CN109278566B - 后轮驱动纯电动车辆制动能量回收控制方法及装置 - Google Patents

后轮驱动纯电动车辆制动能量回收控制方法及装置 Download PDF

Info

Publication number
CN109278566B
CN109278566B CN201811213855.7A CN201811213855A CN109278566B CN 109278566 B CN109278566 B CN 109278566B CN 201811213855 A CN201811213855 A CN 201811213855A CN 109278566 B CN109278566 B CN 109278566B
Authority
CN
China
Prior art keywords
braking force
braking
brake
max
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811213855.7A
Other languages
English (en)
Other versions
CN109278566A (zh
Inventor
史强
张蕾
李静
李司光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Automobile Group Co Ltd
Original Assignee
Shaanxi Automobile Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Automobile Group Co Ltd filed Critical Shaanxi Automobile Group Co Ltd
Priority to CN201811213855.7A priority Critical patent/CN109278566B/zh
Publication of CN109278566A publication Critical patent/CN109278566A/zh
Application granted granted Critical
Publication of CN109278566B publication Critical patent/CN109278566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

本发明涉及电动车辆技术领域,具体涉及一种后轮驱动纯电动车辆制动能量回收控制方法及装置,该方法包括制动能量回收模式判断步骤、最大再生制动力计算步骤、需求制动力计算步骤、制动力分配步骤及防抱死判断步骤;在汽车制动过程中,控制机械制动力和再生制动力分配,在保证制动安全和制动效能的基础上,最大限度的提升再生制动力分配系数,充分利用电机的馈电能力回收制动过程中损耗的能量给动力电池充电,提升制动能量回收效率,减少制动能量损耗,优化车辆续驶里程。

