAXIscript®T7/T3 Transcription Kit(InvitrogenTM),合成Cas9 mRNA,体系及反应条件同步骤3;
(5)Cas9 mRNA和gRNA显微共注射:首先配置显微注射体系如下:
Cas9 mRNA 300 ng/ul;
gRNA 30ng/ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul;
将上述溶液配好混匀后,显微注射单细胞时期的斑马鱼受精卵中,养殖24小时后检测spo11基因的突变效率;
(6)spo11 F1代杂合突变个体的筛选及突变类型确定:
经过步骤(5)显微注射后斑马鱼受精卵,养殖3个月至性成熟后,与野生型个体杂交获得杂交F1代,F1代个体养殖2个月后,剪取部分尾鳍组织,提取基因组DNA,以F-spo11/R-spo11为引物,F-spo11:5’-ATGGCTTACCAGTTTACTG-3’; R-spo11: 5’-CGTAGCTCTTTCAGTAACTC-3’,利用KOD PLUS高保真酶(TAKARA)进行PCR扩增,PCR产物连接pMD18-T载体(TAKARA)后转化感受态大肠杆菌,分别挑取10个大肠杆菌单克隆扩大培养后提取质粒DNA,然后质粒DNA测序比对后筛选获得10条F1代个体突变效率和突变类型;
(7)spo11 F2代纯合突变个体的获得:
待spo11 F1代杂合突变个体性成熟后,选取突变类型一致的雌雄F1代个体各一条进行人工受精,获得spo11 F2代纯合突变个体;
(8)雄性不育雄性个体的选取:
spo11 F2代纯合突变群体中所有的雄性个体均为雄性不育个体,但是雌性个体中有卵子,且与野生雄鱼能够正常受精。
与现有技术相比,本发明的有益效果:通过本发明的方法,可以特异性获得雄性不育个体,可以通过建立敲除家系,源源不断提供雄性不育个体,操作简单,节省时间。
附图说明
图1为本发明涉及到的相关靶位点、突变类型及靶位点突变基因序列所对应的氨基酸变化,其中A为CRISPR/Cas9技术作用靶位点;B为靶位点序列突变检测(红色虚线所框为建立家系所选突变类型);C为靶位点突变基因序列所对应的氨基酸变化(红色虚线所框为建立家系所选氨基酸突变型);
图2为雌鱼性腺组织显微镜放大图,其中A为对照性成熟雌鱼性腺组织中***,B为spo11性成熟雌鱼性腺组织中***;
图3为雄鱼性腺组织显微镜放大图,其中A为对照性成熟雄鱼性腺组织(存在***),B为spo11性成熟雄鱼性腺组织(无***)。
具体实施方式
现结合具体实施例来说明本发明的技术方案和技术效果,但并不是限制本发明保护范围的依据。
实施例一
鱼类雄性不育模型的建立方法,是利用CRISPR/Cas9技术对减数***相关基因spo11进行敲除,spo11的序列号为no:ENSDART00000005373.9;具体步骤如下:
(1)通过ensembl在线数据库查找斑马鱼spo11基因组序列no:ENSDART00000005373.9,在该基因第一个外显子上设计敲除靶位点,靶位点序列为:TGGAAACGGTCGACAGATGCC[AGG],中括号内为PAM序列。
(2)按常规方法检测靶位点是否存在单核苷酸多态性(SNP):
随机选取6条斑马鱼分别提取尾鳍组织的基因组DNA,以此为PCR模板,以F-spo11/R-spo11为引物,F-spo11:5’-ATGGCTTACCAGTTTACTG-3’; R-spo11: 5’-CGTAGCTCTTTCAGTAACTC-3’,利用KOD PLUS高保真酶(TAKARA)进行PCR扩增,PCR产物连接pMD18-T载体(TAKARA)后转化感受态大肠杆菌,分别挑取5个大肠杆菌单克隆扩大培养后提取质粒DNA,然后质粒DNA测序比对后发现所选靶位点中无SNP位点。
(3)gRNA的获得:以gRNA-plasmid为模板,以gRNA-F/gRNA-R为引物,gRNA-F:TAATACGACTCACTATAGGGTGGAAACGGTCGACAGATGCCGTTTTAGAGCTAGAAATAAG;gRNA-R:AGCACCGACTCGGTGCCACT,利用KOD Plus(TAKARA)高保真酶进行PCR扩增,扩增产物割胶回收,回收产物连接pMD18-T载体(TAKARA)后转化感受态大肠杆菌,挑取5个大肠杆菌单克隆扩大培养后提取质粒DNA,然后质粒DNA测序进行序列验证,序列正确克隆扩大培养后提取质粒DNA作为下一步转录gRNA的模板;再利用MEGAscript® T7 Transcription Kit(InvitrogenTM)将构建好的含有spo11靶序列的质粒体外逆转录20ul反应体系如下:
10x Reaction Buffer 2ul;
Plasmid DNA 4ul (约1ug);
T7 Enzyme 2ul;
10mmol/L NTP 1ul;
DEPC water 11ul;
以上体系37℃反应一个小时后纯化备用。
(4)体外转录获得Cas9 mRNA :
Cas9质粒来自AddgeneTM(#63154),使用MAXIscript®T7/T3 Transcription Kit(InvitrogenTM),合成Cas9 mRNA,体系及反应条件同步骤3。
(5)Cas9 mRNA和gRNA显微共注射:首先配置显微注射体系如下:
Cas9 mRNA 300 ng/ul;
gRNA 30ng/ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul;
将上述溶液配好混匀后,显微注射单细胞时期的斑马鱼受精卵中,养殖24小时后检测spo11基因的突变效率。方法如下:随机选取8个胚胎提取基因组DNA,以F-spo11/R-spo11为引物,F-spo11:5’-ATGGCTTACCAGTTTACTG-3’; R-spo11: 5’-CGTAGCTCTTTCAGTAACTC-3’,利用KOD PLUS高保真酶(TAKARA)进行PCR扩增,PCR产物连接pMD18-T载体(TAKARA)后转化感受态大肠杆菌,分别挑取20个大肠杆菌单克隆扩大培养后提取质粒DNA,然后质粒DNA测序比对后获得突变效率。
(6)spo11 F1代杂合突变个体的筛选及突变类型确定:
经过步骤(5)显微注射后斑马鱼受精卵,养殖3个月至性成熟后,与野生型个体杂交获得杂交F1代,F1代个体养殖2个月后,剪取部分尾鳍组织,提取基因组DNA,以F-spo11/R-spo11为引物,F-spo11:5’-ATGGCTTACCAGTTTACTG-3’; R-spo11: 5’-CGTAGCTCTTTCAGTAACTC-3’,利用KOD PLUS高保真酶(TAKARA)进行PCR扩增,PCR产物连接pMD18-T载体(TAKARA)后转化感受态大肠杆菌,分别挑取10个大肠杆菌单克隆扩大培养后提取质粒DNA,然后质粒DNA测序比对后筛选获得10条F1代个体突变效率和突变类型。
(7)spo11 F2代纯合突变个体的获得:
待spo11 F1代杂合突变个体性成熟后,选取突变类型一致的雌雄F1代个体各一条进行人工受精,获得spo11 F2代纯合突变个体。选择附图1B中标出的突变类型,该突变类型在突变位点附近产生了终止密码,即突变个体中只能产生spo11突变位点之前序列对应的氨基酸。
(8)雄性不育雄性个体的选取:
spo11 F2代纯合突变群体中所有的雄性个体均为雄性不育个体,如附图2,spo11 F2代纯合突变雄性个体***中无***,但是雌性个体中有卵子,且与野生雄鱼能够正常受精。
序列1
<110>湖南文理学院
<120>一种spo11基因的敲除方法
<160>3
<210> 1
<211>24
<212>DNA
<213>人工合成
<400>1
TGGAAACGGT CGACAGATGC CAGG 24
序列2
<110>湖南文理学院
<120>一种spo11基因的敲除方法
<160>3
<210> 2
<211>61
<212>RNA
<213>人工合成
<400>2
TAATACGACT CACTATAGGG TGGAAACGGT CGACAGATGC CGTTTTAGAG CTAGAAATAA 60
G 61
序列3
<110>湖南文理学院
<120>一种spo11基因的敲除方法
<160>3
<210> 3
<211>20
<212>RNA
<213>人工合成
<400>3
AGCACCGACT CGGTGCCACT 20

Claims (1)

1.一种spo11基因的敲除方法,其特征在于,利用CRISPR/Cas9技术对减数***相关基因spo11进行敲除,具体操作如下:
(1)通过ensembl在线数据库查找斑马鱼spo11基因组序列no:ENSDART00000005373.9,在该基因第一个外显子上设计敲除靶位点,靶位点序列为:TGGAAACGGTCGACAGATGCCAGG;
(2)按常规方法检测靶位点是否存在单核苷酸多态性;
(3)gRNA的获得:
以gRNA-plasmid为模板,以gRNA-F/gRNA-R为引物,gRNA-F:TAATACGACTCACTATAGGGTGGAAACGGTCGACAGATGCCGTTTTAGAGCTAGAAATAAG;gRNA-R:AGCACCGACTCGGTGCCACT,利用KODPlus(TAKARA)高保真酶进行PCR扩增,扩增产物割胶回收,回收产物连接pMD18-T载体(TAKARA)后转化感受态大肠杆菌,挑取5个大肠杆菌单克隆扩大培养后提取质粒DNA,然后质粒DNA测序进行序列验证,序列正确克隆扩大培养后提取质粒DNA作为下一步转录gRNA的模板;再利用MEGAscript® T7 Transcription Kit (InvitrogenTM)将构建好的含有spo11靶序列的质粒体外逆转录20ul反应体系如下:
10x Reaction Buffer 2ul;
Plasmid DNA 4ul (约1ug);
T7 Enzyme 2ul;
10mmol/L NTP 1ul;
DEPC water 11ul;
以上体系37℃反应一个小时后纯化备用;
(4)体外转录获得Cas9 mRNA :
Cas9质粒来自AddgeneTM(#63154),使用MAXIscript®T7/T3 Transcription Kit(InvitrogenTM),合成Cas9 mRNA,体系及反应条件同步骤3;
(5)Cas9 mRNA和gRNA显微共注射:首先配置显微注射体系如下:
Cas9 mRNA 300 ng/ul;
gRNA 30ng/ul;
Phenol-red 0.2ul;
DEPC Water up to 2ul;
将上述溶液配好混匀后,显微注射单细胞时期的斑马鱼受精卵中,养殖24小时后检测spo11基因的突变效率;
(6)spo11 F1代杂合突变个体的筛选及突变类型确定:
经过步骤(5)显微注射后斑马鱼受精卵,养殖3个月至性成熟后,与野生型个体杂交获得杂交F1代,F1代个体养殖2个月后,剪取部分尾鳍组织,提取基因组DNA,以F-spo11/R-spo11为引物,F-spo11:5’-ATGGCTTACCAGTTTACTG-3’; R-spo11: 5’-CGTAGCTCTTTCAGTAACTC-3’,利用KOD PLUS高保真酶(TAKARA)进行PCR扩增,PCR产物连接pMD18-T载体(TAKARA)后转化感受态大肠杆菌,分别挑取10个大肠杆菌单克隆扩大培养后提取质粒DNA,然后质粒DNA测序比对后筛选获得10条F1代个体突变效率和突变类型。
CN201811297183.2A 2018-11-01 2018-11-01 一种spo11基因的敲除方法 Pending CN109402169A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811297183.2A CN109402169A (zh) 2018-11-01 2018-11-01 一种spo11基因的敲除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811297183.2A CN109402169A (zh) 2018-11-01 2018-11-01 一种spo11基因的敲除方法

Publications (1)

Publication Number Publication Date
CN109402169A true CN109402169A (zh) 2019-03-01

Family

ID=65471234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811297183.2A Pending CN109402169A (zh) 2018-11-01 2018-11-01 一种spo11基因的敲除方法

Country Status (1)

Country Link
CN (1) CN109402169A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793654A (zh) * 2019-04-08 2020-10-20 中国农业大学 一种提高CRISPR/Cas9介导的双等位基因突变效率的方法及其应用
CN112226456A (zh) * 2019-06-28 2021-01-15 中国水稻研究所 一种实现染色体定点遗传重组的方法
CN118127040A (zh) * 2024-05-06 2024-06-04 中国农业科学院生物技术研究所 从蒺藜苜蓿中分离的spo11-1基因及其编码蛋白和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037538A1 (ja) * 2005-09-30 2007-04-05 Link Genomics, Inc. Spo11遺伝子の治療的又は診断的用途
EP2554045A1 (en) * 2011-08-04 2013-02-06 Rijk Zwaan Zaadteelt en Zaadhandel B.V. Method for systemically influencing processes in the male meiocyte
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037538A1 (ja) * 2005-09-30 2007-04-05 Link Genomics, Inc. Spo11遺伝子の治療的又は診断的用途
EP2554045A1 (en) * 2011-08-04 2013-02-06 Rijk Zwaan Zaadteelt en Zaadhandel B.V. Method for systemically influencing processes in the male meiocyte
CN105647969A (zh) * 2016-02-16 2016-06-08 湖南师范大学 一种基因敲除选育stat1a基因缺失型斑马鱼的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NATALYA A SMIRNOVA: "Gene expression profiles of Spo11−/− mouse testes with spermatocytes arrested in meiotic prophase I" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111793654A (zh) * 2019-04-08 2020-10-20 中国农业大学 一种提高CRISPR/Cas9介导的双等位基因突变效率的方法及其应用
CN111793654B (zh) * 2019-04-08 2022-05-24 中国农业大学 一种提高CRISPR/Cas9介导的双等位基因突变效率的方法及其应用
CN112226456A (zh) * 2019-06-28 2021-01-15 中国水稻研究所 一种实现染色体定点遗传重组的方法
CN112226456B (zh) * 2019-06-28 2022-08-05 中国水稻研究所 一种实现染色体定点遗传重组的方法
CN118127040A (zh) * 2024-05-06 2024-06-04 中国农业科学院生物技术研究所 从蒺藜苜蓿中分离的spo11-1基因及其编码蛋白和应用

Similar Documents

Publication Publication Date Title
CN107435051B (zh) 一种通过CRISPR/Cas9***快速获得大片段缺失的细胞系基因敲除方法
CN107475300B (zh) Ifit3-eKO1基因敲除小鼠动物模型的构建方法和应用
CN107760715B (zh) 一种转基因载体及其构建方法和应用
CN105647969B (zh) 一种基因敲除选育stat1a基因缺失型斑马鱼的方法
Hisanaga et al. Deep evolutionary origin of gamete-directed zygote activation by KNOX/BELL transcription factors in green plants
CN109402169A (zh) 一种spo11基因的敲除方法
CN108192912B (zh) 一种诱导产生玉米母本单倍体的方法
CN106701803B (zh) 玉米母本单倍体主效诱导基因及应用
CN109402170A (zh) 一种鱼类雄性不育模型的建立方法
CN109266687A (zh) 一种基因敲除选育tnni3k基因缺失型斑马鱼的方法
CN107880099B (zh) 水稻种子休眠性调控基因OsMPK7及其应用
CN109280666A (zh) 一种基因敲除选育bai2基因缺失型斑马鱼的方法
US11178832B2 (en) Mutation of the ZMCIPK15 gene to increase root angle and to enhance abiotic stress tolerance in maize
CN108866102B (zh) 一种Adgrv1基因Y6236fsX1突变动物模型的构建方法
CN116769796B (zh) ZmENR1及其编码蛋白在玉米育性控制中的应用
Plewiński et al. Innovative transcriptome‐based genotyping highlights environmentally responsive genes for phenology, growth and yield in a non‐model grain legume
CN111269943B (zh) 一种通过基因敲除技术增加斑马鱼生长速度的方法
CN115807037A (zh) 一种遗传可控的四倍体鱼的选育方法及三倍体鱼的制备方法
AU2020104114A4 (en) Application of Gene Zm00001d040827 in Increasing Maize Yield
CN112457385B (zh) 一种控制水稻生育期基因ljp1的应用
CN108794610A (zh) 玉米杂交不亲和相关蛋白ZmGa1S及其编码基因与应用
CN104805100B (zh) 水稻基因OsSμBP‑2在延缓植物叶片衰老中的应用
CN107058545B (zh) 玉米胚性愈伤组织诱导相关基因grmzm2g020814的snp分子标记及其应用
CN116042640B (zh) 水稻nac转录因子基因在种子活力改良中的应用
CN104450739B (zh) 一种水稻源抗虫相关基因OsHR1及其编码产物与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190301