CN109164071B - 一种基于Fano共振效应的双阱间隧穿特性测量方法 - Google Patents

一种基于Fano共振效应的双阱间隧穿特性测量方法 Download PDF

Info

Publication number
CN109164071B
CN109164071B CN201811001217.9A CN201811001217A CN109164071B CN 109164071 B CN109164071 B CN 109164071B CN 201811001217 A CN201811001217 A CN 201811001217A CN 109164071 B CN109164071 B CN 109164071B
Authority
CN
China
Prior art keywords
tunneling
quantum well
absorption spectrum
double
asymmetry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811001217.9A
Other languages
English (en)
Other versions
CN109164071A (zh
Inventor
彭延东
李晨
汪金陵
杨艾红
张仲建
赵树材
周文鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201811001217.9A priority Critical patent/CN109164071B/zh
Publication of CN109164071A publication Critical patent/CN109164071A/zh
Application granted granted Critical
Publication of CN109164071B publication Critical patent/CN109164071B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1717Systems in which incident light is modified in accordance with the properties of the material investigated with a modulation of one or more physical properties of the sample during the optical investigation, e.g. electro-reflectance
    • G01N2021/1721Electromodulation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于Fano共振效应的双阱间隧穿测量方法,具体步骤为:S1:调节外置偏压源,使双量子阱结构达到共振隧穿,在探测光的激发下,通过光电检测器探测吸收谱的双峰的间距,粗略确定隧穿特性的大小;S2:再次调节外置偏压源,找到双量子阱结构合适的隧穿失谐,再次通过光电检测器探测吸收谱的非对称性,
Figure DDA0001783004710000011
为合适的遂穿失谐,Δ是代表态之间的能级间隔;S3:利用双量子阱结构的极化率确定吸收谱,吸收谱A=c*Im(χ(1)),其中c为常系数,Im(χ(1))为取χ(1)的虚部;S4:将吸收谱的非对称性与隧穿特性的变化关系进行数值拟合,得到双量子阱结构的隧穿特性的大小与吸收谱的非对称性成反比。本发明能够实现隧穿特性的精密测量,提供测量精确度。

Description

一种基于Fano共振效应的双阱间隧穿特性测量方法
技术领域
本发明涉及一种双阱间隧穿特性测量方法,尤其涉及一种基于Fano共振效应的双阱间隧穿特性测量方法。
背景技术
半导体纳米微结构(量子点、量子阱等)的隧穿耦合特性是量子态制备、传递和读取等相干调控的基础,而且深入研究隧穿效应有助于分析电子轨道、自旋态和价态等内禀特性以及光子/声子的吸收/辐射等外部效应,所以结构自身隧穿特性的精密测量是当下微纳材料和光电器件设计的热点问题。量子阱材料具有电偶极矩大、相干时间长、器件易于集成等优点,耦合量子阱***中,阱间隧穿耦合作用显著地改变了介质的光学特性,所以可以借助于介质的光学性质探测隧穿特性。目前,隧穿测量主要有电学方法和光学方法,电学方法主要有两种:其一是通过对源极和漏极之间的微弱电流的精确测量反映隧穿大小;另外一种电学方法是利用静电计靠近量子点,通过感应电荷量反映量子点的隧穿特性,属于无接触测量,但是目前的探测方法,很少有方案考虑到连续态参与的情况,也很少有涉及到利用Fano共振吸收谱的非对称性测量双阱间遂穿特性大小的方法。
发明内容
本发明考虑了连续态的参与,降低了测量的局限性,在连续态参与下的Fano共振效应,分析吸收谱线非对称性对隧穿特性的变化关系。
为了实现上述目的,本发明采用如下技术方案:
一种基于Fano共振效应的双阱间隧穿特性测量方法,具体步骤为:
S1:调节外置偏压源,使双量子阱结构达到共振隧穿,在探测光的激发下,通过光电检测器探测吸收谱的双峰的间距,粗略确定隧穿特性的大小Te;
S2:再次调节外置偏压源,找到双量子阱结构合适的隧穿失谐,再次通过光电检测器探测吸收谱的非对称性,隧穿失谐ΔTe与能级间隔Δ的关系为:
Figure BDA0001783004690000011
其中
Figure BDA0001783004690000012
为合适的遂穿失谐;
S3:利用双量子阱结构的极化率确定吸收谱,吸收谱A=c*Im(χ(1)),其中c为常系数,Im(χ(1))为取χ(1)的虚部;
S4:将吸收谱的非对称性与隧穿特性的变化关系进行数值拟合,得到双量子阱结构的隧穿特性的大小与吸收谱的非对称性成反比。
所述双量子阱结构的极化率计算公式为:
Figure BDA0001783004690000021
N是载流子密度,约为5×1011cm-2,Δ1是探测场失谐,q是缀饰态|1>→|3>的跃迁与缀饰态|1>→|2>的跃迁偶极矩之比,o代表Fano共振干涉项,由双量子阱间隧穿控制,μ10=5×10-27c·m是量子阱材料的电偶极矩,Γ2代表量子阱材料的缀饰态|2>的衰减速率,Γ3代表量子阱材料的缀饰态|3>的衰减速率,i表示虚数单位,
Figure BDA0001783004690000022
是普朗克常量,∈0是电介质常数,Δ是代表态|2>和|3>的能级间隔。
所述吸收谱的非对称性与双量子阱间隧穿特性的变化关系为:y=-674.3x+117.5;y为吸收谱的非对称性,x为双量子阱间隧穿特性的大小。
实现一种基于Fano共振效应的双阱间隧穿测量方法的实验设备主要包括:激光器,用于产生探测光,激发基态的载流子;外置偏压源,用于控制双量子阱结构的隧穿特性以及隧穿失谐;光电检测器,用于探测吸收谱的非对称性。
本发明的有益效果:
1.本发明提出了一种基于Fano共振效应的双量子阱结构的隧穿特性的测量方法,丰富了隧穿特性测量方法;
2.本发明利用Fano干涉效应,通过吸收谱的非对称性实现双量子阱结构隧穿特性大小的精密测量,相比使用其他指标,测量更加精密,有利于提高测量的精确性。
附图说明
图1为实验方案所用量子阱材料的结构图;
图2为简化的能级模型图;
图3为吸收谱的非对称性变化图形;
图4为非对称性变化对隧穿变化关系的拟合图;
图5为双阱间隧穿测量实验装置;
其中:1.激光器;2.双量子阱结构;3.外置偏压源;4.光电探测器。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
如图5所示,本实施例中所需要的实验装置主要包括:激光器1用于产生探测光,激发基态的载流子,外置偏压源3用于控制双量子阱结构2的隧穿特性以及隧穿失谐,光电检测器4用于探测吸收谱的非对称性。
如图1和图2所示,双量子阱结构以及导带能级结构,|1>是右边阱的基态,E1=46.7mev,|4>是左边阱的激发态,E4=296.3mev,|2>和|3>是由于双量子阱间隧穿耦合左边阱的基态和右边阱的激发态形成的基态,能量分别为E2=174.8mev,E3=183.5mev;此双量子阱结构的生长顺序是从左至右,左边是比较厚的Al0.4Ga0.6As势垒,右侧是6.8nm宽度的Al0.16Ga0.84A的浅阱,宽度3.0nm的Al0.4Ga0.6As势垒分隔开右边7.7nm宽度的GaAs深阱,最后是一个薄的Al0.4Ga0.6As势垒,宽度为1.5nm,最右侧是Al0.16Ga0.84As的厚涂层;双量子阱间隧穿耦合作用会形成新态|2>和|3>,新形成的两个态|2>和|3>会穿过薄的Al0.4Ga0.6As势垒到最右侧的连续态,探测光的跃迁过程会经过新态|2>和|3>两条路径到达同一个连续态,形成Fano干涉效应。由外置偏压源3提供的偏压大小控制双量子阱间隧穿特性的大小,施加偏压的电极,其位置控制隧穿失谐;由激光器1提供9.36μm的激光束作为探测光,照射在携带双量子阱结构材料的晶体上,通过光电检测器4测量双量子阱结构共振隧穿时的吸收谱,依据吸收谱双峰间距大致判断出隧穿特性大小的大致范围,吸收谱的两个峰值之间的间距大致反应隧穿特性Te,通过调节外置偏压源3电极的位置,找到合适的失谐范围,
Figure BDA0001783004690000031
为合适的失谐范围,隧穿失谐ΔTe与能级间隔Δ的关系为:
Figure BDA0001783004690000032
此时非对称性变化显著,失谐范围调节到合适位置之后,吸收谱的非对称性对隧穿变化如图3所示,将吸收谱的非对称性与隧穿特性的变化关系进行数值拟合,吸收谱的非对称性与双阱间隧穿特性的变化关系为:y=-674.3x+117.5;y为吸收谱的非对称性,x为双量子阱间隧穿特性的大小,精确得到双量子阱结构的遂穿特性的大小。
图4为吸收谱的非对称性变化对隧穿特性变化关系的拟合图,图中纵轴是吸收谱非对称性,横轴是隧穿特性的微弱变化,图中黑点是理论模拟值,实线是拟合的结果。
综上所述,本发明结合了Fano干涉效应,通过吸收谱的非对称性精确测量隧穿特性,进一步拓宽了隧穿特性测量的应用范围。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (2)

1.一种基于Fano共振效应的双阱间隧穿特性测量方法,该测量方法的实验设备主要包括:激光器,用于产生探测光,激发基态的载流子;外置偏压源,用于控制双量子阱结构的隧穿特性以及隧穿失谐;光电检测器,用于探测吸收谱的非对称性;该测量方法的具体步骤为:
S1:调节外置偏压源,使双量子阱结构达到共振隧穿,在探测光的激发下,通过光电检测器探测吸收谱的双峰的间距,粗略确定隧穿特性的大小;
S2:再次调节外置偏压源,找到双量子阱结构合适的隧穿失谐,再次通过光电检测器探测吸收谱的非对称性,
Figure FDA0002651050510000011
为合适的遂穿失谐,Δ是代表态之间的能级间隔;
S3:利用双量子阱结构的极化率确定吸收谱,吸收谱A=c*Im(χ(1)),其中c为常系数,Im(χ(1))为取χ(1)的虚部;所述双量子阱结构的极化率计算公式为:
Figure FDA0002651050510000012
N是载流子密度,为5×1011cm-2,Δ1是探测场失谐,q是缀饰态|1>→|3>的跃迁与缀饰态|1>→|2>的跃迁偶极矩之比,o代表Fano共振干涉项,由阱间隧穿控制,μ10=5×10-27c·m是量子阱材料的电偶极矩,Γ2代表量子阱材料的缀饰态|2>的衰减速率,Γ3代表量子阱材料的缀饰态|3>的衰减速率,i表示虚数单位,
Figure FDA0002651050510000013
是普朗克常量,∈0是电介质常数,Δ是代表态|2>和|3>的能级间隔;
S4:将吸收谱的非对称性与隧穿特性的变化关系进行数值拟合,得到双量子阱结构的隧穿特性的大小与吸收谱的非对称性成反比。
2.如权利要求1所述的一种基于Fano共振效应的双阱间隧穿特性测量方法,其特征在于,所述吸收谱的非对称性与双量子阱间隧穿特性的变化关系为:y=-674.3x+117.5;y为吸收谱的非对称性,x为双量子阱间隧穿特性的大小。
CN201811001217.9A 2018-08-30 2018-08-30 一种基于Fano共振效应的双阱间隧穿特性测量方法 Expired - Fee Related CN109164071B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811001217.9A CN109164071B (zh) 2018-08-30 2018-08-30 一种基于Fano共振效应的双阱间隧穿特性测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811001217.9A CN109164071B (zh) 2018-08-30 2018-08-30 一种基于Fano共振效应的双阱间隧穿特性测量方法

Publications (2)

Publication Number Publication Date
CN109164071A CN109164071A (zh) 2019-01-08
CN109164071B true CN109164071B (zh) 2020-11-10

Family

ID=64893408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811001217.9A Expired - Fee Related CN109164071B (zh) 2018-08-30 2018-08-30 一种基于Fano共振效应的双阱间隧穿特性测量方法

Country Status (1)

Country Link
CN (1) CN109164071B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648659A1 (de) * 1996-08-27 1998-05-28 Forschungsverbund Berlin Ev Verfahren zur Bestimmung von Degradationsprozessen in Halbleiterlasern
CN102226752A (zh) * 2011-04-08 2011-10-26 常熟舒茨电子科技发展有限公司 利用光声光谱法检测二氧化硫浓度的方法
CN102257406A (zh) * 2008-10-07 2011-11-23 特拉辛斯集团公司 探测电磁辐射的设备和方法
US10134498B2 (en) * 2013-12-03 2018-11-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Plasmon generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19648659A1 (de) * 1996-08-27 1998-05-28 Forschungsverbund Berlin Ev Verfahren zur Bestimmung von Degradationsprozessen in Halbleiterlasern
CN102257406A (zh) * 2008-10-07 2011-11-23 特拉辛斯集团公司 探测电磁辐射的设备和方法
CN102226752A (zh) * 2011-04-08 2011-10-26 常熟舒茨电子科技发展有限公司 利用光声光谱法检测二氧化硫浓度的方法
US10134498B2 (en) * 2013-12-03 2018-11-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Plasmon generator

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Tunneling-induced coherent electron population transfer in an asymmetric quantum well;Ni Cui 等;《Optics Communications》;20110309;第284卷(第12期);A005-157 *
电子隧穿耦合双量子阱的结构设计及光学特性控制;贾继奎 等;《吉林大学学报( 理学版)》;20110131;第49卷(第1期);第117-120页 *
量子阱中基于共振隧穿的非线性过程研究;伊晓红;《中国优秀硕士学位论文全文数据库基础科学辑》;20150215(第02期);第3134-3139页 *

Also Published As

Publication number Publication date
CN109164071A (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
Thaicharoen et al. Electromagnetically induced transparency, absorption, and microwave-field sensing in a Rb vapor cell with a three-color all-infrared laser system
Utikal et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal
Feng et al. Probing the fluorescence dipoles of single cubic CdSe/CdS nanoplatelets with vertical or horizontal orientations
Đorđević et al. Machine learning for analysis of time-resolved luminescence data
Fernée et al. Cryogenic single-nanocrystal spectroscopy: reading the spectral fingerprint of individual CdSe quantum dots
JP6052536B2 (ja) 光誘起キャリヤライフタイム測定装置及び光誘起キャリヤライフタイム測定方法
CN102175727B (zh) 光激发微分电容法测定低背景载流子浓度的方法
Roy et al. Progress toward producing n-type CdSe quantum dots: tin and indium doped CdSe quantum dots
CN105259490A (zh) 一种区分光致反常霍尔效应本征机制和非本征机制的方法
Zhang et al. A modified spin pulsed readout method for NV center ensembles reducing optical noise
CN109164071B (zh) 一种基于Fano共振效应的双阱间隧穿特性测量方法
Bogdanov et al. Optical investigation of as-grown NV centers in heavily nitrogen doped delta layers in CVD diamond
CN104614657A (zh) 一种探测纳米结构表面俘获态密度的方法及装置
Yang et al. Special optical performance from single upconverting micro/nanoparticles
Song et al. High sensitivity multiple microcavity enhanced 3-D printed micro-stud array ultrafast response detector at 6G frequency
Hahneiser et al. Theoretical and experimental study of charge carrier kinetics in crystalline silicon
Ahrenkiel et al. Interface recombination velocity measurement by a contactless microwave technique
CN103523742B (zh) 一种mos结构的辐射剂量探测器及其制备方法
CN107340611B (zh) 激光热处理的硅基pva薄膜光控太赫兹波调制器
Koshelev Reduction in the Photosensitivity Contrast of Inhomogeneous n+–p (n)–p+ Structures of Silicon, Measured while Scanning the p–n Junction with Light
Roberts et al. Impact of Photo-induced Physical and Chemical Processes on Lateral Transport of Excitons in Quantum Dot Thin Films
Kurkina et al. Luminescence and deep-level transient spectroscopy of grown dislocation-rich Si layers
Yin et al. Tunable resonant Raman scattering from singly resonant single wall carbon nanotubes
Erdem et al. Liquid Interface Self-Assembly of Colloidal Nanoplatelets for Optoelectronics
Saxena Design and Characterisation of III-V Semiconductor Nanowire Lasers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201110

Termination date: 20210830