Description

后轮驱动纯电动车辆制动能量回收控制方法及装置
技术领域
本发明涉及电动车辆技术领域,具体涉及一种后轮驱动纯电动车辆制动能量回收控制方法及装置。
背景技术
制动能量回收是提高电动汽车能量利用效率的重要手段,电机有两种工作状态:驱动电机状态和发电电机状态。当电机在发电状态运行时,即可产生制动扭矩,实现汽车减速,同时将汽车的部分制动能量转换为电能,给动力电池充电,从而提高汽车的续驶里程。有关研究表明,在城市工况中,如果能将汽车的制动能量进行有效的回收,其续航里程将提高10%-13%。制动能量回收技术对降低能源消耗、减少制动器片磨损都有很好的效果。
在以前的专利中,也有涉及到电动车制动能量回收利用的制动方案,例如中国专利ZL201010242290.2公开了一种电动汽车制动能量回收控制方法及装置,该专利包括:在车辆行进过程中采集油门信号、刹车信号、当前车速、电池荷电状态值,在当前车速大于预设的最小反馈车速,且油门开度小于预设的反馈值或有刹车信号时,则依据当前车速、刹车深度计算反馈力矩;并在电池荷电状态值小于预设的上限值时,输出反馈力矩以对电池组进行充电。该方法中的反馈力矩是依据公式T=K1V+K2Hb计算得到的,其中K1和K2是根据实验预设的比例系数,V为当前车速,Hb为刹车踏板深度。保证车辆在制动过程中的平顺性,同时实现制动能量回收。
在中国专利ZL200410070893.3公开了一种控制具有电机的电动车再生制动的控制方法,该方法包括:检测刹车踏板;根据刹车踏板的操作计算出电动车非驱动轮上所加的非驱动轮制动力;计算出与非驱动轮制动力相对应的驱动轮的目标制动力;计算出驱动轮可获得的再生制动力;将驱动轮的目标制动力与可获得的再生制动力的比较结果控制驱动轮的再生制动和液压制动。该方法使得在驱动轮所需的制动力小于可获得的再生制动力时,就仅用再生的制动力来控制驱动轮;当驱动轮所需的制动力大于可获得的再生制动力时,再生制动力被完全利用,液压制动用于补偿不足的制动力。
上述现有技术虽然也是从制动能量回收的角度出发,达到提升纯电动车辆续驶里程的效果,但现有技术的再生制动的回收方法并没有最大程度的回收制动过程所损耗的能量。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
为解决上述技术缺陷,本发明提供一种后轮驱动纯电动车辆制动能量回收控制方法及装置,在汽车制动过程中,控制机械制动力和再生制动力分配,在保证制动安全和制动效能的基础上,最大限度的提升再生制动力分配系数,充分利用电机的馈电能力回收制动过程中损耗的能量给动力电池充电,提升制动能量回收效率,减少制动能量损耗,优化车辆续驶里程。
本发明采用的技术方案在于:
提供一种后轮驱动纯电动车辆制动能量回收控制方法,包括:
步骤S1:整车控制器根据接受的动力电池工作状态信号、车速信号以及驾驶员制动需求信号,判断车辆是否满足进入制动能量回收模式的条件需求;
具体地:
步骤S1.1:若制动踏板开度信号大于0,则判断满足再生制动条件1,进入步骤S1.2;若制动踏板开度信号等于0,则判断车辆处于动力驱动模式,电机驱动力FEM=驱动需求力,前轮机械制动力Fmech-front=0,后轮机械制动力Fmech-rear=0;
步骤S1.2:若动力电池SOC信号小于允许回收能量的最高荷电状态SOCmax,则判断满足再生制动条件2,进入步骤S1.3;若动力电池SOC大于SOCmax,为保护动力电池,判断不能进入再生制动模式,再生制动力FEM=0,制动需求完全由机械制动***提供,前、后轮机械制动力Fmech-front、Fmech-rear按照理想制前后轮制动器制动力分配曲线I曲线进行分配;
步骤S1.3:若车速信号大于允许回收能量的最低车速,则判断满足再生制动条件3,进入制动能量回收模式的三个条件都满足,进入步骤S2;若车速信号小于等于允许回收能量的最低车速,判断不能进入再生制动模式,再生制动力FEM=0,前、后轮机械制动力Fmech-front、Fmech-rear按照理想制前后轮制动器制动力分配曲线I曲线进行分配;
步骤S2:整车控制器采集制动踏板信号及电机转速信号,根据标定的驱动电机再生制动扭矩数据确定车辆不同制动状态下电机能够提供的最大再生制动力FEM-max,计算完成后执行步骤S3;
步骤S3:根据驾驶员踩下制动踏板的开度及加速度,判断驾驶员制动需求,根据制动***标定数据计算满足驾驶员制动期望的需求制动力,计算完成后执行步骤S4;
步骤S4:根据计算得到的需求制动力、最大再生制动力、理想的前后轮制动器制动力分配曲线及后轮抱死前轮未抱死的r线组来确定最佳制动能量回收效率的制动力分配方法,对制动过程中的再生制动力、前轮机械制动力、后轮机械制动力进行计算分配。
进一步地,所述步骤S1.2中分配公式(1)如下:
Figure BDA0001829151600000031
式中:Fmech-rear—后轮机械制动力,单位为N;Fmech-front—前轮机械制动力,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m。
进一步地,所述步骤S2中最大再生制动力FEM-max的计算方法如下:
根据标定的驱动电机再生制动扭矩数据查表得到在不同状态下电机能够输出的最大制动扭矩TEM-max,进一步通过公式(2)计算该制动扭矩传递至轮胎的制动力,得到再生最大制动力FEM-max
Figure BDA0001829151600000032
式中:FEM-max—再生最大制动力,单位为N;TEM-max—再生最大制动扭矩,单位为N.m;i—传动***速比;η—传动***效率;R—轮胎滚动半径,单位为m。
进一步地,所述步骤S3中满足驾驶员制动期望的需求制动力Fbrake_req的计算方法如下:
采集制动踏板的开度,根据制动***标定数据得到制动***制动主缸压力pb;进而由公式(3)计算得到需求制动力Fbrake_req
Figure BDA0001829151600000041
式中:Fbrake-req—需求制动力,单位为N;pb—制动主缸压力,单位为Pa;Ab—制动器活塞缸面积,单位为m2;ηb—制动器效率;μb—制动器摩擦系数;rb—有效摩擦半径,单位为m;cb—制动器效能因子;R—轮胎滚动半径,单位为m。
进一步地,所述步骤S4包括:
步骤S4.1:若需求制动力Fbrake-req≤FEM-max,则电机提供的再生制动力能够满足车辆制动需求,机械制动***不参与制动过程,制动力完全由再生制动力提供;制动力分配方案:再生制动力FEM=Fbrake-req,前轮机械制动力Fmech-front=0,后轮机械制动力Fmech-rear=0;若需求制动力Fbrake-req>FEM-max,进入步骤S4.2;
步骤S4.2:若需求制动力FEM-max<Fbrake-req≤FEM-max+FBx,FBx指的是理想前、后轮制动器制动力分配曲线与直线y=FEM-max交点B的横坐标值,计算方法如公式(4),则电机提供的再生制动力不足以满足驾驶员制动期望,需机械制动***参与制动过程,保证制动效果。此时制动力分配方案:再生制动力FEM=FEM-max,前轮机械制动力Fmech-front=Fbrake-req-FEM-max,后轮机械制动力Fmech-rear=0;若需求制动力Fbrake-req>FEM-max+FBx,进入步骤4.3;
Figure BDA0001829151600000042
式中:Frear—后轮制动力,单位为N;FEM-max—再生最大制动力,单位为N;FBx—理想前后轮制动器制动力分配曲线与直线y=FEM-max交点B的横坐标值,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m。
步骤S4.3:若需求制动力Fbrake-req>FEM-max+FBx,为了达到最佳制动效能及最佳制动能量回收效果,制动力按照理想前、后轮制动器制动力分配曲线I曲线进行分配:再生制动力FEM=FEM-max,前轮机械制动力Fmech-front=Ffront,后轮机械制动力Fmech-rear=Frear-FEM-max=Fbrake-req-Ffront-FEM-max,其中Ffront和Frear指的是制动需求直线和理想的前、后轮制动器制动力分配曲线I曲线交点C的横、纵坐标值,通过公式(5)计算求得:
Figure BDA0001829151600000051
式中:Frear—后轮制动力,单位为N;Ffront—前轮制动力,单位为N;Fbrake-req—需求制动力,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m。
进一步地,该控制方法还包括步骤S5,在步骤S4中制动力分配完成后进入步骤S5,具体地:
步骤S5:整车控制器实时监控防抱死信号,若ABS控制器检测到后轮有抱死情况时,整车控制器根据ABS信号控制再生制动力FEM=0,机械摩擦力提供需求制动力,并且按照理想前、后轮制动器制动力分配曲线分配机械制动力,实现防抱死功能;若没有检测到轮胎抱死情况,则按照步骤S4进行制动力分配。
本发明的目的还可以通过如下方式实施:
一种后轮驱动纯电动车辆制动能量回收控制装置,其特征在于,包括:
信号采集模块,其用于检测和采集动力电池工作状态信号、车速信号、电机转速信号以及制动踏板开度信号;
制动能量回收判断模块,其根据信号采集模块采集的动力电池工作状态信号、车速信号以及制动踏板开度信号,判断车辆是否满足进入制动能量回收模式的条件需求;
电机最大制动力计算模块,其根据信号采集模块采集的制动踏板开度信号及电机转速信号计算得到再生最大制动力;
需求制动力计算模块,其根据信号采集模块采集的制动踏板开度信号,计算满足驾驶员制动期望的需求制动力;
制动力分配模块,其根据制动能量回收判断模块的判断结果选择是否进行制动力分配;根据电机最大制动力计算模块和需求制动力计算模块计算得到的需求制动力、再生最大制动力,对制动过程中的再生制动力、前轮机械制动力、后轮机械制动力进行计算分配。
进一步地,该控制装置,还包括防抱死判断模块;
所述信号采集模块,其还用于检测和采集防抱死信号;
所述防抱死判断模块,其根据信号采集模块采集的防抱死信号判断轮胎是否进入抱死状态;
所述制动力分配模块,其能够根据防抱死判断模块的轮胎抱死状态的判断进行制动力分配。
综上所述,本发明提供的一种后轮驱动纯电动车辆制动能量回收控制方法及装置,其最大程度的发挥了电机的发电性能,更多的回收制动过程中消耗的能量给动力电池充电,提升车辆的制动能量回收效率,进而达到提升车辆续驶里程的目的。具体方法为:将后轮驱动的纯电动车辆制动过程分为:前轮无制动&后轮电制动阶段、前轮机械制动&后轮电制动阶段、前轮机械制动&后轮电制动+机械制动阶段。在制动强度较低的情况下采用前轮无制动&后轮电制动,完全代替机械制动达到回收能量和相同制动效果,完全回收制动消耗能量用于动力电池充电;当电机发电产生的制动扭矩不足以单独满足制动要求时,采用前轮机械制动&后轮电制动,电机以最大的馈电能力给动力电池充电并产生制动力矩,前轮满足剩余需求扭矩,以最快速度接近理想的前后轮制动器制动力分配曲线;当制动强度进一步增大时,为保证制动安全和制动效能,采用前轮机械制动&后轮电制动+机械制动,此时电机以最大的馈电能力给动力电池充电,在保证制动需求的条件下充分回收制动能量。
附图说明
图1是本发明的制动能量回收控制方法流程图;
图2是本发明的制动能量回收控制装置示意图;
图3为本发明的后轮驱动纯电动车辆制动力分配示意图。
图4为在概念上用来展示本发明的一实施例电动车在刹车时前后轮的制动状态示意图。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
如图1所示,提供一种后轮驱动纯电动车辆制动能量回收控制方法,包括:
步骤S1:制动能量回收模式判断步骤:整车控制器根据接受的动力电池工作状态信号、车速信号以及驾驶员制动需求信号,判断车辆是否满足进入制动能量回收模式的条件需求,若判断结果为是,则执行步骤S2;
步骤S2:最大再生制动力计算步骤:整车控制器采集制动踏板信号及电机转速信号,根据标定的驱动电机再生制动扭矩数据确定车辆不同制动状态下电机能够提供的最大再生制动力FEM-max,计算完成后执行步骤S3;
步骤S3:需求制动力计算步骤:根据驾驶员踩下制动踏板的开度及加速度,判断驾驶员制动需求,根据制动***标定数据计算满足驾驶员制动期望的需求制动力,计算完成后执行步骤S4;
步骤S4:制动力分配步骤:根据计算得到的需求制动力、最大再生制动力、理想的前后轮制动器制动力分配曲线及后轮抱死前轮未抱死的r线组来确定最佳制动能量回收效率的制动力分配方法,对制动过程中的再生制动力、前轮机械制动力、后轮机械制动力进行计算分配,分配完成后进入步骤S5;
步骤S5:防抱死判断步骤:保证制动安全,整车控制器实时监控防抱死信号。若ABS控制器检测到后轮有抱死情况时,整车控制器根据ABS信号控制再生制动力FEM=0,机械摩擦力提供需求制动力,并且按照理想前、后轮制动器制动力分配曲线分配机械制动力,实现防抱死功能;若没有检测到轮胎抱死情况,则按照步骤S4进行制动力分配。
在一个具体的实施例中,步骤S1具体包括:
步骤S1.1:若制动踏板开度信号BPP大于0,则判断满足再生制动条件1,进入步骤1.2;若制动踏板开度信号BPP等于0,则判断车辆处于动力驱动模式,电机驱动力FEM=驱动需求力,前轮机械制动力Fmech-front=0,后轮机械制动力Fmech-rear=0;
步骤S1.2:若动力电池SOC信号小于允许回收能量的最高荷电状态SOCmax,则判断满足再生制动条件2,进入步骤S1.3;若动力电池SOC大于SOCmax,为保护动力电池,判断不能进入再生制动模式,再生制动力FEM=0,制动需求完全由机械制动***提供,前、后轮机械制动力Fmech-front、Fmech-rear按照理想制前后轮制动器制动力分配曲线I曲线进行分配;
步骤S1.3:若车速信号大于允许回收能量的最低车速,则判断满足再生制动条件3,进入制动能量回收模式的三个条件都满足,进入步骤S2;若车速信号小于等于允许回收能量的最低车速,判断不能进入再生制动模式,再生制动力FEM=0,前、后轮机械制动力Fmech-front、Fmech-rear按照理想制前后轮制动器制动力分配曲线I曲线进行分配。
在上述控制方法中,所述步骤S1.2中分配公式(1)如下:
Figure BDA0001829151600000091
式中:Fmech-rear—后轮机械制动力,单位为N;Fmech-front—前轮机械制动力,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m。
在步骤S2中最大再生制动力FEM-max的计算方法如下:
根据标定的驱动电机再生制动扭矩数据查表得到在不同状态下电机能够输出的最大制动扭矩TEM-max,进一步通过公式(2)计算该制动扭矩传递至轮胎的制动力,得到再生最大制动力FEM-max
Figure BDA0001829151600000092
式中:FEM-max—再生最大制动力,单位为N;TEM-max—再生最大制动扭矩,单位为N.m;i—传动***速比;η—传动***效率;R—轮胎滚动半径,单位为m。
在步骤S3中满足驾驶员制动期望的需求制动力Fbrake_req的计算方法如下:
采集制动踏板的开度,根据制动***标定数据得到制动***制动主缸压力pb;进而由公式(3)计算得到需求制动力Fbrake_req
Figure BDA0001829151600000101
式中:Fbrake-req—需求制动力,单位为N;pb—制动主缸压力,单位为Pa;Ab—制动器活塞缸面积,单位为m2;ηb—制动器效率;μb—制动器摩擦系数;rb—有效摩擦半径,单位为m;cb—制动器效能因子;R—轮胎滚动半径,单位为m。
进一步地,步骤S4具体包括:
步骤S4.1:若需求制动力Fbrake-req≤FEM-max,则电机提供的再生制动力能够满足车辆制动需求,机械制动***不参与制动过程,制动力完全由再生制动力提供;制动力分配方案:再生制动力FEM=Fbrake-req,前轮机械制动力Fmech-front=0,后轮机械制动力Fmech-rear=0;若需求制动力Fbrake-req>FEM-max,进入步骤S4.2;
步骤S4.2:若需求制动力FEM-max<Fbrake-req≤FEM-max+FBx,FBx指的是理想前、后轮制动器制动力分配曲线与直线y=FEM-max交点B的横坐标值,计算方法如公式(4),则电机提供的再生制动力不足以满足驾驶员制动期望,需机械制动***参与制动过程,保证制动效果。此时制动力分配方案:再生制动力FEM=FEM-max,前轮机械制动力Fmech-front=Fbrake-req-FEM-max,后轮机械制动力Fmech-rear=0;若需求制动力Fbrake-req>FEM-max+FBx,进入步骤4.3;
Figure BDA0001829151600000102
式中:Frear—后轮制动力,单位为N;FEM-max—再生最大制动力,单位为N;FBx—理想前后轮制动器制动力分配曲线与直线y=FEM-max交点B的横坐标值,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m。
步骤S4.3:若需求制动力Fbrake-req>FEM-max+FBx,为了达到最佳制动效能及最佳制动能量回收效果,制动力按照理想前、后轮制动器制动力分配曲线I曲线进行分配:再生制动力FEM=FEM-max,前轮机械制动力Fmech-front=Ffront,后轮机械制动力Fmech-rear=Frear-FEM-max=Fbrake-req-Ffront-FEM-max,其中Ffront和Frear指的是制动需求直线和理想的前、后轮制动器制动力分配曲线I曲线交点C的横、纵坐标值,通过公式(5)计算求得:
Figure BDA0001829151600000111
式中:Frear—后轮制动力,单位为N;Ffront—前轮制动力,单位为N;Fbrake-req—需求制动力,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m。
如图2所示,提供一种后轮驱动纯电动车辆制动能量回收控制装置,包括:
信号采集模块,其用于检测和采集动力电池工作状态信号、车速信号、电机转速信号、防抱死信号以及制动踏板开度信号;
制动能量回收判断模块,其根据信号采集模块采集的动力电池工作状态信号、车速信号以及制动踏板开度信号,判断车辆是否满足进入制动能量回收模式的条件需求;
电机最大制动力计算模块,其根据信号采集模块采集的制动踏板开度信号及电机转速信号计算得到再生最大制动力;
需求制动力计算模块,根据驾驶员踩下制动踏板的开度及加速度,计算满足驾驶员制动期望的需求制动力;
防抱死判断模块,其根据信号采集模块采集的防抱死信号判断轮胎是否进入抱死状态;
制动力分配模块,其根据制动能量回收判断模块的判断结果选择是否进行制动力分配;根据电机最大制动力计算模块和需求制动力计算模块计算得到的需求制动力、再生最大制动力,对制动过程中的再生制动力、前轮机械制动力、后轮机械制动力进行计算分配;根据防抱死判断模块的轮胎抱死状态的判断进行制动力分配。
如图3、图4所示:在根据需求制动力、最大再生制动力、理想的前后轮制动器制动力分配曲线及后轮抱死前轮未抱死的r线组之间的相对关系来确定分配方案中,若需求制动力Fbrake-req≤FEM-max,则进入前轮无制动&后轮电制动阶段,即电机提供的再生制动力能够满足车辆制动需求,机械制动***不参与制动过程,如图3中的OA段,即制动力完全由后轮提供,对应图4中的OA段:前轮不提供机械制动力,制动力全部由后轮电制动提供,让再生制动能量得到充分利用。
若需求制动力FEM-max<Fbrake-req≤FEM-max+FBx,FBx指的是理想前、后轮制动器制动力分配曲线与直线y=FEM-max交点B的横坐标值,见图3,则进入前轮机械制动&后轮电制动阶段。此时电机提供的再生制动力不足以满足驾驶员制动期望,需机械制动***参与制动过程,保证制动效果,如图3中的AB段:后轮制动力保持不变,前轮制动力逐渐增大。对应图4中的AB段,后轮完全是电制动,该阶段电机提供的再生制动力保持不变,前轮机械制动力补充需求制动。该阶段可以使再生制动能力完全利用的同时,其余制动需求由前轮机械制动力补充,使能量利用最大化。
若需求制动力Fbrake-req>FEM-max+FBx,则进入前轮机械制动&后轮电制动+机械制动阶段,为了达到最佳制动效能及最佳制动能量回收效果,制动力按照理想前、后轮制动器制动力分配曲线I曲线进行分配,如图3中的BC段:前轮制动力和后轮制动力随着制动强度的增大同时增大,对应图4中的BC段:再生制动力保持不变,后轮制动力的增大依靠机械制动压力的提升来实现。
由上可知,本发明所采用的技术方案将后轮驱动的纯电动车辆制动过程分为:前轮无制动&后轮电制动阶段、前轮机械制动&后轮电制动阶段、前轮机械制动&后轮电制动+机械制动阶段。在制动强度较低的情况下采用前轮无制动&后轮电制动,完全代替机械制动达到回收能量和相同制动效果,完全回收制动消耗能量用于动力电池充电;当电机发电产生的制动扭矩不足以单独满足制动要求时,采用前轮机械制动&后轮电制动,电机以最大的馈电能力给动力电池充电并产生制动力矩,前轮满足剩余需求扭矩,以最快速度接近理想的前后轮制动器制动力分配曲线;当制动强度进一步增大时,为保证制动安全和制动效能,采用前轮机械制动&后轮电制动+机械制动,此时电机以最大的馈电能力给动力电池充电,在保证制动需求的条件下充分回收制动能量。
从而本发明在汽车制动过程中,控制机械制动力和再生制动力分配,在保证制动安全和制动效能的基础上,最大限度的提升再生制动力分配系数,提升制动能量回收效率,减少制动能量损耗,优化车辆续驶里程。
以上仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本发明中各部件的结构和连接方式等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (5)

1.一种后轮驱动纯电动车辆制动能量回收控制方法,其特征在于,包括:
步骤S1:整车控制器根据接受的动力电池工作状态信号、车速信号以及驾驶员制动需求信号,判断车辆是否满足进入制动能量回收模式的条件需求;
具体地:
步骤S1.1:若制动踏板开度信号大于0,则判断满足再生制动条件1,进入步骤S1.2;若制动踏板开度信号等于0,则判断车辆处于动力驱动模式,电机驱动力FEM=驱动需求力,前轮机械制动力Fmech-front=0,后轮机械制动力Fmech-rear=0;
步骤S1.2:若动力电池SOC信号小于允许回收能量的最高荷电状态SOCmax,则判断满足再生制动条件2,进入步骤S1.3;若动力电池SOC大于SOCmax,为保护动力电池,判断不能进入再生制动模式,再生制动力FEM=0,制动需求完全由机械制动***提供,前、后轮机械制动力Fmech-front、Fmech-rear按照理想制前后轮制动器制动力分配曲线I曲线进行分配;
步骤S1.3:若车速信号大于允许回收能量的最低车速,则判断满足再生制动条件3,进入制动能量回收模式的三个条件都满足,进入步骤S2;若车速信号小于等于允许回收能量的最低车速,判断不能进入再生制动模式,再生制动力FEM=0,前、后轮机械制动力Fmech-front、Fmech-rear按照理想制前后轮制动器制动力分配曲线I曲线进行分配;
步骤S2:整车控制器采集制动踏板信号及电机转速信号,根据标定的驱动电机再生制动扭矩数据确定车辆不同制动状态下电机能够提供的最大再生制动力FEM-max,计算完成后执行步骤S3;
步骤S3:根据驾驶员踩下制动踏板的开度及加速度,判断驾驶员制动需求,根据制动***标定数据计算满足驾驶员制动期望的需求制动力,计算完成后执行步骤S4;
步骤S4:根据计算得到的需求制动力、最大再生制动力、理想的前后轮制动器制动力分配曲线及后轮抱死前轮未抱死的r线组来确定最佳制动能量回收效率的制动力分配方法,对制动过程中的再生制动力、前轮机械制动力、后轮机械制动力进行计算分配;
具体地,
步骤S4.1:若需求制动力Fbrake-req≤FEM-max,则电机提供的再生制动力能够满足车辆制动需求,机械制动***不参与制动过程,制动力完全由再生制动力提供;制动力分配方案:再生制动力FEM=Fbrake-req,前轮机械制动力Fmech-front=0,后轮机械制动力Fmech-rear=0;若需求制动力Fbrake-req>FEM-max,进入步骤S4.2;
步骤S4.2:若需求制动力FEM-max<Fbrake-req≤FEM-max+FBx,FBx指的是理想前、后轮制动器制动力分配曲线与直线y=FEM-max交点B的横坐标值,计算方法如公式(4),则电机提供的再生制动力不足以满足驾驶员制动期望,需机械制动***参与制动过程,保证制动效果,此时制动力分配方案:再生制动力FEM=FEM-max,前轮机械制动力Fmech-front=Fbrake-req-FEM-max,后轮机械制动力Fmech-rear=0;若需求制动力Fbrake-req>FEM-max+FBx,进入步骤4.3;
Figure FDA0003301112530000021
式中:Frear—后轮制动力,单位为N;FEM-max—再生最大制动力,单位为N;FBx—理想前后轮制动器制动力分配曲线与直线y=FEM-max交点B的横坐标值,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m;
步骤S4.3:若需求制动力Fbrake-req>FEM-max+FBx,为了达到最佳制动效能及最佳制动能量回收效果,制动力按照理想前、后轮制动器制动力分配曲线I曲线进行分配:再生制动力FEM=FEM-max,前轮机械制动力Fmech-front=Ffront,后轮机械制动力Fmech-rear=Frear-FEM-max=Fbrake-req-Ffront-FEM-max,其中Ffront和Frear指的是制动需求直线和理想的前、后轮制动器制动力分配曲线I曲线交点C的横、纵坐标值,通过公式(5)计算求得:
Figure FDA0003301112530000022
式中:Frear—后轮制动力,单位为N;Ffront—前轮制动力,单位为N;Fbrake-req—需求制动力,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m。
2.根据权利要求1所述的一种后轮驱动纯电动车辆制动能量回收控制方法,其特征在于,所述步骤S1.2中分配公式(1)如下:
Figure FDA0003301112530000023
式中:Fmech-rear—后轮机械制动力,单位为N;Fmech-front—前轮机械制动力,单位为N;G—整车重力,单位为N;hg—汽车质心高度,单位为m;b—质心到后轴的水平距离,单位为m;L—汽车轴距,单位为m。
3.根据权利要求1所述的一种后轮驱动纯电动车辆制动能量回收控制方法,其特征在于,所述步骤S2中最大再生制动力FEM-max的计算方法如下:
根据标定的驱动电机再生制动扭矩数据查表得到在不同状态下电机能够输出的最大制动扭矩TEM-max,进一步通过公式(2)计算该制动扭矩传递至轮胎的制动力,得到再生最大制动力FEM-max
Figure FDA0003301112530000031
式中:FEM-max—再生最大制动力,单位为N;TEM-max—再生最大制动扭矩,单位为N.m;i—传动***速比;η—传动***效率;R—轮胎滚动半径,单位为m。
4.根据权利要求1所述的一种后轮驱动纯电动车辆制动能量回收控制方法,其特征在于,所述步骤S3中满足驾驶员制动期望的需求制动力Fbrake_req的计算方法如下:
采集制动踏板的开度,根据制动***标定数据得到制动***制动主缸压力Pb;进而由公式(3)计算得到需求制动力Fbrake_req
Figure FDA0003301112530000032
式中:Fbrake-req—需求制动力,单位为N;Pb—制动主缸压力,单位为Pa;Ab—制动器活塞缸面积,单位为m2;ηb—制动器效率;μb—制动器摩擦系数;rb—有效摩擦半径,单位为m;Cb—制动器效能因子;R—轮胎滚动半径,单位为m。
5.根据权利要求1所述的一种后轮驱动纯电动车辆制动能量回收控制方法,其特征在于,还包括步骤S5,在步骤S4中制动力分配完成后进入步骤S5,具体地:
步骤S5:整车控制器实时监控防抱死信号,若ABS控制器检测到后轮有抱死情况时,整车控制器根据ABS信号控制再生制动力FEM=0,机械摩擦力提供需求制动力,并且按照理想前、后轮制动器制动力分配曲线分配机械制动力,实现防抱死功能;若没有检测到轮胎抱死情况,则按照步骤S4进行制动力分配。
CN201811213855.7A 2018-10-15 2018-10-15 后轮驱动纯电动车辆制动能量回收控制方法及装置 Active CN109278566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811213855.7A CN109278566B (zh) 2018-10-15 2018-10-15 后轮驱动纯电动车辆制动能量回收控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811213855.7A CN109278566B (zh) 2018-10-15 2018-10-15 后轮驱动纯电动车辆制动能量回收控制方法及装置

Publications (2)

Publication Number Publication Date
CN109278566A CN109278566A (zh) 2019-01-29
CN109278566B true CN109278566B (zh) 2022-02-11

Family

ID=65176644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811213855.7A Active CN109278566B (zh) 2018-10-15 2018-10-15 后轮驱动纯电动车辆制动能量回收控制方法及装置

Country Status (1)

Country Link
CN (1) CN109278566B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155009B (zh) * 2019-06-20 2020-10-23 爱驰汽车有限公司 基于智能助力的制动控制方法、***、设备及存储介质
CN110271425B (zh) * 2019-07-05 2020-08-28 南京林业大学 一种纯电动客车再生制动控制方法
CN112428828B (zh) * 2019-08-26 2022-07-19 上海汽车集团股份有限公司 动能回收方法及***
CN110481552A (zh) * 2019-09-05 2019-11-22 南京汽车集团有限公司 一种基于电动货车制动再生的控制方法
CN110816516B (zh) * 2019-11-06 2021-05-18 航天重型工程装备有限公司 控制矿井用车的速度的方法及装置
CN110758359B (zh) * 2019-11-21 2021-10-22 苏州赤兔驱动科技有限公司 用于电动摩托车的电子刹车控制方法
CN112977075B (zh) * 2019-12-02 2024-04-09 北京新能源汽车股份有限公司 一种前轮驱动车辆的制动控制方法、装置及汽车
CN113022317A (zh) * 2019-12-09 2021-06-25 观致汽车有限公司 新能源汽车及其能量回收方法与装置、存储介质
CN111137136B (zh) * 2019-12-26 2023-05-02 的卢技术有限公司 一种纯电驱动车辆刹车响应方法及***
CN111361547B (zh) * 2020-03-23 2021-11-19 江铃汽车股份有限公司 一种纯电动后轮驱动汽车能量回收控制方法
CN111645651B (zh) * 2020-04-26 2022-02-11 摩登汽车(盐城)有限公司 车辆制动***的制动力矩分配方法
CN111806242A (zh) * 2020-07-07 2020-10-23 一汽解放汽车有限公司 一种混合动力汽车制动能量回收方法及混合动力汽车
CN111775915A (zh) * 2020-07-21 2020-10-16 西南石油大学 一种重型车辆的制动控制方法
CN111791714B (zh) * 2020-07-22 2022-03-18 摩登汽车有限公司 电动车制动能量回收控制方法
CN111976497B (zh) * 2020-08-26 2022-07-22 桂林电子科技大学 一种基于模糊控制的制动能量回收控制方法
CN112248819B (zh) * 2020-10-20 2022-04-08 一汽解放汽车有限公司 一种新能源汽车再生制动力分配方法及新能源汽车
CN112477610B (zh) * 2020-12-11 2022-05-17 一汽解放汽车有限公司 一种新能源汽车再生制动力分配方法及新能源汽车
CN113147411A (zh) * 2021-04-22 2021-07-23 宝能汽车科技有限公司 能量转换方法、电子设备及存储介质
CN113459817B (zh) * 2021-05-17 2022-06-07 东风汽车集团股份有限公司 一种基于轮毂电机车辆的制动能量回收控制方法及***
CN113771814B (zh) * 2021-09-14 2022-10-04 中国北方车辆研究所 一种泵控缸制动***中制动缸需求压力解算方法
CN114590131B (zh) * 2022-01-21 2023-09-08 北方工业大学 制动能量回收控制方法、装置及车辆
CN115158260B (zh) * 2022-06-27 2024-01-23 湖北文理学院 汽车制动***及汽车制动方法
CN115871478A (zh) * 2022-12-07 2023-03-31 中国第一汽车股份有限公司 用于两轮驱动电动车的制动控制方法及装置
CN117227493B (zh) * 2023-11-14 2024-01-26 上海同驭汽车科技有限公司 一种复合制动控制方法、复合制动***及车辆

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407179A (zh) * 2008-11-28 2009-04-15 清华大学 有防抱死制动功能的混合制动***及控制方法
CN108081961A (zh) * 2017-11-30 2018-05-29 北京新能源汽车股份有限公司 一种制动能量回收控制方法、装置及电动汽车

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405754B1 (ko) * 2012-09-07 2014-06-10 성균관대학교산학협력단 노면 조건을 고려한 차량의 제동 제어 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101407179A (zh) * 2008-11-28 2009-04-15 清华大学 有防抱死制动功能的混合制动***及控制方法
CN108081961A (zh) * 2017-11-30 2018-05-29 北京新能源汽车股份有限公司 一种制动能量回收控制方法、装置及电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
后驱型纯电动汽车再生制动***的研究;刘果;《工程科技Ⅱ辑》;20160815;第21-33页 *

Also Published As

Publication number Publication date
CN109278566A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN109278566B (zh) 后轮驱动纯电动车辆制动能量回收控制方法及装置
CN100475596C (zh) 车辆再生制动控制设备及方法
CN108237950B (zh) 车辆的控制方法、***及车辆
CN110816282A (zh) 一种电动汽车再生制动控制方法
CN101979259B (zh) 一种电动车能量回收***的控制方法
CN110481329B (zh) 电动公交车制动能量回收控制方法
CN110667396B (zh) 一种后驱电动汽车能量回收扭矩标定方法
CN108025651A (zh) 具有制动***的电动车辆以及用于制动***的方法、控制器和计算机程序
CN108688474A (zh) 电动汽车制动能量回收控制算法
CN104512410A (zh) 四驱混合动力汽车的控制方法
CN102923128A (zh) 一种四轮轮毂电机独立驱动电动汽车再生制动***控制方法
CN111976677B (zh) 一种纯电动汽车复合制动防抱死控制***及控制方法
US20220097786A1 (en) Trailer vehicle and trailer brake controller, and method and computer program product therefor
CN107791885A (zh) Ecm***的失效安全装置及其方法
KR101714238B1 (ko) 친환경자동차의 제동 제어 방법
CN102139694A (zh) 一种混合动力轿车再生制动控制方法
CN110962616A (zh) 集成液力与电池的车辆复合能源***及其控制方法
CN113459817A (zh) 一种基于轮毂电机车辆的制动能量回收控制方法及***
CN106994904A (zh) 一种电动汽车基于线控制动的能量回收***及方法
KR20120104027A (ko) 4륜구동 하이브리드 차량의 추진 장치 및 방법
CN109383467A (zh) 车辆混合制动控制方法、车辆及机器可读存储介质
CN205220399U (zh) 増程式重型商用车的再生制动***与缓行器联合控制装置
CN115871478A (zh) 用于两轮驱动电动车的制动控制方法及装置
CN115447394A (zh) 一种电动车协调式能量回收方法及***
CN113954658A (zh) 一种四驱纯电动汽车的动力***控制方法及动力***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 710201 Jingwei Industrial Zone, Xi'an economic and Technological Development Zone, Shaanxi, China

Applicant after: Shaanxi Automobile Group Co.,Ltd.

Address before: 710201 Jingwei Industrial Zone, Xi'an economic and Technological Development Zone, Shaanxi, China

Applicant before: SHAANXI AUTOMOBILE GROUP Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant