CN109207953A - 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺 - Google Patents

抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺 Download PDF

Info

Publication number
CN109207953A
CN109207953A CN201811268005.7A CN201811268005A CN109207953A CN 109207953 A CN109207953 A CN 109207953A CN 201811268005 A CN201811268005 A CN 201811268005A CN 109207953 A CN109207953 A CN 109207953A
Authority
CN
China
Prior art keywords
sputtering
target
coating
zralfe
zralfem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811268005.7A
Other languages
English (en)
Other versions
CN109207953B (zh
Inventor
刘波
蒲国
林黎蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tian Haijun
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201811268005.7A priority Critical patent/CN109207953B/zh
Publication of CN109207953A publication Critical patent/CN109207953A/zh
Application granted granted Critical
Publication of CN109207953B publication Critical patent/CN109207953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种锆合金表面抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺,其中M是Ti,V,Nb任意两种元素。具体工艺包括基底预处理、靶材清洗和沉积ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合涂层等步骤。复合涂层制备分为两个步骤进行:第一步制备ZrNx/(ZrAlFe)N梯度过渡层,首先在基底沉积Zr涂层3min;接着逐步通入N2流量从0sccm至6sccm沉积ZrNx,N2流速为2sccm/min;然后连续过渡到(ZrAlFe)N;第二步制备(ZrAlFeM)N多元氮化物涂层。沉积的(ZrAlFe)N过渡层中,Zr元素原子含量沿厚度方向从100at%~30at%梯度变化,Al和Fe元素原子含量沿厚度方向从0at%~35at%梯度变化;沉积的(ZrAlFeM)N多元氮化物涂层中Zr、Al、Fe、M元素原子含量介于10at%~35at%,N元素原子含量介于5at%~20at%。本工艺通过设计涂层呈梯度变化结构,具有缓解涂层内残余应力、高温抗氧化性能以及力学性能优异等特点。

Description

抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备 工艺
技术领域
本发明属于反应堆核燃料锆合金包壳表面改性技术领域,具体涉及一种采用多靶共溅射技术在锆合金表面制备出具有高温抗氧化性能、耐腐蚀和力学性能优异的ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备方法。
背景技术
核能作为一种高效清洁的能源,在解决能源危机以及保护环境问题等方面具有显著的优势。目前,锆合金具有机械加工性能好、小的中子吸收截面和良好的耐腐蚀性能、与铀燃料良好的相容性等一系列优点,因此被广泛应用于反应堆的核燃料包壳管以及结构材料等。锆合金在高温蒸汽环境中极易与水发生氧化反应形成氢气,在核反应堆失水事故工况下,锆合金管温度急剧上升并与水蒸气发生剧烈反应从而引起“氢爆”,见文献[杨忠波,赵文金.锆合金耐腐蚀性能及氧化特性概述[J].材料导报,2010,24 (17): 120 - 125]。表明现有的燃料包壳已不能满足事故安全性的要求,因此,开发新型的抗高温氧化、耐腐蚀性能、力学性能优异的核燃料包壳材料或者发展锆合金包壳材料表面涂层技术已经刻不容缓。
材料表面涂覆金属或陶瓷涂层可以作为改善金属等材料表面耐腐蚀、抗高温氧化、力学性能的重要手段。自2011年福岛核事故发生之后,主要以提高锆合金事故容错能力为目标,抗水蒸气氧化性能是其最重要的性能评价指标之一,在锆合金表面沉积一层保护涂层,不仅可以提高其抗高温氧化性能,还能保护锆合金的整体性能。研究的涂层分别有金属涂层(FeCrAl)、碳化物(SiC、ZrC等)、氮化物(TiN),其中氮化物如TiN、TiAlN、ZrN 等具有较高的硬度、熔点和高的热导率。研究的氮化物涂层逐渐从一元,二元发展至多元,如多元(AlCrNbSiTi) N 薄膜在900 ℃ 时表现出极好的抗氧化性,见文献[M. H. Hsieh,M. H.Tsai,W. H. Shen,et al, Surf Coat Technol,2013; 221: 118.]。Firstov 等将多元(TiVZrNbHf) N 薄膜进行高温退火处理,发现1000℃退火1 h 时该薄膜的硬度可达66GPa,1100℃退火10h 后,薄膜硬度仍可保持44 GPa 的高硬度,并表现出极好的强韧性和高温稳定性,见文献[S. A. Firstov,V. F. Gorban,N. I. Danilenko, Powder MetallMetal Ceram,2014,52 : 560.]。而且最新研究发现还具有耐辐照性能[A. D.Pogrebnjak, O. V. Bondar, S. O. Borba, et al, Nuclear Inst & Methods inPhysics Research B, 2016, 385:74-83.]。面对核燃料包壳合金材料具有耐高温氧化、高温稳定性、耐辐照等多种性能要求,以及应用于轻水反应堆冷却剂缺失事故(LOCA)中核燃料锆合金包壳材料表面改性技术面临严峻的挑战。本发明采用形成元素成分成梯度变化的复合梯度涂层不仅能有效地减小基底与涂层间的因热膨胀系数失配导致的内应力,而且还能提高复合涂层与锆合金基体的界面结合力,同时梯度结构涂层往往还表现出更为优越的韧性、抗高温氧化性能、抗热震性能。此外,复合梯度氮化物涂层的外层为多组元高熵合金氮化物涂层。研究发现,一些多元高熵合金氮化物涂层即使在1000℃时也能保持稳定单一相结构和较好的高温稳定性[P. K. Huang, J. W. Yeh, Scr Mater, 2010,62 (2):105]。其原因在于元素增加使得结构熵值增加,导致高熵合金氮化物涂层晶格严重畸变,减小了晶粒界面能,进而使得多元高熵氮化物涂层表现出良好的耐高温稳定性。
与传统表面处理技术相比,多靶共溅射技术作为一种具有沉积效率高、低成本、对环境无污染等优异特点的等离子体制备方法,采用多靶共溅射技术在锆合金表面沉积制备致密的复合梯度涂层在保护核燃料锆合金包壳表面抗高温氧化性能具有广阔的应用前景。
发明内容
本发明的目的在于提高核燃料锆合金包壳表面的高温抗氧化性能,提供一种在锆合金表面制备ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层的工艺。
本发明采用梯度复合涂层在改善抗高温氧化性能方面具有以下优势:第一点,本发明工艺操作简单,在工艺初始阶段,由Zr涂层过渡到ZrNx,再过渡到(ZrAlFe)N涂层。一方面,过渡复合涂层能有效地起到热过渡作用,可以缓解涂层与基底之间因热膨胀系数失配导致结合力减小,另一方面,过渡层的成分梯度变化可以改善复合涂层的力学性能。第二点,采用多靶共溅射技术制备复合梯度涂层能在室温条件下实现,有利于保持锆合金基体组织的稳定性。第三点,ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层在高温条件时,复合涂层中固溶的氮元素能有效抑制氧化物生成,而且复合涂层中的固溶体相结构能保持稳定存在。通过增加复合梯度涂层中的Al含量,在高温氧化实验过程涂层表面生成的致密Al2O3相能有效地阻止氧元素扩散进入涂层内部,从而提高了涂层耐高温氧化性能。
采用多靶共溅射技术,沉积的(ZrAlFe)N过渡层中,Zr元素原子百分比含量沿厚度方向从100 at% ~ 30 at%梯度变化,Al和Fe元素原子百分比含量沿厚度方向从0 at% ~ 35at%梯度变化;沉积的(ZrAlFeM)N多元氮化物涂层中Zr、Al、Fe、M元素原子百分比介于10at% ~ 35 at%,N元素原子百分比含量介于5 at% ~ 20 at%。通过优化沉积复合涂层的工艺参数以及选择M元素(M=Ti,V,Nb任意两种金属),使得制备出的复合涂层相结构简单,结晶性良好且表面致密均匀。对复合涂层性能测试发现具有结合力较高,高强度、抗高温氧化以及耐辐照等优异性能,为当今改善锆合金包壳表面抗高温氧化性能提供了一种新的技术途径。
本发明提供的技术方案是:提供一种在锆合金表面制备ZrNx/(ZrAlFe)N/(ZrAlM)N复合梯度涂层的制备方法,其特征在于包含以下步骤:
a、清洗基体材料:
依次采用不同粗糙度的水砂纸对锆合金(Zr4合金)基体进行研磨抛光;随后采用丙酮和乙醇做溶剂在超声波仪中进行脱脂除油清洗;随后再用去离子水清洗,干燥后放入真空室内,抽真空度<5.0×10-4 Pa;
b、沉积前对基体的处理:
保持真空室真空<5.0×10-4 Pa条件下,采用偏压反溅射清洗15 min,目的是对锆合金基体进行反溅清洗;反溅射偏压电压为-450 V;反溅射气体为Ar;真空室内反溅射气压为3.5 Pa;
c、预溅射:
保持真空室真空<5.0×10-4 Pa条件下,采用预溅射对各靶材清洗15 min,目的是去除靶材表面的杂质;预溅射功率为120 W;预溅射偏压为-120 V;预溅射气体为Ar;真空室内预溅射气压为0.30 Pa;
d、溅射沉积ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层:
采用超高真空多靶共溅射技术,向真空室内通入Ar气,在基底上沉积Zr涂层,Ar流量为50 sccm,偏压工作电压为-80 V,沉积3 min后接着向真空腔以通入N2流量沉积ZrNx涂层,通入N2流量过程以流速为2 sccm/min从0 sccm增加至6 sccm,然后同时开启Al靶、Fe靶开始共溅射沉积(ZrAlFe)N涂,溅射工作气压为0.30 Pa ~ 0.50 Pa层。在沉积过渡层过程中始终保持Zr的溅射功率为110 W,Al靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,Fe靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,沉积时间10 min;不间断真空的条件下,保持N2流量为6 ~ 12 sccm,接着沉积(ZrAlFeM)N多元氮化物涂层,同时再开启另外两个M靶,即Ti,V,Nb任意选用两种金属靶材,其中一个靶位为直流靶,溅射电流和电压分别为0.5A和160 V ~ 180 V,另一个靶位为磁控靶且溅射功率为110 W ~ 120 W,沉积时间20 min。
以上所述Zr、Al、Fe、Ti、V各靶材的纯度均为99.999%,氮气的纯度为99.99%。
沉积过程中,样品台旋转速度为20~30 rpm;涂层溅射沉积过程的靶基距为4.5 ~5.5 cm。
本发明与现有技术相比具有以下有益效果:
1、本发明采用多靶共溅射技术,在制备ZrNx/(ZrAlFe)N过渡涂层过程中,在初始阶段沉积Zr涂层后向真空腔以2 sccm/min流速通入N2流量从0 sccm增加至6 sccm,使其形成ZrNx涂层,紧接着开启Al和Fe靶,使涂层过渡到(ZrAlFe)N涂层。通过设计涂层呈梯度变化微结构,能有效地减小基底与涂层间的因热失配导致的内应力,同时调控元素成分成梯度变化的复合涂层来提高其与锆基体的界面结合力;
2、本发明制备的ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层为纳米复合结构,因此涂层具有很高的强度和硬度;同时涂层中的元素成分为梯度变化结构,这种梯度成分变化有助于改善复合涂层的自修复能力,使得涂层具有更为优越的韧性、抗热震性能;
3、本发明中已制备出的ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层中(ZrNbTa)N过渡层中,Zr元素原子百分比含量沿厚度方向从100 at% ~ 30 at%梯度变化,Al和Fe元素原子百分比含量沿厚度方向从0 at% ~ 35 at%梯度变化;
沉积的(ZrAlFeM)N多元氮化物涂层中Zr、Al、Fe、M元素原子百分比介于10 at% ~ 35at%,N元素原子百分比含量介于5 % ~ 20 at%,从而获得了稳定的物相结构。本发明将制备的ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层应用于材料高温抗氧化领域,能显著提高核燃料锆合金包壳表面的高温抗氧化性能;
4、本发明采用的是超高真空多靶共溅射技术,在室温条件下就能实现ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层的制备,具有沉积效率高,成本低,工艺稳定性强的特点。
附图说明
图1为溅射沉积ZrNx/(ZrAlFe)N/(ZrAlFeTiV)N复合梯度涂层沉积态GIXRD图谱。
具体实施方式
下面结合附图及实施例对本发明进行详细的说明,但不意味着对本发明保护内容的任何限定。
本发明提供一种采用超高真空多靶共溅射技术,采用超高真空多靶共溅射技术,向真空室内通入Ar气,在基底上沉积Zr涂层,Ar流量为50 sccm,偏压工作电压为-80 V,沉积3 min后接着向真空腔以通入N2流量沉积ZrNx涂层,通入N2流量过程以流速为2 sccm/min从0 sccm增加至6 sccm,然后同时开启Al靶、Fe靶开始共溅射沉积(ZrAlFe)N涂,溅射工作气压为0.30 Pa ~ 0.50 Pa层。在沉积过渡层过程中始终保持Zr的溅射功率为110 W,Al靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,Fe靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,沉积时间10 min;不间断真空的条件下,保持N2流量为6 ~ 12 sccm,
接着沉积(ZrAlFeM)N多元氮化物涂层,同时再开启另外两个M靶,即Ti,V,Nb任意选用两种金属靶材,其中一个靶位为直流靶,溅射电流和电压分别为0.5 A和160 V ~ 180 V,另一个靶位为磁控靶且溅射功率为110 W ~ 120 W,沉积时间20 min。
实施例1
a、清洗基体材料:
依次采用不同粗糙度的水砂纸对锆合金(Zr4合金)基体进行研磨抛光;随后采用丙酮和乙醇做溶剂在超声波仪中进行脱脂除油清洗;随后再用去离子水清洗,干燥后放入真空室内,抽真空度<5.0×10-4 Pa;
b、沉积前对基体的处理:
保持真空室真空<5.0×10-4 Pa条件下,采用偏压反溅射清洗15 min,目的是对锆合金基体进行反溅清洗;反溅射偏压电压为-450 V;反溅射气体为Ar;真空室内反溅射气压为3.5 Pa;
c、预溅射:
保持真空室真空<5.0×10-4 Pa条件下,采用预溅射对各靶材清洗15 min,目的是去除靶材表面的杂质;预溅射功率为120 W;预溅射偏压为-120 V;预溅射气体为Ar;真空室内预溅射气压为0.30 Pa;
d、溅射沉积ZrNx/(ZrAlFe)N/(ZrAlFeTiV)N复合梯度涂层:
采用超高真空多靶共溅射技术,向真空室内通入Ar气,在基底上沉积Zr涂层,Ar流量为50 sccm,偏压工作电压为-80 V,沉积3 min后接着向真空腔以通入N2流量沉积ZrNx涂层,通入N2过程以流速为2 sccm/min从0 sccm增加至6 sccm,然后同时开启Al靶、Fe靶开始共溅射沉积(ZrAlFe)N涂,溅射工作气压为0.30 Pa ~ 0.50 Pa层。在沉积过渡层过程中始终保持Zr的溅射功率为110 W,Al靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,Fe靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,沉积时间10 min;不间断真空的条件下,保持N2流量为6 ~ 12 sccm,接着沉积(ZrAlFeTiV)N多元氮化物涂层,同时再开启Ti和V靶,其中Ti靶位为直流靶,溅射电流和电压分别为0.5 A和160 V ~ 180 V,V靶为磁控靶且溅射功率为110 W ~ 120 W,沉积时间20 min。
对上述实施例1所述的ZrNx/(ZrAlFe)N/(ZrAlFeTiV)N复合梯度涂层样品采用小角度掠入射X射线衍射谱(GIXRD)对其结构进行测试。同时检测到沉积的沉积的(ZrAlFeTiV)N多元氮化物涂层中Zr、Al、Fe、Ti、V元素原子百分比介于10 at% ~ 35 at%,图1示出所制备的复合涂层的GIXRD衍射谱,从中可见所制备出的沉积态复合梯度涂层主要为面心立方(FCC)固溶体结构,少量氮化物(ZrN、TiN)。
实施例2
a、清洗基体材料:
依次采用不同粗糙度的水砂纸对锆合金(Zr4合金)基体进行研磨抛光;随后采用丙酮和乙醇做溶剂在超声波仪中进行脱脂除油清洗;随后再用去离子水清洗,干燥后放入真空室内,抽真空度<5.0×10-4 Pa;
b、沉积前对基体的处理:
保持真空室真空<5.0×10-4 Pa条件下,采用偏压反溅射清洗15 min,目的是对锆合金基体进行反溅清洗;反溅射偏压电压为-450 V;反溅射气体为Ar;真空室内反溅射气压为3.5 Pa;
c、预溅射:
保持真空室真空<5.0×10-4 Pa条件下,采用预溅射对各靶材清洗15 min,目的是去除靶材表面的杂质;预溅射功率为120 W;预溅射偏压为-120 V;预溅射气体为Ar;真空室内预溅射气压为0.30 Pa;
d、溅射沉积ZrNx/(ZrAlFe)N/(ZrAlFeTiNb)N复合梯度涂层:
采用超高真空多靶共溅射技术,向真空室内通入Ar气,在基底上沉积Zr涂层,Ar流量为50 sccm,偏压工作电压为-80 V,沉积3 min后接着向真空腔以通入N2流量沉积ZrNx涂层,通入N2过程以流速为2 sccm/min从0 sccm增加至6 sccm,然后开启Al靶、Fe靶开始共溅射沉积(ZrAlFe)N涂,溅射工作气压为0.30 Pa ~ 0.50 Pa层。在沉积过渡层过程中始终保持Zr的溅射功率为110 W,Al靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,Fe靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,沉积时间10 min;不间断真空的条件下,保持N2流量为6 ~ 12 sccm,接着沉积(ZrAlFeTiNb)N多元氮化物涂层,同时再开启Ti和Nb靶,其中Ti靶位为直流靶,溅射电流和电压分别为0.5 A和160 V ~ 180 V,Nb靶为磁控靶且溅射功率为110 W ~ 120 W,沉积时间20 min。
此工艺条件下沉积的沉积的沉积的(ZrAlFeTiNb)N多元氮化物涂层中Zr、Al、Fe、Ti、Nb元素原子百分比介于10 at% ~ 35 at%,通过改变靶材类型来实现制备出的ZrNx/(ZrAlFe)N/(ZrAlFeTiNb)N复合梯度涂层的结构和性能调控,以满足产品用途的使用需求。
实施例3
a、清洗基体材料:
依次采用不同粗糙度的水砂纸对锆合金(Zr4合金)基体进行研磨抛光;随后采用丙酮和乙醇做溶剂在超声波仪中进行脱脂除油清洗;随后再用去离子水清洗,干燥后放入真空室内,抽真空度<5.0×10-4 Pa;
b、沉积前对基体的处理:
保持真空室真空<5.0×10-4 Pa条件下,采用偏压反溅射清洗15 min,目的是对锆合金基体进行反溅清洗;反溅射偏压电压为-450 V;反溅射气体为Ar;真空室内反溅射气压为3.5 Pa;
c、预溅射:
保持真空室真空<5.0×10-4 Pa条件下,采用预溅射对各靶材清洗15 min,目的是去除靶材表面的杂质;预溅射功率为120 W;预溅射偏压为-120 V;预溅射气体为Ar;真空室内预溅射气压为0.30 Pa;
d、溅射沉积ZrNx/(ZrAlFe)N/(ZrAlFeNbV)N复合梯度涂层:
采用超高真空多靶共溅射技术,向真空室内通入Ar气,在基底上沉积Zr涂层,Ar流量为50 sccm,偏压工作电压为-80 V,沉积3 min后接着向真空腔以通入N2流量沉积ZrNx涂层,通入N2过程以流速为2 sccm/min从0 sccm增加至6 sccm,然后开启Al靶、Fe靶开始共溅射沉积(ZrAlFe)N涂,溅射工作气压为0.30 Pa ~ 0.50 Pa层。在沉积过渡层过程中始终保持Zr的溅射功率为110 W,Al靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,Fe靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,沉积时间10 min;不间断真空的条件下,保持N2流量为6 ~ 12 sccm,接着沉积(ZrAlFeNbV)N多元氮化物涂层,同时再开启Nb和V靶,其中Nb靶位为直流靶,溅射电流和电压分别为0.5 A和160 V ~ 180 V,V靶为磁控靶且溅射功率为110 W ~ 120 W,沉积时间20 min。
此工艺条件下沉积的沉积的沉积的(ZrAlFeNbV)N多元氮化物涂层中Zr、Al、Fe、Nb、V元素原子百分比介于10 at% ~ 35 at%,通过改变靶材类型来实现所制备出的ZrNx/(ZrAlFe)N/(ZrAlFeNbV)N复合梯度涂层的结构和性能调控,以满足产品用途的使用需求。

Claims (4)

1.一种锆合金包壳表面抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺,其特征在于包含以下步骤:
a、清洗基体材料:
依次采用不同粗糙度的水砂纸对锆合金(Zr4合金)基体进行研磨抛光;随后采用丙酮和乙醇做溶剂在超声波仪中进行脱脂除油清洗;随后再用去离子水清洗,干燥后放入真空室内,抽真空度<5.0×10-4 Pa;
b、沉积前对基体的处理:
保持真空室真空<5.0×10-4 Pa条件下,采用偏压反溅射清洗15 min,目的是对锆合金基体进行反溅清洗;反溅射偏压电压为-450 V;反溅射气体为Ar;真空室内反溅射气压为3.5 Pa;
c、预溅射:
保持真空室真空<5.0×10-4 Pa条件下,采用预溅射对各靶材清洗15 min,目的是去除靶材表面的杂质;预溅射功率为120 W;预溅射偏压为-120 V;预溅射气体为Ar;真空室内预溅射气压为0.30 Pa;
d、溅射沉积ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层:
采用超高真空多靶共溅射技术,向真空室内通入Ar气,在基底上沉积Zr涂层,Ar流量为50 sccm,偏压工作电压为-80 V,沉积3 min后接着向真空腔以通入N2流量沉积ZrNx涂层,通入N2流量过程以流速为2 sccm/min从0 sccm增加至6 sccm,然后同时开启Al靶、Fe靶开始共溅射沉积(ZrAlFe)N涂层,溅射工作气压为0.30 Pa ~ 0.50 Pa层;在沉积过渡层过程中始终保持Zr的溅射功率为110 W,Al靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,Fe靶溅射功率从0 W以10 W/min速率逐渐增加到100 W,沉积时间10 min;不间断真空的条件下,保持N2流量为6 ~ 12 sccm,接着沉积(ZrAlFeM)N多元氮化物涂层,同时再开启另外两个M靶,即Ti,V,Nb任意选用两种金属靶材,其中一个靶位为直流靶,溅射电流和电压分别为0.5 A和160 V ~ 180 V,另一个靶位为磁控靶且溅射功率为110 W ~ 120 W,沉积时间20min。
2.根据权利要求1所述用于锆合金包壳表面抗氧化保护ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺,其特征在于:所述M为Ti、V、Nb金属中任意两种金属,且以上所述Zr、Al、Fe、Ti、V、Nb各靶材的纯度均为99.999%,氮气的纯度为99.99%。
3.根据权利要求1所述用于锆合金包壳表面抗氧化保护ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺,其特征在于:沉积过程中,保持样品台旋转速度为20 ~ 30 rpm;涂层溅射沉积过程的靶基距为4.5 ~ 5.5 cm;其中一个靶位为直流溅射靶,位于样品台正下方,而其余四个靶位为磁控溅射靶,四个磁控靶位与真空室中心轴线方向呈40°夹角。
4.根据权利要求1所述用于锆合金包壳表面抗氧化保护ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺,其特征在于:沉积的(ZrAlFe)N过渡层中,Zr元素原子百分比含量沿厚度方向从100 at% ~ 30 at%梯度变化,Al和Fe元素原子百分比含量沿厚度方向从0 at%~ 35 at%梯度变化;沉积的(ZrAlFeM)N多元氮化物涂层中Zr、Al、Fe、M元素原子百分比介于10 at% ~ 35 at%,N元素原子百分比含量介于5 at% ~ 20 at%。
CN201811268005.7A 2018-10-29 2018-10-29 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺 Active CN109207953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811268005.7A CN109207953B (zh) 2018-10-29 2018-10-29 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811268005.7A CN109207953B (zh) 2018-10-29 2018-10-29 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺

Publications (2)

Publication Number Publication Date
CN109207953A true CN109207953A (zh) 2019-01-15
CN109207953B CN109207953B (zh) 2020-07-03

Family

ID=64997587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811268005.7A Active CN109207953B (zh) 2018-10-29 2018-10-29 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺

Country Status (1)

Country Link
CN (1) CN109207953B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113987760A (zh) * 2021-10-09 2022-01-28 武汉理工大学 原子自组装多元涂层的设计制备方法
CN114540753A (zh) * 2022-03-22 2022-05-27 西安工业大学 提高高熵氮化物膜膜基结合强度的梯度过渡层及制备方法
CN115029677A (zh) * 2022-06-27 2022-09-09 商丘市鸿大光电有限公司 高透氢同位素和耐高温TaVNbZr/(TaVNbZrM)Nx梯度阻挡层制备工艺
CN115074685A (zh) * 2022-06-27 2022-09-20 商丘市鸿大光电有限公司 钽/钯催化氢纯化用耐高温TaVNb/TaVNbHfZr复合梯度阻挡层制备工艺
CN115341186A (zh) * 2021-05-13 2022-11-15 四川大学 一种耐高温辐照氧化钇掺杂TaTiNbZr多主元合金涂层制备工艺
CN116372206A (zh) * 2023-03-09 2023-07-04 株洲肯特硬质合金股份有限公司 一种刀具用纳米涂层及涂层刀具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016282A1 (ja) * 2008-08-06 2010-02-11 三菱重工業株式会社 回転機械用の部品
CN102277554A (zh) * 2011-07-29 2011-12-14 山推工程机械股份有限公司 梯度叠层涂层刀具及其制备方法
CN102400099A (zh) * 2011-11-04 2012-04-04 四川大学 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
CN102437145A (zh) * 2011-12-06 2012-05-02 西安交通大学 一种自形成梯度Zr/ZrN双层扩散阻挡层及其制备方法
CN102787300A (zh) * 2011-05-18 2012-11-21 中国核动力研究设计院 一种超临界水冷堆燃料包壳表面的Cr/CrAlN梯度涂层工艺
CN102808161A (zh) * 2012-05-29 2012-12-05 四川大学 口腔烤瓷用钛瓷TiN/ZrTiSiN复合过渡阻挡层制备工艺
CN103132019A (zh) * 2013-03-20 2013-06-05 洛阳理工学院 一种A1ZrCrN复合双梯度涂层刀具及其制备方法
CN107201499A (zh) * 2017-05-26 2017-09-26 东北大学 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016282A1 (ja) * 2008-08-06 2010-02-11 三菱重工業株式会社 回転機械用の部品
CN102787300A (zh) * 2011-05-18 2012-11-21 中国核动力研究设计院 一种超临界水冷堆燃料包壳表面的Cr/CrAlN梯度涂层工艺
CN102277554A (zh) * 2011-07-29 2011-12-14 山推工程机械股份有限公司 梯度叠层涂层刀具及其制备方法
CN102400099A (zh) * 2011-11-04 2012-04-04 四川大学 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
CN102437145A (zh) * 2011-12-06 2012-05-02 西安交通大学 一种自形成梯度Zr/ZrN双层扩散阻挡层及其制备方法
CN102808161A (zh) * 2012-05-29 2012-12-05 四川大学 口腔烤瓷用钛瓷TiN/ZrTiSiN复合过渡阻挡层制备工艺
CN103132019A (zh) * 2013-03-20 2013-06-05 洛阳理工学院 一种A1ZrCrN复合双梯度涂层刀具及其制备方法
CN107201499A (zh) * 2017-05-26 2017-09-26 东北大学 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115341186A (zh) * 2021-05-13 2022-11-15 四川大学 一种耐高温辐照氧化钇掺杂TaTiNbZr多主元合金涂层制备工艺
CN113987760A (zh) * 2021-10-09 2022-01-28 武汉理工大学 原子自组装多元涂层的设计制备方法
CN114540753A (zh) * 2022-03-22 2022-05-27 西安工业大学 提高高熵氮化物膜膜基结合强度的梯度过渡层及制备方法
CN114540753B (zh) * 2022-03-22 2024-01-26 西安工业大学 提高高熵氮化物膜膜基结合强度的梯度过渡层及制备方法
CN115029677A (zh) * 2022-06-27 2022-09-09 商丘市鸿大光电有限公司 高透氢同位素和耐高温TaVNbZr/(TaVNbZrM)Nx梯度阻挡层制备工艺
CN115074685A (zh) * 2022-06-27 2022-09-20 商丘市鸿大光电有限公司 钽/钯催化氢纯化用耐高温TaVNb/TaVNbHfZr复合梯度阻挡层制备工艺
CN115074685B (zh) * 2022-06-27 2023-10-27 商丘市鸿大光电有限公司 钽/钯催化氢纯化用耐高温TaVNb/TaVNbHfZr复合梯度阻挡层制备工艺
CN115029677B (zh) * 2022-06-27 2023-10-31 商丘市鸿大光电有限公司 高透氢同位素和耐高温TaVNbZr/(TaVNbZrM)Nx复合梯度阻挡层制备工艺
CN116372206A (zh) * 2023-03-09 2023-07-04 株洲肯特硬质合金股份有限公司 一种刀具用纳米涂层及涂层刀具
CN116372206B (zh) * 2023-03-09 2024-03-19 株洲肯特硬质合金股份有限公司 一种刀具用纳米涂层及涂层刀具

Also Published As

Publication number Publication date
CN109207953B (zh) 2020-07-03

Similar Documents

Publication Publication Date Title
CN109207953A (zh) 抗高温氧化ZrNx/(ZrAlFe)N/(ZrAlFeM)N复合梯度涂层制备工艺
CN107513694B (zh) 一种用于锆合金表面抗高温氧化ZrCrFe/AlCrFeTiZr复合梯度合金涂层制备工艺
CN109666911B (zh) 核用锆合金包壳表面耐高温腐蚀的高熵合金涂层及其制备方法
Sidelev et al. Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings
CN102400099B (zh) 核裂变堆燃料包壳表面CrAlSiN梯度涂层制备工艺
JP6999810B2 (ja) 高温耐酸化性が向上されたジルコニウム合金被覆管及びその製造方法
CN109852943B (zh) 核用锆合金表面CrN涂层的制备方法及产品
CN108642449A (zh) 超硬强韧高熵合金氮化物纳米复合涂层硬质合金刀片及其制备方法
CN111074224B (zh) 一种耐腐蚀高熵合金氮化物涂层、其制备方法及应用
CN115305443B (zh) 一种锆基非晶多组元氧化物涂层的制备方法及应用
CN109868475A (zh) 核燃料包壳及其制备方法、核燃料组件
CN109913771A (zh) 一种VAlTiCrSi高熵合金薄膜及其在海水环境下的应用
CN110484889A (zh) 一种具有耐高温水蒸汽氧化和耐热水腐蚀的多层防护涂层及制备方法和应用
CN110499494A (zh) 一种以Zr为基底的Cr/Al单层膜及其制备方法
He et al. Microstructure, mechanical properties and high temperature corrosion of [AlTiCrNiTa/(AlTiCrNiTa) N] 20 high entropy alloy multilayer coatings for nuclear fuel cladding
Wang et al. Comparative study on protective Cr coatings on nuclear fuel cladding Zirlo substrates by AIP and HiPIMS techniques
CN104441821A (zh) 一种高温合金复合纳米晶涂层及其制备方法
Li et al. Enhancement of oxidation resistance of Cr/CrN composite coating on Zr-4 surface by high lattice-matched interfacial Engineering
CN115679258A (zh) 一种高硬耐磨CrAlBN基复合涂层及其制备方法
CN112853287B (zh) 一种具有长时间耐高温水蒸汽氧化的防护涂层及其制备方法
Zhu et al. Effect of Bias Voltage on the Microstructure, Mechanical Properties, and High-Temperature Steam Oxidation Behavior of Cr Coatings Prepared by Magnetron Sputtering on Zircaloy-4 Alloy
Gou et al. The oxidation behaviors of Cr2N and Cr/Cr2N multilayer coatings on Zircaloy-4 tubes in high temperature environment
CN115305444B (zh) 锆合金基耐高温水腐蚀的AlCrNbTiZr高熵合金涂层及其制备方法
CN113430488B (zh) 一种核反应堆燃料包壳纳米复合涂层及其制备方法
CN117721417A (zh) 一种超耐磨锆合金包壳表面复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220314

Address after: 476005 SuZhuang village, Xincheng office, Suiyang District, Shangqiu City, Henan Province

Patentee after: Tian Haijun

Address before: 610065, No. 24, south section of first ring road, Chengdu, Sichuan, Wuhou District

Patentee before: SICHUAN University

TR01 Transfer of patent right