CN109216143B - 带电粒子束装置和对样本进行成像或照明的方法件 - Google Patents

带电粒子束装置和对样本进行成像或照明的方法件 Download PDF

Info

Publication number
CN109216143B
CN109216143B CN201810724460.7A CN201810724460A CN109216143B CN 109216143 B CN109216143 B CN 109216143B CN 201810724460 A CN201810724460 A CN 201810724460A CN 109216143 B CN109216143 B CN 109216143B
Authority
CN
China
Prior art keywords
charged particle
particle beam
array
beamlets
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810724460.7A
Other languages
English (en)
Other versions
CN109216143A (zh
Inventor
约翰·布鲁尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ICT Integrated Circuit Testing Gesellschaft fuer Halbleiterprueftechnik mbH
Original Assignee
ICT Integrated Circuit Testing Gesellschaft fuer Halbleiterprueftechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ICT Integrated Circuit Testing Gesellschaft fuer Halbleiterprueftechnik mbH filed Critical ICT Integrated Circuit Testing Gesellschaft fuer Halbleiterprueftechnik mbH
Priority to CN202010960020.9A priority Critical patent/CN112233960A/zh
Publication of CN109216143A publication Critical patent/CN109216143A/zh
Application granted granted Critical
Publication of CN109216143B publication Critical patent/CN109216143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/145Combinations of electrostatic and magnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means
    • H01J2237/1516Multipoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

描述一种用于用初级带电粒子小束阵列对样本进行检查的带电粒子束装置。带电粒子束装置包括:带电粒子束源,用于产生初级带电粒子束;多孔径板,具有至少两个开口以产生带电粒子小束阵列,带电粒子小束阵列至少具有在样本上具有第一分辨率的第一小束和在样本上具有第二分辨率的第二小束;像差校正元件,用于校正旋转对称带电粒子透镜的球差和色差中的至少一个;和物镜组件,用于将初级带电粒子小束阵列的每个初级带电粒子小束聚焦到样本上的单独位置上。

Description

带电粒子束装置和对样本进行成像或照明的方法件
技术领域
本发明涉及例如用于检查***应用、测试***应用、缺陷检查或临界尺寸标注应用等等的带电粒子束装置,还涉及了带电粒子束装置操作方法。更具体地,涉及用于一般目的(诸如成像生物识别结构)和/或用于高吞吐量EBI(电子束检查)的多束***的带电粒子束装置。特别地,涉及扫描带电粒子束装置和用扫描带电粒子束装置来进行电子束检查的方法。
背景技术
现代半导体技术高度依赖在集成电路的生产期间使用的各种工艺的准确控制。因此,晶片被反复地检查以尽可能早地定位问题。此外,在晶片处理期间的实际使用之前还要检查掩模或标线片,以确保掩模准确地限定相应的图案。检查晶片或掩模的缺陷包括检查整个晶片或掩模区域。特别地,在制造期间对晶片的检查包括在如此短的时间内检查整个晶片区域,使得生产产量不受检查工艺限制。
已经使用扫描电子显微镜(SEM)检查晶片。晶片表面使用例如单个精细地聚焦的电子束进行扫描。当电子束撞击晶片时,就产生并测量二次电子和/或后向散射电子,即,信号电子。通过将二次电子的强度信号与例如对应于在图案上的某个位置的参考信号进行比较来检测晶片上的相同位置处的图案缺陷。然而,由于越来越为需求更高的分辨率,扫描晶片的整个表面需要很长时间。因此,使用常规(单束)扫描电子显微镜(SEM)检查晶片是困难的,因为这一方法不提供相应的产量。
半导体技术中的晶片和掩模缺陷检查需要覆盖整个晶片/掩模应用或热点检查的高分辨率且快速的检查工具。由于光学工具的分辨率有限,无法应对收缩缺陷的大小,电子束检查的重要性日益增加。特别地,从20nm节点和更大的节点,基于电子束的成像工具的高分辨率潜力是检测所有感兴趣的缺陷需求的。
当前多粒子束***可以包括孔径透镜阵列。孔径透镜的焦距与孔径前后的电场分量(沿着平均轴线)的差值成反比。通过沿着孔径透镜阵列对场分布进行整形,单独孔径的焦距可以变化,使得可以控制(或校正)小束的场曲率。在这种构型中,仍然存在其他离轴像差(场散光、离轴彗差和畸变)。为了减轻这些剩余像差,中间的小束焦点通常是源的强烈放大的图像。源的图像用下游物镜来强烈缩小。这种在缩小与剩余离轴像差之间的折衷限制此类装置的性能。经常采用的另一方式是限制来自源的总发射角(即,总小束数),使得离轴像差可被减小。
发明内容
鉴于上述,提供一种带电粒子束装置和一种用初级带电粒子小束阵列对样本进行成像的方法,其克服了本领域的至少一些问题。
鉴于上述,提供一种用于用初级带电粒子小束阵列对样本进行检查的带电粒子束装置和一种用初级带电粒子小束阵列对样本进行成像或照明的方法。
根据一个实施方式,提供一种用于用初级带电粒子小束阵列对样本进行检查的带电粒子束装置。带电粒子束装置包括:带电粒子束源,用于产生初级带电粒子束;多孔径板,具有至少两个开口以产生带电粒子小束阵列,带电粒子小束阵列至少具有在样本上具有第一分辨率的第一小束和在样本上具有第二分辨率的第二小束;像差校正元件,用于校正旋转对称带电粒子透镜的球差和色差中的至少一个;和物镜组件,用于将初级带电粒子小束阵列的每个初级带电粒子小束聚焦到样本上的单独位置上。
根据一个实施方式,提供一种用于用初级带电粒子小束阵列对样本进行检查的带电粒子束装置。带电粒子束装置包括带电粒子束源,用于产生初级带电粒子束;多孔径板,具有至少两个开口以产生带电粒子小束阵列,带电粒子小束阵列至少具有在样本上具有第一分辨率的第一小束和在样本上具有第二分辨率的第二小束;像差校正元件,提供在带电粒子束源与多孔径板之间以校正在样本上的第一分辨率相较在样本上的第二分辨率的差值,像差校正元件包括具有6个或更多个极的至少两个多极元件;和物镜组件,用于将初级带电粒子小束阵列的每个初级带电粒子小束聚焦到样本上的单独位置上。
根据另一实施方式,提供一种用初级带电粒子小束阵列对样本进行成像或照明的方法。方法包括:通过用初级带电粒子束照明多孔径板来产生具有至少第一小束和第二小束的带电粒子小束阵列;用物镜组件将带电粒子小束阵列聚焦在样本上;和用像差校正元件来校正第一小束与第二小束之间的像差差值
附图说明
为了能够详细地理解本文所述的实施方式的上述特征所用方式,可以参考实施方式进行在上文简要概述的更特定的描述。附图涉及实施方式,并且描述如下:
图1示出了用于样本检查的多束装置的示意图;
图2示出了根据本文所述的实施方式的用于样本检查且具有物镜阵列的多束装置的示意图;
图3示出了根据本文所述的实施方式的用于样本检查且具有透镜阵列和共用物镜的多束装置的示意图;
图4示出了根据本文所述的实施方式的用于样本检查且具有透镜阵列、偏转器阵列和共用物镜的多束装置的示意图;
图5A示出了根据本文所述的实施方式的像差校正元件中的束的示意性的射线路径的部分;
图5B示出了根据本文所述的实施方式的像差校正元件中的束的示意图;
图6示出了根据本文所述的实施方式的多束装置柱的柱阵列的示意图;和
图7示出了根据本文所述的实施方式的用带电粒子束装置对样本进行检查的方法的流程图。
具体实施方式
现将详细参考各种实施方式,这些实施方式的一个或多个示例在附图中示出。在以下对附图的描述内,相同元件符号是指相同部件。仅描述了相对于单独的实施方式的差值。每个示例以解释的方式提供,并且不意味着进行限制。另外,被示出或描述为一个实施方式的一部分的特征可以用于其他实施方式或与其他实施方式结合而产生又一实施方式。描述旨在包括修改和变型。
在不限制本申请的保护范围的情况下,在下文中,带电粒子束装置或其部件将被示例性地称为带电粒子束装置,包括对次级或后向散射粒子(诸如电子)的检测。实施方式仍然可应用于检测微粒(诸如呈电子或离子、光子、X射线或其他信号的形式的次级和/或后向散射带电粒子)的设备和部件,以便获得样本图像。当提及微粒时,微粒应理解为:光信号,其中微粒是光子;和粒子,其中微粒是离子、原子、电子或其他粒子。如本文所述,关于初级带电粒子束和初级带电粒子小束的讨论和描述相对于扫描电子显微镜中的电子来进行示例性的描述。其他类型的带电粒子(例如,正离子)可以用作初级带电粒子束或初级带电粒子小束。
根据可与其他实施方式组合的本文实施方式,信号(带电粒子)束或信号(带电粒子)小束被称为次级粒子束,即,次级和/或后向散射粒子。典型地,信号束或辅助束是通过初级束或初级小束入射在样本上或通过从样本上后向散射初级束而产生。初级带电粒子束或初级带电粒子小束是由粒子束源产生并且被引导并偏转在要检查或成像的样本上。
如本文提及的“样本”或“样品”包括但不限于半导体晶片、半导体工件、光刻掩模和其他工件,诸如存储盘等等。实施方式可应用于其上沉积材料或被结构化的任何工件。样本包括要结构化或其上沉积层的表面、边缘、和典型地斜面。根据可与本文所述的其他实施方式组合的一些实施方式,该设备和方法经构造以用于或被应用于电子束检测、关键尺寸标注应用和缺陷审查应用。
图1中示意性地示出带电粒子束装置100。带电粒子束装置100包括带电粒子束源110,带电粒子束源包括发射初级带电粒子束14的粒子束发射器111。根据本文所述的实施方式,带电粒子束源110适于产生初级带电粒子小束15阵列。带电粒子束源110可以包括带电粒子束发射器111和具有至少两个开口的多孔径板113。初级带电粒子束14可以通过供应到加速电极199的加速电压加速。带电粒子束装置可以包括电极112-1和112-2。
带电粒子束装置的电极112可以被适配并驱动来在多孔径透镜板的表面上产生电场。多孔径板113的表面可以是多孔径板的面向电极112-2的表面。
包括束发射器、多孔径板和电极112的带电粒子束源110可以被指示为带电粒子束装置的上部部分。带电粒子束装置100示例性地进一步包括透镜120、物镜130和样本台141,样本140可以放置在样本台上。透镜120、物镜130和样本台141可以被描述为带电粒子束装置的下部部分的一部分。带电粒子装置的发射器尖端的缩小是由物镜阵列的源位置和焦距给出。
具有z分量的电场是由电极112-2与多孔径板113之间的电压差值产生。电场可以具有在带电粒子束装置的z方向上(即,沿着光轴4)延伸的z分量。由电极112提供的电场的在z方向上的分量可以跨多孔透镜板的表面的平面变化。
例如,多孔径板的表面上的电场的旋转对称z分量可以用于由电极进行的场曲率(或像场曲率)校正。另外,例如,电场的z分量的非旋转对称的配置可以通过电极112中的至少一个的分段布置来实现,以便校正像场倾斜。
第一电极在带电粒子束装置中的多孔径板的表面上的变化场可以用于校正带电粒子束装置的场曲率,特别是由带电粒子束装置的成像透镜引入的场曲率。多于一个电极可以用于补偿或校正场曲率。
分段电极可以用于在多孔径件的表面上产生非旋转对称的场构型,非旋转对称的场构型可以用于校正可能源自非旋转对称的光学元件或来自倾斜样本的像场倾斜。
带电粒子束装置可以包括电极112-1和112-2(示例性地示出两个电极)。根据一些实施方式,第一电极可以用于提供电场以产生孔径透镜,并且第二电极可以用作场曲率校正电极。另外,带电粒子束装置100可以包括扫描偏转器150。扫描偏转器150可以提供在透镜120与样本台141之间。特别地,扫描偏转器可以被物镜130的极片组件包围和/或在静电透镜的电极的位置处。
在多孔径板上的场可以变化,使得小束的像场曲率或像场倾斜可以被控制(或校正)。然而,仍然存在其他离轴像差(例如,场散光、离轴彗差和畸变)。
根据本文所述的实施方式,提供用初级带电粒子小束阵列对样本进行检查。多孔径板被提供来以从初级带电粒子束产生初级带电粒子小束阵列。多孔径板可以具有两个或更多个开口。多孔径板可以将初级带电粒子束的大束划分成单独小束,即,初级带电粒子小束阵列。像差校正元件被提供来特别地校正初级带电粒子小束阵列的不同小束之间的像差差值。根据可与本文所述的其他实施方式组合的一些实施方式,像差校正元件可以校正Cs(即,球差),或Cc和Cs二者(即,色差和球差)。
图2示出了例如用于用初级带电粒子小束阵列对样本进行检查的带电粒子束装置200。带电粒子束源110包括发射初级带电粒子束14的粒子束发射器111。
准直器装置(诸如聚光器透镜组件220)可以提供在带电粒子束装置(例如,多粒子束***)中。带电粒子束装置可以用于粒子束检查或粒子小束光刻应用。根据可与本文所述的其他实施方式组合的一些实施方式,聚光器透镜组件可以包括一个或多个圆形透镜,例如,静电透镜、静磁透镜或作用在由带电粒子束源110发射的初级带电粒子束上的经组合的磁性静电透镜。由准直装置(诸如聚光器透镜组件220)可以包括一个或多个静电或静磁透镜,一个或多个静电或静磁透镜用于产生束发散为小于几毫拉德的平行(或几乎平行)的粒子束。
由于这种准直装置的球差和色差(即,Cs和Cc),与标称能量略有不同的粒子的大角度轨迹和轨迹不平行于***轴线,即使具有标称能量的近轴轨迹如此。这是因二阶、三阶和更高阶路径偏差造成的,根据Scherzer定理,二阶、三阶和更高阶路径偏差是常规圆形透镜***无法避免的。
圆形透镜***的二阶路径偏差和三阶路径偏差,即,二阶像差和三阶像差,具有尤其随单独小束的中心轨迹的半角Q以及一个小束内的离轴轨迹的角度β增大的色差和球差。这些像差可以以半角Q和角度α线性地或二次地增大。此外,色差可以随与源的能量宽度有关的色度参数k而增大。所得像差对应于径向色彩畸变和色差、径向几何畸变、径向场散光、场曲率、径向离轴彗差和球差。所有上述那些像差(除了色差和球差)取决于小束角Q并由此而导致从小束到小束的不均匀性,并且因此导致在样本上的不均匀分辨率。
根据本文所述的实施方式,提供像差校正元件210。像差校正元件用于校正准直器透镜的球差和/或色差系数Cs和Cc,并任选地作为对物镜的补充。初级带电粒子束的以上提到的二阶像差和三阶像差可以被认为是初级带电粒子小束之间的场曲率像差的原因。因此,可以通过控制初级带电粒子束(即,小束的组合物)的对应的色差和球差来校正小束阵列的场曲率。例如,像差校正元件可以产生电-磁四极场。图2示出了第一磁性四极212、第一电磁四极214、第二电磁四极216和第二磁性四极218。所得校正由Y-Z平面中的束路径14'和X-Z平面中的束路径14”示出。如可看出,具有不同能量(参见不同的线)的束轨迹与光轴平行地或基本上平行地离开像差校正元件210,由此校正色差。另外,可以使用叠置的八极场来校正球差。对应八极例如在图2中示出。第一八极215可以与第一电磁四极214叠置。第三八极219可以与第二电磁四极216叠置。第二八极217可以提供在第一八极和第三八极之间,例如,在两个八极的中间。根据可与本文所述的其他实施方式组合的一些实施方式,如果像差校正元件210是对称的,即,四极和八极相对于垂直于光轴的对称平面对称,那么这将是有益的。
根据另外实施方式,上述像差校正元件210可以通过具有四个或更多个八极来修改。例如,四个八极可以与由参考数字212、214、216和218表示的四极中的相应一者叠置。
根据另外实施方式,像差校正元件210的另外修改可以包括四极212和218,四极212和218也可以是静电的或经组合的磁性静电的。
根据可与本文所述的其他实施方式组合的一些实施方式,像差校正元件210可以校正或补偿Cc、Cs或Cc和Cs二者。
根据另外实施方式,在源的能量宽度足够小的情况下,可以使用更简单的Cs校正器(例如,六极场和传递双峰),只要可以忽略色彩效应即可。因此,像差校正元件210可以可选地包括第一电或磁性六极和第二电或磁性六极。可以提供由至少一个透镜构成的传递透镜***以提供穿过场布置的对称射线路径。对称布置允许校正球差,同时防止引入二阶几何像差,例如,三倍散光。通过利用根据本文所述的实施方式的像差校正元件,单独小束的平行度可以仅因四阶或更高阶路径偏差以及像差校正元件缺陷而受限制。
根据本文所述的实施方式,像差校正元件可以是非旋转对称的多极校正器。例如,可以提供用于Cs和Cc的同时校正的四极-八极校正器或用于Cs校正的双六极校正器。实施方式包括具有6个或更多个极的至少两个多极元件,例如,六极元件、八极元件或甚至更高阶的多极元件。根据可与本文所述的其他实施方式组合的又一实施方式,像差校正元件经构造以在任何时间上和/或针对各种操作模式以固定激励来操作。
根据可与本文所述的其他实施方式组合的又一实施方式,像差校正元件可以经构造以校正旋转对称带电粒子透镜的球差和色差中的至少一个。例如,像差校正元件经构造以校正样本上的第一分辨率与样本上的第二分辨率之间的差值,并且包括至少两个多极元件,每个多极元件由6个或更多个极组成。根据可与本文所述的其他实施方式组合的又一示例或修改,像差校正元件可以选自由以下组成的群组:箔透镜、膜校正器(其中初级电子侵入变化厚度的膜)、空间电荷透镜、高频透镜和镜校正器。
由于对高吞吐量粒子束检查装置的需求越来越多,已提出了具有初级带电粒子小束阵列的带电粒子束装置,即,多束***。至少两个束跨相同的柱或装置内的样本进行扫描。带电粒子束装置可以包括如关于图1所述的扫描偏转器150。初级带电粒子小束阵列通过产生相当大的准直粒子束来提供,相当大的准直粒子束然后被多孔阵列113划分成多个平行小束,如例如图2所示。初级带电粒子小束15是由物镜组件230聚焦在样本140上。如图2所示,物镜组件可以是物镜阵列。物镜阵列可以包括用于将小束聚焦到样本上(例如,聚焦到样本上的单独位置上)的多个单独透镜。样本可以支撑在样本台141上。
径向几何和色彩畸变(外部小束不平行于中心小束)、径向场散光(外部小束是散光)、场曲率(外部小束相较内部小束来说在本身内或多或少会聚或发散)和径向离轴彗差(外部小束呈现彗差)可能造成在样本上的变化的分辨率,这取决于小束的离轴距离。因此,本文所述的实施方式提供像差校正元件210以校正小束的变化的分辨率。小束在进入物镜组件之前可能消失Cc和Cs。使用这种装置能够产生彼此平行并在它们本身内的(高达三阶)小束。根据本文所述的实施方式的多束***可以因此提高在样本上的分辨率均匀性。
图3示出了具有初级带电粒子小束阵列的带电粒子束装置200的另一实施方式。初级带电粒子束由带电粒子束源110产生。提供像差校正元件210,其中方面、细节和任选的修改可以如关于图2所述那样使用。相当宽的初级带电粒子束(例如,可以是平行的)照明多孔径板113。产生初级带电粒子小束15阵列。透镜阵列320产生单独的跨接部315。例如,产生中间跨接部的透镜阵列可以例如包括Einzel透镜或孔径透镜。共用物镜130将小束聚焦在样本140上的不同或单独位置上。
在图3中,示意性地示出物镜130。物镜130可以被提供来用于本文描述的实施方式,如图1中更详细地示出的。物镜可以包括线圈以及上部极片和下部极片,其中提供用于初级带电粒子小束阵列的磁性透镜部件。此外,上部电极和下部电极可以提供物镜130的静电透镜组件。带电粒子装置的发射器尖端的缩小是由物镜阵列的源位置和焦距给出。
根据产生又一实施方式的一些任选修改,可以通过聚光器透镜阵列与像差校正元件之间的适当距离来调整可能存在的五阶球差系数C5。
特别地,物镜可以是经组合的磁性静电透镜。根据一些实施方式,静电透镜部件可以提供减速透镜,其中相较柱内小束能量来说,小束的在样本上的着陆能量可以减小。例如,着陆能量可以在约100eV与8keV之间,更典型地是2keV或更低,例如,1keV或更低,诸如500eV或甚至100eV。柱内小束的束能量可以是5keV或更高,例如20keV或更高,或甚至50keV或更高。
在可与本文所述的其他实施方式组合的一些实施方式中,物镜130可以是场复合透镜。例如,物镜可以是磁性透镜部件和静电透镜部件的组合。因此,物镜可以是复合磁性-静电透镜。典型地,复合磁性静电透镜的静电部分是静电阻滞场透镜。在扫描电子显微镜(SEM)的情况下,使用复合磁性-静电透镜在低着陆能量下产生优异的分辨率,诸如几百电子伏特。低着陆能量是有益的(尤其是在现代半导体工业中),以避免辐射敏感样本的带电和/或损坏。
另外,带电粒子束装置200可以包括扫描偏转器150。扫描偏转器150可以提供在透镜与样本台141之间。特别地,扫描偏转器可以被物镜130的极片组件包围和/或在静电透镜部件的电极的位置处。
根据可与本文所述的其他实施方式组合的一些实施方式,也有可能将校正元件(即,具有两个或更多个多极元件的Cc-Cs校正器)作为透镜来操作。像差校正元件可以聚焦初级带电粒子束以减小第一小束和第二小束之间的发散,例如,以产生平行小束。因此,在入射在多孔径板上之前使初级带电粒子束准直的聚光器透镜或聚光器透镜组件对于一些配置是任选的。
另外,对于利用共用物镜的实施方式(参见例如图3和图4),像差校正元件(即,Cc-Cs校正器)可操作来不完全地校正透镜阵列的像差,并且任选地存在聚光器透镜组件。与透镜阵列320结合的像差校正元件210可以提供具有与共用物镜相反的离轴像差(场曲率、场散光、径向色彩畸变等)的中间小束跨接部阵列。对于具有共用物镜和聚光器透镜组件的实施方式,像差校正元件可操作以不完全地校正聚光器透镜的像差。该操作将可以产生具有与共用物镜相反的离轴像差(场曲率、场散光、径向色彩畸变等)的中间小束跨接部阵列。因此,根据一些实施方式,准直器内的Cc-Cs校正器可以用于产生限定的场曲率、场散光和径向色差,这消除了共用物镜的固有的离轴像差。
在图3中,小束通过物镜而不经过共用跨接部。准直器内的Cc-Cs校正器可以经调整以使得物镜的离轴彗差被校正。由于避免共用跨接部,因此可以减少可能导致样本上的分辨率的降低的库仑或电子-电子相互作用。
另外,带电粒子束装置200可以包括扫描偏转器150。扫描偏转器150可以提供在物镜内或提供在透镜和样本台141之间。特别地,扫描偏转器可以被物镜的极片组件包围和/或在静电透镜部件的电极的位置处。
图4示出了带电粒子束装置200的另一实施方式。可以使用具有偏转器454和任选地还有靠近中间跨接平面的另一透镜452的附加的偏转元件450来调整小束的离轴彗差。小束可以在“无彗差”路径上偏转。或者,引导小束通过物镜的无彗差点的偏转元件450可以包括另一透镜452,而具有偏转器454的偏转器阵列可以是任选的。因此,偏转元件450可以包括另外透镜452、具有偏转器454的偏转器阵列或二者。
根据一些实施方式,偏转器阵列可以布置在另外透镜内或附近。根据一些实施方式,偏转器阵列被布置为“在另一透镜中或附近”或“在另一透镜内”可以被理解为偏转器阵列放置在另外透镜的焦距内。例如,另外透镜可以包括三个电极,并且偏转器阵列可以放置在三个电极内。根据一些实施方式,偏转器阵列可以大致放置在另外透镜的三个电极的中间电极的高度处。
根据一些实施方式,另外透镜可以用于实现引导初级带电粒子小束的主要效果,例如用于将初级带电粒子小束引导到物镜的无彗差点。在一些实施方式中,可以使用偏转器阵列来精细地调整单独初级带电粒子小束,尤其是精细地调整要被引导进入或穿过物镜的无彗差点的初级带电粒子小束。
如本公开内容的全文所使用,术语“无彗差平面”或“无彗差点”是指在初级带电粒子小束通过无彗差点或无彗差平面时在初级带电粒子小束中引入最小或甚至无彗差的物镜(或由其提供)的平面或点。物镜的无彗差点或无彗差平面是满足Fraunhofer条件(彗差为零的条件)的物镜的点或平面。物镜的无彗差点或无彗差平面位于带电粒子束装置的光学***的z轴上,其中z轴沿着物镜的光轴4(参见图1)延伸。无彗差点或无彗差平面可以定位在物镜内。例如,无彗差点或无彗差平面可以被物镜包围。
根据本文所述的实施方式,用于用本文所述的初级带电粒子小束阵列对样本进行检查的带电粒子束装置和方法允许校正离轴像差以补偿初级带电粒子小束阵列的不同小束之间的分辨率的差值。本文所述的实施方式因此允许一种***,其中离轴像差将仅或主要由例如聚光器-校正器***的4阶或更高阶像差引起。
如图2、图3、图4和图6示例性地所示的带电粒子束装置200的实施方式可以包括另一任选修改以产生另外实施方式。带电粒子束源110的带电粒子束发射器111可以是冷场发射器(CFE)、肖特基发射器、TFE或另一高电流高亮度带电粒子束源(诸如电子束源)。高电流被认为在100毫拉德或以上是5μA,例如高达5mA,例如,在100毫拉德时的30mA至在100毫拉德时的1mA,诸如在100毫拉德时为约300μA。根据一些实现方式,电流基本上均匀地分布,例如,偏差为±10%,特别是在线性或矩形阵列的情况下。
根据可与本文所述的其他实施方式组合的另外实施方式,TFE或另一高亮度降低的源(例如,能够提供大束电流的电子束源)是在发射角增大以提供最大10μA至100μA(例如30μA)时亮度不会下降超过最大值的20%的源。根据可与本文所述的其他实施方式组合的一些实施方式,物镜阵列可以包括单独静电透镜(特别是延迟场透镜)。在一些实施方式中,物镜阵列可用于本文所述的实施方式中,包括特别是具有共用励磁线圈的单独磁性透镜镜片。根据一些实施方式,根据本文所述的实施方式的用于带电粒子束装置的物镜阵列可以包括单独静电透镜和单独磁性透镜的组合。或者,可以如关于图3和图4所述那样使用共用物镜。
在关于图2、图3、图4和图6所示的实施方式中,初级带电粒子束14可以在离开带电粒子束发射器111(即,发射器尖端)之后穿过多孔径板113。初级带电粒子束14穿过具有多个孔径开口的多孔径板113。孔径开口可以位于多孔径板113上的任何阵列构型中,诸如线、矩形、方形、环或任何合适的一维或二维阵列。根据本文所述的实施方式,如本文所述的带电粒子束装置允许以任何构型来排列多孔径板的孔径开口,而不存在因场曲率或像差引起的缺陷。例如,已知***将不同小束布置成环状形状,以便为像抛物线那样通过透镜的每一个束提供相同条件。当将小束布置成环状形状时,相应透镜的像差影响可以被最小化。然而,环形布置对高吞吐量提供了限制。用根据本文所述的实施方式的带电粒子束装置,可以以任何布置(例如,适合于快速检查的布置、适合于待检查的样本结构的布置、允许大量束的布置、适于束强度的布置等等)来完成对小束阵列的布置。例如,射束阵列可以被布置成线、矩形、六边形或方形。
在一些实施方式中,初级带电粒子小束阵列可以以一维(线)阵列或二维阵列(例如4×4、3×3、5×5)或不对称阵列(例如,2×5)布置。本文所述的实施方式并不限于阵列示例,并且可以包括初级带电粒子小束的任何合适的阵列构型。
通过用初级带电粒子束14对多孔径板113进行照明,产生若干初级带电粒子小束15。在初级带电粒子小束15的聚焦平面中,可以布置透镜120。
在附图中,在透镜之后示出了初级带电粒子小束阵列中的一些初级带电粒子小束,而为了更好地概述,附图中省略了其他初级带电粒子小束。
根据可与本文所述的其他实施方式组合的一些实施方式,像差校正元件可以是静电校正器,即,像差校正元件中包括静电多极。静电校正器可以是例如纯静电的,即,不包括磁性多极。这对于排列如以下关于图6所述的多个柱可以是有益的。例如,像差校正元件可以包括用于色差校正的静电透镜场和静电四极场。另外,静电八极磁场可以被叠置来用于进行球差校正。静电透镜场可以与四极场叠置。在图5A中,所得校正由Y-Z平面中的束路径14'和X-Z平面中的束路径14”示出。当具有两个柱或更多个柱的阵列时,静电校正器对于实现减小的空间可以是有益的,其中每个柱可以提供多束带电粒子装置。另外益处可以是避免滞后,并且场精确度主要受机加工公差的限制。这例如在Christoph WeiBbacker,HaraldRose在J Electron Microsc(Tokyo)(2001)50(5):383-390中的“Electrostaticcorrection of the colours and of the spherical aberration of charged-particlelenses”中进行描述。
经组合的磁性静电像差校正元件可受益于解耦聚焦特性和Cc校正、适度高阶像差、对准误差的适度的灵敏度和将磁性电路中的噪声阻尼到低kHz范围。
图5B中示出了静电像差校正元件210的示例性实施方式。校正器包括多个静电多极和透镜,多个静电多极和透镜例如有益地对称地布置。也就是说,存在像差校正元件与光轴正交的对称平面。例如,元件512可以是静电四极,元件514可以是静电透镜与静电四极叠置的组合。元件512和514可以校正Cc。元件513和515可以是用于校正Cs的静电八极。像差校正元件210可以包括用于校正Cc、Cs或Cc和Cs二者的元件。
如上所述,根据本文所述的实施方式的带电粒子束装置允许提供初级带电粒子小束阵列。根据一些实施方式,初级带电粒子小束阵列典型地可以包括每个柱有三个或更多个初级带电粒子小束,更典型地包括十个或更多个初级带电粒子小束。根据本文所述的一些实施方式,根据本文所述的实施方式的带电粒子束装置和用于用带电粒子束装置对样本进行检查的方法可以在带电粒子束装置的一个柱内提供在样本表面处彼此之间的距离很小的初级带电粒子小束阵列。例如,一个柱内的两个初级带电粒子小束之间的距离典型地可以小于150μm,更典型地小于100μm,或甚至小于50μm。
在一些实施方式中,如图6示例性所示,根据本文所述的实施方式的带电粒子束装置允许排列在多柱式显微镜(MCM)中。各自具有用于检查样本的初级带电粒子小束阵列的多个柱增加了处理速度和吞吐量。
图6示出了多柱式显微镜构型600。多柱式显微镜构型600示例性地被示出为具有三个带电粒子束装置200。根据本文所述的实施方式,带电粒子束装置的数量可以与多柱式显微镜构型中示出的示例有所偏差。例如,根据本文所述的实施方式的多柱式显微镜构型可以具有两个或更多个带电粒子束装置,例如两个、三个、四个、五个或甚至多于五个带电粒子束装置。带电粒子束装置可以布置成1维或2维阵列。多柱式显微镜构型的带电粒子束装置中的每个可以是具有如本文所述的实施方式中的任一者所述的初级带电粒子小束阵列的带电粒子束装置。
在图6的示例性视图中,多柱式显微镜包括如图2所示和所述的带电粒子束装置。多柱式显微镜构型600包括样本台141,要检查的样本140放置在样本台上。在一些实施方式中,多柱式显微镜构型600的带电粒子束装置可以检查一个样本。或者,多于一个样本140可以放置在样本台141上。
如图6所示,每个带电粒子束装置200包括具有例如一个或多个聚光器透镜的聚光器透镜组件、像差校正元件210、多孔径板113和透镜阵列(例如,物镜组件230)。根据本文所述的一些实施方式,多柱式显微镜构型600的带电粒子束装置200可以具有共用物镜组件。
另外,控制电极(例如,接近电极,用于提取信号粒子,诸如二次电子(SE)或后向散射电子)可以被提供来用于本文所述的实施方式的带电粒子束装置和/或多柱式显微镜构型600。控制电极可以是用于多于一个柱的共用电极或可以是用于一个柱的控制电极。例如,用如本公开内容的实施方式所述的物镜,可以提供非常低的着陆能量(例如,100eV)和低提取场,而不损害带电粒子束成像***的整体性能。
根据一些实施方式,多柱式显微镜构型的带电粒子束装置200彼此可以具有典型地在约10mm至约60mm之间、更典型地在约10mm至约50mm之间的距离。在一些实施方式中,可以将多柱式显微镜构型的单个带电粒子束装置之间的距离测量为带电粒子束装置的对应的光轴之间的距离。
通过在多柱式显微镜构型中使用多个带电粒子束装置,如图6示例性地所示,可以以足够的分辨率提供足够数量的初级带电粒子小束并且在信号小束之间具有足够小的串扰。
图7示出了用初级带电粒子小束阵列对样本进行成像的方法700的流程图。在方框701中,通过用初级带电粒子束照明多孔径板来产生带电粒子小束阵列。带电粒子小束区域可以具有至少第一小束和第二小束。可以用包括束发射器的带电粒子束源来产生初级带电粒子束。束发射器可以例如是CFE、肖特基发射器、TFE或另一高电流-高亮度带电粒子束源(诸如,电子束源),如例如上文提到的。根据一些实施方式,束发射器可以发射一个初级带电粒子束,初级带电粒子束可以经处理(例如,通过由多孔径板分割)以使得产生多个初级带电粒子小束。例如,多孔径板中的孔径开口可以被布置成1维小束阵列或2维小束阵列,诸如像六边形、矩形或二次小束阵列。
如方框702指示,例如用物镜组件将带电粒子小束阵列聚焦在样本上。物镜组件可以是物镜阵列或共用物镜组件。例如,物镜阵列可以包括两个或更多个静电透镜和/或两个或更多个磁性透镜。共用物镜组件可以包括磁性透镜部件和静电透镜部件,特别是以减速模式操作的静电透镜部件。
如方框703指示,可以用像差校正元件来校正初级带电粒子小束阵列内的像差差值,例如第一小束与第二小束之间的像差和/或分辨率的差值。像差校正元件可以校正Cs(即,球差),或Cc和Cs二者(即,色差和球差)。根据本文所述的实施方式,像差校正元件可以是非旋转对称的多极校正器。例如,可以提供用于Cs和Cc的同时校正的四极-八极校正器或用于Cs校正的双六极校正器。
根据一些实施方式,像差校正元件可以作用在初级带电粒子束上或可以作用在初级带电粒子小束上。另外,附加地或可选地,对于共用物镜组件,像差校正元件可以校正物镜组件的离轴像差。对于物镜阵列,小束可以沿着光轴进入物镜阵列的透镜。因此,可以由像差校正元件来提供对聚光器透镜组件(和任选地另外透镜)的校正。根据可与本文所述的其他实施方式组合的又一实施方式,像差校正元件可以充当准直透镜,其中聚光器透镜组件可以省略。
根据本文所述的一些实施方式,带电粒子束装置可以包括另外的束光学元件,诸如聚光器透镜、(扫描)偏转器、束弯曲器、校正器等等。在一些实施方式中,聚光器透镜可以放置在多孔径板前(即,当沿初级带电粒子小束传播方向看时,在初级带电粒子束的上游)。根据本文所述的实施方式的带电粒子束装置可以包括束消隐器,诸如用于每个小束的单独束消隐器或共用束消隐器。
根据可与本文所述的其他实施方式组合的另外实施方式,聚光器透镜组件可以包括一个或多个聚光器透镜。聚光器透镜中的每个可以是静电的、磁性的或经组合的磁性静电的。根据一些实施方式,多孔径板(即,孔径开口阵列)可以用不同的多孔径板来代替,例如,用于改变孔径开口的直径。这使得能够在不同的小束电流之间切换。特别地,为了更换多孔径板,聚光器透镜组件可以包括用于调整焦距的两个或更多个聚光器透镜。调整焦距可有利于调整源的总放大倍率。如上所述,如本文所述的带电粒子束装置可以用于粒子束检查或粒子束光刻应用。另外,用初级带电粒子小束阵列对样本进行成像的方法可以类似地应用于用初级带电粒子小束阵列对样本进行照明的方法,例如以便用于粒子小束光刻应用。
尽管前述内容针对特定实施方式,但是也可在不脱离本发明的基本范围的情况下设想其他和进一步实施方式,并且本发明的范围由随附权利要求书确定。
元件符号列表
4 光轴
14 初级带电粒子束
15 初级带电粒子小束
100 带电粒子束装置
110 粒子束源
111 粒子束发射器
112 电极
112-1 电极
112-2 电极
112-2 电极
113 多孔径板
120 透镜
130 物镜
14’ 束路径
14” 束路径
140 样本
141 样本台
150 扫描偏转器
199 加速电极
200 带电粒子束装置
210 像差校正元件
212 四极
214 电磁四极
215 八极
216 电磁四极
217 八极
218 四极
219 八极
220 聚光器透镜组件
230 物镜组件
315 单独的跨接部
320 透镜阵列
450 偏转元件
452 透镜
454 偏转器
512 元件
513 元件
514 元件
515 元件
600 多柱式显微镜构型
700 方法
701 方框
702 方框
703 方框

Claims (17)

1.一种用于用初级带电粒子小束阵列对样本进行检查的带电粒子束装置,包括:
带电粒子束源,用于产生初级带电粒子束;
多孔径板,具有至少两个开口以产生初级带电粒子小束阵列,所述初级带电粒子小束阵列至少具有在所述样本上具有第一分辨率的第一小束和在所述样本上具有第二分辨率的第二小束;
像差校正元件,提供在所述带电粒子束源与所述多孔径板之间以用于校正旋转对称带电粒子透镜的球差和色差中的至少一个,以及用于校正所述样本上的所述第一分辨率与所述样本上的所述第二分辨率之间的差值,所述像差校正元件包括两个电或磁性四极元件和至少两个多极元件,所述至少两个多极元件包括两个经组合的电-磁性四极元件;和
物镜组件,用于将所述初级带电粒子小束阵列的每个初级带电粒子小束聚焦到所述样本上的单独位置上。
2.根据权利要求1所述的带电粒子束装置,其中所述像差校正元件进一步包括至少三个电或磁性八极元件。
3.根据权利要求1所述的带电粒子束装置,其中所述至少两个多极元件产生至少两个六极场。
4.根据权利要求1所述的带电粒子束装置,其中所述至少两个多极元件是两个静电四极元件,并且所述像差校正元件进一步包括两个静电透镜。
5.根据权利要求4所述的带电粒子束装置,其中所述像差校正元件进一步包括至少三个电八极元件。
6.根据权利要求1所述的带电粒子束装置,其中所述像差校正元件聚焦所述初级带电粒子束以减小所述第一小束与所述第二小束之间的发散。
7.根据权利要求1所述的带电粒子束装置,进一步包括:
聚光器透镜组件,提供在所述带电粒子束源与所述多孔径板之间。
8.根据权利要求1所述的带电粒子束装置,其中所述物镜组件包括物镜阵列以个别地聚焦所述初级带电粒子小束阵列的每个小束。
9.根据权利要求1所述的带电粒子束装置,其中所述物镜组件包括作用在所述初级带电粒子小束阵列上的磁性透镜部件。
10.根据权利要求9所述的带电粒子束装置,进一步包括:
透镜阵列,提供在所述多孔径板与所述物镜组件之间。
11.根据权利要求10所述的带电粒子束装置,进一步包括:
透镜或偏转器阵列中的至少一个,其中所述透镜和所述偏转器阵列引导所述初级带电粒子小束阵列通过所述物镜组件的无彗差点。
12.一种用于用初级带电粒子小束阵列对样本进行检查的带电粒子束装置,包括:
带电粒子束源,用于产生初级带电粒子束;
多孔径板,具有至少两个开口以产生带电粒子小束阵列,所述带电粒子小束阵列至少具有在所述样本上具有第一分辨率的第一小束和在所述样本上具有第二分辨率的第二小束;
像差校正元件,提供在所述带电粒子束源与所述多孔径板之间以校正旋转对称带电粒子透镜的球差和色差中的至少一个,以及校正在所述样本上的所述第一分辨率与所述样本上的所述第二分辨率之间的差值,其中所述像差校正元件包括两个静电四极元件和两个静电透镜;和
物镜组件,用于将所述初级带电粒子小束阵列的每个初级带电粒子小束聚焦到所述样本上的单独位置上。
13.一种用初级带电粒子小束阵列对样本进行成像或照明的方法,包括:
通过用初级带电粒子束照明多孔径板来产生具有至少第一小束和第二小束的初级带电粒子小束阵列;
用物镜组件将所述初级带电粒子小束阵列聚焦在所述样本上;和
用根据权利要求1所述的像差校正元件来校正所述第一小束与所述第二小束之间的像差差值。
14.根据权利要求13所述的方法,其中校正所述像差差值由作用在所述初级带电粒子束上的所述像差校正元件提供。
15.根据权利要求13所述的方法,其中校正所述像差差值包括校正所述物镜组件的离轴像差。
16.根据权利要求13所述的方法,其中所述像差校正元件准直所述初级带电粒子束。
17.根据权利要求13所述的方法,进一步包括:
用聚光器透镜组件来准直所述初级带电粒子束。
CN201810724460.7A 2017-07-05 2018-07-04 带电粒子束装置和对样本进行成像或照明的方法件 Active CN109216143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010960020.9A CN112233960A (zh) 2017-07-05 2018-07-04 带电粒子束装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/642,147 2017-07-05
US15/642,147 US10176965B1 (en) 2017-07-05 2017-07-05 Aberration-corrected multibeam source, charged particle beam device and method of imaging or illuminating a specimen with an array of primary charged particle beamlets

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010960020.9A Division CN112233960A (zh) 2017-07-05 2018-07-04 带电粒子束装置

Publications (2)

Publication Number Publication Date
CN109216143A CN109216143A (zh) 2019-01-15
CN109216143B true CN109216143B (zh) 2020-10-13

Family

ID=63405320

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810724460.7A Active CN109216143B (zh) 2017-07-05 2018-07-04 带电粒子束装置和对样本进行成像或照明的方法件
CN202010960020.9A Pending CN112233960A (zh) 2017-07-05 2018-07-04 带电粒子束装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010960020.9A Pending CN112233960A (zh) 2017-07-05 2018-07-04 带电粒子束装置

Country Status (5)

Country Link
US (2) US10176965B1 (zh)
KR (2) KR102109963B1 (zh)
CN (2) CN109216143B (zh)
NL (1) NL2021253B1 (zh)
TW (2) TWI691997B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811790B (zh) * 2020-10-23 2023-08-11 日商紐富來科技股份有限公司 具有整合分束器的肖特基熱場發射器、用於將分束器與肖特基熱場發射的提取器面板整合的方法以及用於形成多個電子束的方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10453645B2 (en) * 2016-12-01 2019-10-22 Applied Materials Israel Ltd. Method for inspecting a specimen and charged particle multi-beam device
US10176965B1 (en) * 2017-07-05 2019-01-08 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Aberration-corrected multibeam source, charged particle beam device and method of imaging or illuminating a specimen with an array of primary charged particle beamlets
US10699926B2 (en) * 2017-08-30 2020-06-30 Kla-Tencor Corp. Identifying nuisances and defects of interest in defects detected on a wafer
DE102018202421B3 (de) 2018-02-16 2019-07-11 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem
JP7106685B2 (ja) * 2019-01-28 2022-07-26 株式会社日立ハイテク 電子線応用装置
US10748743B1 (en) 2019-02-12 2020-08-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Device and method for operating a charged particle device with multiple beamlets
US20200303156A1 (en) * 2019-03-20 2020-09-24 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Beam splitter for a charged particle device
KR102662670B1 (ko) * 2019-04-06 2024-05-03 에이에스엠엘 네델란즈 비.브이. 전압 발생기가 내장된 mems 이미지 형성 요소
CN113906535A (zh) * 2019-05-31 2022-01-07 Asml荷兰有限公司 多带电粒子束设备及其操作方法
JP6943925B2 (ja) * 2019-07-29 2021-10-06 日本電子株式会社 荷電粒子線装置のフォーカス調整方法および荷電粒子線装置
US20220392735A1 (en) * 2019-10-21 2022-12-08 Applied Materials, Israel Ltd. Method for inspecting a specimen and charged particle beam device
EP3869536A1 (en) * 2020-02-21 2021-08-25 ASML Netherlands B.V. Inspection apparatus
WO2021165135A1 (en) * 2020-02-21 2021-08-26 Asml Netherlands B.V. Inspection apparatus
CN112098438B (zh) * 2020-07-23 2021-11-19 西安交通大学 一种高分辨大扫描场***的二阶像差补偿方法
CN112071731B (zh) * 2020-07-23 2021-11-19 西安交通大学 一种基于维恩分析器校正二阶像差的设计方法
KR20230122666A (ko) * 2020-12-23 2023-08-22 에이에스엠엘 네델란즈 비.브이. 하전 입자 광학 디바이스
US11705301B2 (en) * 2021-01-19 2023-07-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam manipulation device and method for manipulating charged particle beamlets
US11495433B1 (en) * 2021-04-15 2022-11-08 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam apparatus, multi-beamlet assembly, and method of inspecting a specimen
EP4092712A1 (en) * 2021-05-18 2022-11-23 ASML Netherlands B.V. Charged particle optical device and method using it
US20230317405A1 (en) * 2022-03-30 2023-10-05 Fei Company Methods and systems for aligning a multi-beam system
WO2023197146A1 (zh) * 2022-04-12 2023-10-19 华为技术有限公司 一种粒子***和粒子束的矫正方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971836A (zh) * 2005-11-02 2007-05-30 Fei公司 用于粒子光学装置中的色差校正的校正器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243058B2 (zh) * 1974-04-22 1977-10-28
DE2702445C3 (de) * 1977-01-20 1980-10-09 Siemens Ag, 1000 Berlin Und 8000 Muenchen Korpuskularstrahloptisches Gerät zur verkleinernden Abbildung einer Maske auf ein zu bestrahlendes Präparat
US6335532B1 (en) * 1998-02-27 2002-01-01 Hitachi, Ltd. Convergent charged particle beam apparatus and inspection method using same
JP4647820B2 (ja) * 2001-04-23 2011-03-09 キヤノン株式会社 荷電粒子線描画装置、および、デバイスの製造方法
JP3950769B2 (ja) * 2002-09-06 2007-08-01 日本電子株式会社 荷電粒子ビーム装置における収差補正装置
JP2007287495A (ja) * 2006-04-18 2007-11-01 Jeol Ltd 2レンズ光学系走査型収差補正集束イオンビーム装置及び3レンズ光学系走査型収差補正集束イオンビーム装置及び2レンズ光学系投影型収差補正イオン・リソグラフィー装置並びに3レンズ光学系投影型収差補正イオン・リソグラフィー装置
WO2009127658A1 (en) * 2008-04-15 2009-10-22 Mapper Lithography Ip B.V. Projection lens arrangement
JP5250350B2 (ja) * 2008-09-12 2013-07-31 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
US7884334B2 (en) * 2009-01-22 2011-02-08 Hermes Microvision, Inc. Charged particle beam imaging method and system thereof
KR101459530B1 (ko) * 2009-09-04 2014-11-07 유나이티드 세러퓨틱스 코오포레이션 폭스바이러스 감염의 치료 방법
US8987679B2 (en) * 2009-10-09 2015-03-24 Mapper Lithography Ip B.V. Enhanced integrity projection lens assembly
NL2003619C2 (en) * 2009-10-09 2011-04-12 Mapper Lithography Ip Bv Projection lens assembly.
EP2339608B1 (en) * 2009-12-22 2014-05-07 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Electrostatic corrector
JP5886663B2 (ja) * 2012-03-21 2016-03-16 株式会社日立ハイテクノロジーズ 電子線応用装置およびレンズアレイ
NL2009053C2 (en) * 2012-06-22 2013-12-24 Univ Delft Tech Apparatus and method for inspecting a surface of a sample.
JP2016115680A (ja) * 2014-12-17 2016-06-23 アプライド マテリアルズ イスラエル リミテッド 収差補正開孔を有する走査型荷電粒子ビームデバイスおよびその動作方法
JP2016197503A (ja) * 2015-04-02 2016-11-24 株式会社ニューフレアテクノロジー 電子ビーム装置
CN111681939B (zh) * 2015-07-22 2023-10-27 Asml荷兰有限公司 多个带电粒子束的装置
US10176965B1 (en) * 2017-07-05 2019-01-08 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Aberration-corrected multibeam source, charged particle beam device and method of imaging or illuminating a specimen with an array of primary charged particle beamlets

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971836A (zh) * 2005-11-02 2007-05-30 Fei公司 用于粒子光学装置中的色差校正的校正器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811790B (zh) * 2020-10-23 2023-08-11 日商紐富來科技股份有限公司 具有整合分束器的肖特基熱場發射器、用於將分束器與肖特基熱場發射的提取器面板整合的方法以及用於形成多個電子束的方法

Also Published As

Publication number Publication date
US20190013176A1 (en) 2019-01-10
TWI751556B (zh) 2022-01-01
TWI691997B (zh) 2020-04-21
US10784072B2 (en) 2020-09-22
TW202046366A (zh) 2020-12-16
KR102109963B1 (ko) 2020-05-12
KR20190005134A (ko) 2019-01-15
TW201917767A (zh) 2019-05-01
KR102214294B1 (ko) 2021-02-09
NL2021253B1 (en) 2019-07-04
NL2021253A (en) 2019-01-10
CN109216143A (zh) 2019-01-15
US10176965B1 (en) 2019-01-08
CN112233960A (zh) 2021-01-15
US20200027689A1 (en) 2020-01-23
KR20200051560A (ko) 2020-05-13

Similar Documents

Publication Publication Date Title
CN109216143B (zh) 带电粒子束装置和对样本进行成像或照明的方法件
US9922796B1 (en) Method for inspecting a specimen and charged particle multi-beam device
CN110214361B (zh) 用于检查样本的方法和带电粒子多束装置
TWI650550B (zh) 用於高產量電子束檢測(ebi)的多射束裝置
US10784070B2 (en) Charged particle beam device, field curvature corrector, and methods of operating a charged particle beam device
US10249472B2 (en) Charged particle beam device, charged particle beam influencing device, and method of operating a charged particle beam device
JP2015038892A (ja) 高スループットsemツール
CN115223831B (zh) 带电粒子束设备、多子束组件和检查样本的方法
KR20240047336A (ko) 고해상도 다중 전자 빔 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant