CN109107614A - 一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法 - Google Patents

一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法 Download PDF

Info

Publication number
CN109107614A
CN109107614A CN201811093617.7A CN201811093617A CN109107614A CN 109107614 A CN109107614 A CN 109107614A CN 201811093617 A CN201811093617 A CN 201811093617A CN 109107614 A CN109107614 A CN 109107614A
Authority
CN
China
Prior art keywords
metal
modified
polypyrrole
solution
nano composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811093617.7A
Other languages
English (en)
Inventor
杨柳青
曹可生
白青
程国斌
侯延民
李青彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingdingshan University
Original Assignee
Pingdingshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pingdingshan University filed Critical Pingdingshan University
Priority to CN201811093617.7A priority Critical patent/CN109107614A/zh
Publication of CN109107614A publication Critical patent/CN109107614A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • B01J35/39
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light

Abstract

本发明公开了聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法,该纳米复合材料是将金属修饰Sn3O4半导体异质结通过化学键络合的形式负载分散于聚吡咯而得到的复合光催化剂材料;金属修饰Sn3O4是将Pt、Au、Ag、Cu等具有等离子共振效应的单组分金属或多组分合金的金属纳米粒子分别负载于Sn3O4上。本发明利用Sn3O4的可见光光催化氧化还原特性、金属纳米粒子的等离子共振效应、聚吡咯的光传导和导电性以及不同组分之间具有化学键合的异质结结构,来充分提高其光催化反应中的光生电子‑空穴分离率,从而有利于提高其光催化氧化还原降解污染物和光催化分解水产氢的性能。同时,聚吡咯易塑型的特点能有效避免粉体材料的回收困难问题。

Description

一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法
技术领域
本发明涉及一种纳米复合光催化材料的制备方法,具体涉及一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法。
背景技术
光催化材料的发展对于解决有机物污染问题和能源短缺问题具有重要意义。在光催化领域,金属负载型半导体光催化材料由于具有催化活性高、催化剂稳定性强等特点而被广泛研究。但目前金属负载型半导体光催化材料存在的光生载流子分离率仍不够高。
氧化锡是一种重要的n型宽带隙半导体,它具有优异的光电特性、气敏特性、化学稳定性和环境友好性,因而被广泛应用于药物传输、能量储存、磁存储介质材料、太阳能电池、电极材料、气敏传感材料、电催化材料和光催化材料等领域。然而单价态化学计量比氧化锡SnO2较大的禁带宽度限制了其在可见光范围内的光催化能力,对其进行氧空位缺陷浓度的调节以获得非化学计量比的缺陷型氧化锡材料,有利于提高其可见光光催化性能。文献报道中,非化学计量比的氧化锡Sn3O4表现出了较小的禁带宽度以及较优异的可见光光催化性能。经水热法可以制备得到的层状Sn3O4纳米片具有可见光响应的禁带宽度(2.76eV)和优异的太阳光分解水制氢性能(3916μmol·h-1/0.5g)[Balgude,S.D.,Sethi,Y.A.,Kale,B.B.,Munirathnam,N.R.,Amalnerkar,D.P.,Adhyapak,P.V.Nanostructured layeredSn3O4 for hydrogen production and dye degradation under sunlight[J].RSCAdvances,2016,6(98):95663-95669.]。并且多级纳米结构的Sn3O4实现了30min内太阳光照射条件下甲基橙30%的降解[Song,H.,Son,S.Y.,Kim,S.K.,&Jung,G.Y.A facilesynthesis of hierarchical Sn3O4 nanostructures in an acidic aqueous solutionand their strong visible-light-driven photocatalytic activity.Nano Research,2015,8(11),3553-3561.]。文献报道了关于Sn3O4的制备方法如下:溶剂热法[何运慧.Sn3O4基光催化材料的控制合成及性能研究[D].福州大学,2014.]、水热法[崔磊,杨丽娟,王帆,等.花状空心Sn3O4微球的制备及其光催化性能的研究[J].无机材料学报,2016,31(5):461-465.][Chen,X.,Huang,Y.,Zhang,K.,Feng,X.,&Wei,C.Novel hierarchical flowers-like Sn3O4 firstly used as anode materials for lithium ion batteries.Journalof Alloys and Compounds,2017,690,765-770.]、强酸条件下的水热法[Song H,Son S Y,Kim S K,et al.A facile synthesis of hierarchical Sn3O4,nanostructures in anacidic aqueous solution and their strong visible-light-driven photocatalyticactivity[J].纳米研究(英文版),2015,8(11):3553-3561.]、高温碳热还原法[Suman P H,Longo E,Varela J A,et al.Controlled synthesis of layered Sn3O4 nanobelts bycarbothermal reduction method and their gas sensor properties.[J].J NanosciNanotechnol,2014,14(9):6662-6668.]等等。但未经改性的Sn3O4由于单一材料实在难以达到光生载流子分离率的最大化,因而需要对其进行改性制备,以进一步提高其光催化性能。
对Sn3O4改性的研究报道包括Ce掺杂Sn3O4[Ma,X.,Shen,J.,Hu,D.,Sun,L.,Chen,Y.,&Liu,M.,et al Preparation of three-dimensional ce-doped Sn3O4hierarchicalmicrosphere and its application on formaldehyde gas sensor.Journal of Alloys&Compounds,2017,726.]、石墨烯复合Sn3O4[Yu,X.,Zhao,Z.,Sun,D.,Ren,N.,Yu,J.,&Yang,R.,et al.(2018).Microwave-assisted hydrothermal synthesis of Sn3O4,nanosheet/rgo planar heterostructure for efficient photocatalytic hydrogengeneration.Applied Catalysis B Environmental.]、Ag负载Sn3O4[Tian,L.,Xia,K.,Hu,W.,Zhong,X.,Chen,Y.,&Yang,C.,et al.A wide linear range and stable H2O2,electrochemical sensor based on Ag decorated hierarchical Sn3O4.ElectrochimicaActa,2017,231,190-199.]。但以上材料的光生电子-空穴分离率依然没有达到最优化,并且存在着稳定性不够高的缺陷,因而抑制了其光催化性能的进一步提高。
聚吡咯因无毒、低廉的制造成本、快速的电子传送能力、优秀的电化学性能、高的机械性能、良好的耐腐蚀性能和优异的塑型特性,已经被广泛应用于充电电池、太阳能电池、光催化材料领域等光学、电学、磁学以及这些学科的交叉领域[秦蕾.基于氧化锌-导电高分子的复合材料的制备、表征及性能研究[D].博士论文,江苏科技大学,2015.]
Sn3O4在光催化分解水产氢和光催化降解有机污染物方面均表现了强大的潜能。Sn3O4表面丰富的含氧功能基团使得它容易被修饰。金属纳米粒子由于其表面等离子共振的现象、可调的光学特性而被用于拓展光催化材料的光吸收。Sn3O4被修饰金属纳米粒子能够有效提高Sn3O4的光吸收和光催化性能。用于电子、光学、电化学方面的导电聚合物,如聚吡咯(PPy)等也成为开始被用于光催化。
目前,有关聚吡咯/金属负载型半导体复合材料的制备方法主要有如下几种:聚合法结合静电吸附法[陈浩琳.石墨烯-金纳米复合材料的制备及其在SERS成像和肿瘤热化疗的应用[D].华南师范大学,2016.]、化学沉积法[Liu Y,Zhang H,Lu Y,et al.A simplemethod to prepare g-C3N4/Ag-polypyrrole composites with enhanced visible-lightphotocatalytic activity[J].Catalysis Communications,2016,87:41-44.]、三步法[Zhang F,Duan F,Ding Z,et al.Synthesis of Visible-Light-Driven g-C3N4/PPy/AgTernary Photocatalyst with Improved Photocatalytic Performance[J].ChineseJournal of Chemistry,2017,35(2).]等等。以上这些制备方法都具有其独特的优点,但不足之处大多在于制备工艺复杂、需要多步反应、样品硬团聚效应明显、负载金属易脱落等等。
发明内容
本发明的目的在于提供一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法,即采用湿化学原位合成法制备出形貌可控、分散程度高、粒度均一且界面结合紧密的聚吡咯/金属修饰Sn3O4纳米复合光催化材料。
为达到上述目的,本发明采用的技术方案是:
1)取1mmol分析纯的辛酸亚锡(C16H30O4Sn)和0.6~4.7mmol的乙酸(CH3COOH),充分溶解于2~17mL的无水乙醇中,之后依次加入4~18mmol的山梨酸钠、0.5~6mmol的植酸和10~26mL的去离子水,混合均匀得到溶液A;
2)取0~0.2mmol分析纯的氯铂酸(H2PtCl6)、0~1mmol的氯金酸(HAuCl4)、0~9.0mmol的硝酸银(AgNO3)、0~10mmol的硝酸铜(Cu(NO3)2)和0.1~6.0mmol的乙酸(CH3COOH)充分溶解于7~15mL的去离子水中得到溶液B;
3)将溶液B以30~60滴/分钟的速度逐滴加入溶液A中得到混合液C;
4)将混合液C转移至聚四氟乙烯内衬的水热釜中,然后将水热釜放入恒温烘箱中在80~160℃保温24~48h,水热反应结束,冷却至室温得到含有金属修饰的Sn3O4异质结的混合液D;
5)控制吡咯(C4H5N)和步骤1)中所用辛酸亚锡(C16H30O4Sn)的摩尔比为(0.01~0.1):1,将吡咯(C4H5N)在密闭容器中充分溶解于无水乙醇中,得到溶液E,将混合液D缓慢加入溶液E中,用丁二酸溶液调节其pH值为1~3后迅速密封容器,磁力搅拌0.5~2h后将容器转移至-20~0℃的低温恒温箱中,静置2~72h;
6)反应结束后,将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤,最后在30~70℃且真空度为10-1~10-3Pa的真空干燥箱中干燥,即得聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料。
所述步骤1、2、3、5)整个过程在-20~0℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌均匀。
所述步骤4)的填充比为40~70%。
所述步骤5)丁二酸溶液的浓度为0.5~10mol/L。
所述步骤6)使用去离子水及无水乙醇各自洗涤3~8次。
所述步骤6)干燥时间为1~12h。
本发明利用聚吡咯的导电性和易成型特性,Pt、Au、Ag、Cu等具有等离子共振效应的单组分金属或多组分合金的金属纳米粒子的等离子共振光敏化,以及氧空位缺陷调节Sn3O4能级结构的协同促进作用,来获得高效稳定的光催化性能。
本发明制备得到的聚吡咯/金属修饰Sn3O4纳米复合材料大大提高了Sn3O4在紫外到近红外区的宽谱光吸收,具有优异的光催化性能。
与传统制备方法相比,本发明所提出的湿化学原位合成法制备得到的聚吡咯/金属修饰Sn3O4纳米复合光催化材料具有稳定性高、分散性好、粒径分布窄、晶体发育完整、形貌及尺寸可控、工艺简单高效和界面结合紧密等优点,有效克服了传统金属负载型半导体复合光催化材料中金属粒子容易移动、脱落的问题,获得了更加高效的光催化性能。
本发明的有益效果体现在:
1)本发明制备方法控制简单,制备温度低且不需要后期晶化处理,不仅能耗较低、成本较低,并且有效避免了传统粉末样品难于分离、易造成“二次污染”的问题。实现了界面结合紧密且粒度均一的新型可回收、环保型聚吡咯(Ppy)/金属修饰Sn3O4纳米结构复合光催化材料。
2)本发明制备得到的、聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料,利用聚吡咯的导电性、金属纳米颗粒的等离子共振效应以及Sn3O4的氧空位缺陷,这些效应互相耦合,实现了紧密界面结构上高效的光生电子-空穴对的分离,并且有效拓展了其太阳光广谱光吸收能力,从而在太阳光照射6h的条件下获得了速率为8261μmol·h-1·g-1的光催化降解异丙醇气体产CO2的性能。
附图说明
图1为本发明实施例2制备的聚吡咯(Ppy)/金银铜三元合金金属修饰的Sn3O4纳米复合光催化材料的扫描电子显微镜(SEM)图谱。
具体实施方式
下面结合附图对本发明作进一步详细说明。
实施例1:
1)取1mmol分析纯的辛酸亚锡(C16H30O4Sn)和0.6mmol的乙酸(CH3COOH),充分溶解于2mL的无水乙醇中,之后依次加入4mmol的山梨酸钠、0.5mmol的植酸和10mL的去离子水,整个过程在-20℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌均匀得到溶液A;
2)取0.05mmol分析纯的氯铂酸(H2PtCl6)、1mmol的硝酸银(AgNO3)、10mmol的硝酸铜(Cu(NO3)2)和0.1mmol的乙酸(CH3COOH)充分溶解于7mL的去离子水中,整个过程在-20℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到溶液B;
3)将溶液B以30滴/分钟的速度逐滴加入溶液A中,整个过程在-20℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到混合液C;
4)按70%的填充比将混合液C转移至聚四氟乙烯内衬的水热釜中,然后将水热釜放入恒温烘箱中在80℃保温48h,水热反应结束,冷却至室温得到含有金属修饰的Sn3O4异质结的混合液D;
5)在-20℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌下,控制吡咯(C4H5N)和步骤1)中所用辛酸亚锡(C16H30O4Sn)的摩尔比为0.01:1,将吡咯(C4H5N)在密闭容器中充分溶解于无水乙醇中,得到溶液E,将混合液D缓慢加入溶液E中,用0.5mol/L的丁二酸溶液调节其pH值为3后迅速密封容器,磁力搅拌2h后将容器转移至-20℃的低温恒温箱中,静置72h;
6)反应结束后,将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤3次,最后在30℃且真空度为10-3Pa的真空干燥箱中干燥12h,即得聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料。
实施例2:
1)取1mmol分析纯的辛酸亚锡(C16H30O4Sn)和2mmol的乙酸(CH3COOH),充分溶解于11mL的无水乙醇中,之后依次加入10mmol的山梨酸钠、3mmol的植酸和15mL的去离子水,整个过程在-10℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌均匀得到溶液A;
2)取0.5mmol的氯金酸(HAuCl4)、1mmol的硝酸银(AgNO3)、5mmol的硝酸铜(Cu(NO3)2)和3mmol的乙酸(CH3COOH)充分溶解于10mL的去离子水中,整个过程在-10℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到溶液B;
3)将溶液B以40滴/分钟的速度逐滴加入溶液A中,整个过程在-10℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到混合液C;
4)按66%的填充比将混合液C转移至聚四氟乙烯内衬的水热釜中,然后将水热釜放入恒温烘箱中在130℃保温36h,水热反应结束,冷却至室温得到含有金属修饰的Sn3O4异质结的混合液D;
5)在-10℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌下,控制吡咯(C4H5N)和步骤1)中所用辛酸亚锡(C16H30O4Sn)的摩尔比为0.05:1,将吡咯(C4H5N)在密闭容器中充分溶解于无水乙醇中,得到溶液E,将混合液D缓慢加入溶液E中,用5mol/L的丁二酸溶液调节其pH值为2后迅速密封容器,磁力搅拌1h后将容器转移至-10℃的低温恒温箱中,静置36h;
6)反应结束后,将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤5次,最后在50℃且真空度为10-2Pa的真空干燥箱中干燥6h,即得聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料。
由图1可以看出,该复合材料由聚吡咯(Ppy)、Au/Ag/Cu三元合金和Sn3O4组成,组分之间紧密结合。该复合材料中Sn3O4呈现为结合较为紧密的纳米颗粒,颗粒直径约为5~10nm,Au/Ag/Cu三元合金呈现为合金纳米颗粒棒状团簇形貌,其棒状团簇的长度约为300~700nm,聚吡咯均匀致密地填充于组分之中。
实施例3:
1)取1mmol分析纯的辛酸亚锡(C16H30O4Sn)和4.7mmol的乙酸(CH3COOH),充分溶解于17mL的无水乙醇中,之后依次加入18mmol的山梨酸钠、6mmol的植酸和26mL的去离子水,整个过程在0℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌均匀得到溶液A;
2)取1mmol的氯金酸(HAuCl4)、3mmol的硝酸银(AgNO3)和6mmol的乙酸(CH3COOH)充分溶解于15mL的去离子水中,整个过程在0℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到溶液B;
3)将溶液B以60滴/分钟的速度逐滴加入溶液A中,整个过程在0℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到混合液C;
4)按40%的填充比将混合液C转移至聚四氟乙烯内衬的水热釜中,然后将水热釜放入恒温烘箱中在160℃保温24h,水热反应结束,冷却至室温得到含有金属修饰的Sn3O4异质结的混合液D;
5)在0℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌下,控制吡咯(C4H5N)和步骤1)中所用辛酸亚锡(C16H30O4Sn)的摩尔比为0.1:1,将吡咯(C4H5N)在密闭容器中充分溶解于无水乙醇中,得到溶液E,将混合液D缓慢加入溶液E中,用10mol/L的丁二酸溶液调节其pH值为1后迅速密封容器,磁力搅拌0.5h后将容器转移至0℃的低温恒温箱中,静置2h;
6)反应结束后,将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤8次,最后在70℃且真空度为10-1Pa的真空干燥箱中干燥1h,即得聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料。
实施例4:
1)取1mmol分析纯的辛酸亚锡(C16H30O4Sn)和1mmol的乙酸(CH3COOH),充分溶解于5mL的无水乙醇中,之后依次加入8mmol的山梨酸钠、1mmol的植酸和20mL的去离子水,整个过程在-15℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌均匀得到溶液A;
2)取0.1mmol分析纯的氯铂酸(H2PtCl6)、0.2mmol的氯金酸(HAuCl4)、3mmol的硝酸铜(Cu(NO3)2)和5mmol的乙酸(CH3COOH)充分溶解于13mL的去离子水中,整个过程在-15℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到溶液B;
3)将溶液B以50滴/分钟的速度逐滴加入溶液A中,整个过程在-15℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到混合液C;
4)按50%的填充比将混合液C转移至聚四氟乙烯内衬的水热釜中,然后将水热釜放入恒温烘箱中在100℃保温42h,水热反应结束,冷却至室温得到含有金属修饰的Sn3O4异质结的混合液D;
5)在-15℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌下,控制吡咯(C4H5N)和步骤1)中所用辛酸亚锡(C16H30O4Sn)的摩尔比为0.03:1,将吡咯(C4H5N)在密闭容器中充分溶解于无水乙醇中,得到溶液E,将混合液D缓慢加入溶液E中,用8mol/L的丁二酸溶液调节其pH值为1后迅速密封容器,磁力搅拌1.5h后将容器转移至-15℃的低温恒温箱中,静置48h;
6)反应结束后,将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤6次,最后在40℃且真空度为10-2Pa的真空干燥箱中干燥3h,即得聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料。
实施例5:
1)取1mmol分析纯的辛酸亚锡(C16H30O4Sn)和3mmol的乙酸(CH3COOH),充分溶解于8mL的无水乙醇中,之后依次加入15mmol的山梨酸钠、4mmol的植酸和23mL的去离子水,整个过程在-5℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌均匀得到溶液A;
2)取0.2mmol分析纯的氯铂酸(H2PtCl6)、0.8mmol的氯金酸(HAuCl4)、5mmol的硝酸银(AgNO3)、8mmol的硝酸铜(Cu(NO3)2)和4mmol的乙酸(CH3COOH)充分溶解于9mL的去离子水中,整个过程在-5℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到溶液B;
3)将溶液B以45滴/分钟的速度逐滴加入溶液A中,整个过程在-5℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到混合液C;
4)按60%的填充比将混合液C转移至聚四氟乙烯内衬的水热釜中,然后将水热釜放入恒温烘箱中在120℃保温38h,水热反应结束,冷却至室温得到含有金属修饰的Sn3O4异质结的混合液D;
5)在-5℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌下,控制吡咯(C4H5N)和步骤1)中所用辛酸亚锡(C16H30O4Sn)的摩尔比为0.06:1,将吡咯(C4H5N)在密闭容器中充分溶解于无水乙醇中,得到溶液E,将混合液D缓慢加入溶液E中,用1mol/L的丁二酸溶液调节其pH值为3后迅速密封容器,磁力搅拌2h后将容器转移至-5℃的低温恒温箱中,静置24h;
6)反应结束后,将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤7次,最后在60℃且真空度为10-3Pa的真空干燥箱中干燥8h,即得聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料。
实施例6:
1)取1mmol分析纯的辛酸亚锡(C16H30O4Sn)和4mmol的乙酸(CH3COOH),充分溶解于13mL的无水乙醇中,之后依次加入12mmol的山梨酸钠、2mmol的植酸和18mL的去离子水,整个过程在-10℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌均匀得到溶液A;
2)取0.15mmol分析纯的氯铂酸(H2PtCl6)、0.3mmol的氯金酸(HAuCl4)、9.0mmol的硝酸银(AgNO3)、6mmol的硝酸铜(Cu(NO3)2)和1mmol的乙酸(CH3COOH)充分溶解于12mL的去离子水中,整个过程在-10℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到溶液B;
3)将溶液B以55滴/分钟的速度逐滴加入溶液A中,整个过程在-10℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌得到混合液C;
4)按70%的填充比将混合液C转移至聚四氟乙烯内衬的水热釜中,然后将水热釜放入恒温烘箱中在140℃保温30h,水热反应结束,冷却至室温得到含有金属修饰的Sn3O4异质结的混合液D;
5)在-10℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌下,控制吡咯(C4H5N)和步骤1)中所用辛酸亚锡(C16H30O4Sn)的摩尔比为0.08:1,将吡咯(C4H5N)在密闭容器中充分溶解于无水乙醇中,得到溶液E,将混合液D缓慢加入溶液E中,用3mol/L的丁二酸溶液调节其pH值为1后迅速密封容器,磁力搅拌1h后将容器转移至-10℃的低温恒温箱中,静置60h;
6)反应结束后,将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤8次,最后在70℃且真空度为10-1Pa的真空干燥箱中干燥10h,即得聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料。

Claims (6)

1.一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法,其特征在于包括以下步骤:
1)取1mmol分析纯的辛酸亚锡(C16H30O4Sn)和0.6~4.7mmol的乙酸(CH3COOH),充分溶解于2~17mL的无水乙醇中,之后依次加入4~18mmol的山梨酸钠、0.5~6mmol的植酸和10~26mL的去离子水,混合均匀得到溶液A;
2)取0~0.2mmol分析纯的氯铂酸(H2PtCl6)、0~1mmol的氯金酸(HAuCl4)、0~9.0mmol的硝酸银(AgNO3)、0~10mmol的硝酸铜(Cu(NO3)2)和0.1~6.0mmol的乙酸(CH3COOH)充分溶解于7~15mL的去离子水中得到溶液B;
3)将溶液B以30~60滴/分钟的速度逐滴加入溶液A中得到混合液C;
4)将混合液C转移至聚四氟乙烯内衬的水热釜中,然后将水热釜放入恒温烘箱中在80~160℃保温24~48h,水热反应结束,冷却至室温得到含有金属修饰的Sn3O4异质结的混合液D;
5)控制吡咯(C4H5N)和步骤1)中所用辛酸亚锡(C16H30O4Sn)的摩尔比为(0.01~0.1):1,将吡咯(C4H5N)在密闭容器中充分溶解于无水乙醇中,得到溶液E,将混合液D缓慢加入溶液E中,用丁二酸溶液调节其pH值为1~3后迅速密封容器,磁力搅拌0.5~2h后将容器转移至-20~0℃的低温恒温箱中,静置2~72h;
6)反应结束后,将产物进行离心分离,并先后使用去离子水及无水乙醇各自洗涤,最后在30~70℃且真空度为10-1~10-3Pa的真空干燥箱中干燥,即得聚吡咯(Ppy)/金属修饰Sn3O4纳米复合光催化材料。
2.根据权利要求1所述的聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法,其特征在于:所述步骤1、2、3、5)整个过程在-20~0℃氯化钠和碎冰的冰盐浴中持续使用恒温磁力搅拌均匀。
3.根据权利要求1所述的聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法,其特征在于:所述步骤4)的填充比为40~70%。
4.根据权利要求1所述的聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法,其特征在于:所述步骤5)丁二酸溶液的浓度为0.5~10mol/L。
5.根据权利要求1所述的聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法,其特征在于:所述步骤6)使用去离子水及无水乙醇各自洗涤3~8次。
6.根据权利要求1所述的聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法,其特征在于:所述步骤6)干燥时间为1~12h。
CN201811093617.7A 2018-09-19 2018-09-19 一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法 Withdrawn CN109107614A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811093617.7A CN109107614A (zh) 2018-09-19 2018-09-19 一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811093617.7A CN109107614A (zh) 2018-09-19 2018-09-19 一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法

Publications (1)

Publication Number Publication Date
CN109107614A true CN109107614A (zh) 2019-01-01

Family

ID=64858472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811093617.7A Withdrawn CN109107614A (zh) 2018-09-19 2018-09-19 一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法

Country Status (1)

Country Link
CN (1) CN109107614A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026247A (zh) * 2019-04-19 2019-07-19 菏泽学院 一种PMMA/PPy钯银光催化剂的制备方法
CN110813376A (zh) * 2019-11-13 2020-02-21 许昌学院 一种聚吡咯修饰的纳米溴氧化铋光催化材料及其制备方法和应用
CN114602551A (zh) * 2022-01-17 2022-06-10 华南理工大学 铜-含氮导电聚合物-植酸复合光催化剂及其制法与应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026247A (zh) * 2019-04-19 2019-07-19 菏泽学院 一种PMMA/PPy钯银光催化剂的制备方法
CN110813376A (zh) * 2019-11-13 2020-02-21 许昌学院 一种聚吡咯修饰的纳米溴氧化铋光催化材料及其制备方法和应用
CN114602551A (zh) * 2022-01-17 2022-06-10 华南理工大学 铜-含氮导电聚合物-植酸复合光催化剂及其制法与应用
CN114602551B (zh) * 2022-01-17 2024-03-08 华南理工大学 铜-含氮导电聚合物-植酸复合光催化剂及其制法与应用

Similar Documents

Publication Publication Date Title
Hong et al. Efficient photoelectrochemical water splitting over Co3O4 and Co3O4/Ag composite structure
Cao et al. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries
Lu et al. Synthetic methods and electrochemical applications for transition metal phosphide nanomaterials
CN102683044B (zh) 一种超级电容器用复合电极及其制备方法
Fu et al. Ag2S quantum dots decorated on porous cubic-CdS nanosheets-assembled flowers for photocatalytic CO2 reduction
Elemike et al. Noble metal–semiconductor nanocomposites for optical, energy and electronics applications
CN109107614A (zh) 一种聚吡咯/金属修饰Sn3O4纳米复合光催化材料的制备方法
Xie et al. Enhancement of photoelectrochemical activity of Fe2O3 nanowires decorated with carbon quantum dots
CN107140676A (zh) 一种金属掺杂氧化锌液相均匀分散体的制备方法
Zhang et al. Nanoparticle metal Ni cocatalyst on NiTe2 microsphere for improved photocatalytic hydrogen evolution
CN109286009A (zh) 一种纳米片自组装三维纳米花硫化锡/石墨化氮化碳锂离子电池负极材料的制备方法
CN103560014B (zh) 染料敏化电池用对电极、其制备方法及染料敏化电池
Hoseini et al. High CO tolerance of Pt/Fe/Fe 2 O 3 nanohybrid thin film suitable for methanol oxidation in alkaline medium
CN109092369A (zh) 一种聚3-己基噻吩(P3HT)/金属修饰Sn3O4纳米复合光催化材料的制备方法
CN107394178A (zh) 一种钠离子电池负极用碳酸钴/石墨烯复合材料及其制备方法与应用
Anwar et al. Synthesis and electrochemical characterization of polyaniline doped cadmium oxide (PANI-CdO) nanocomposites for supercapacitor applications
CN107268022B (zh) α-Fe2O3多孔纳米棒阵列光阳极材料的制备方法及应用
Liang et al. Interface-optimized Rh-ZnO/rGO/ZnS heterostructure constructed via Rh-induced dynamic micro-cell growth for efficient photocatalytic hydrogen evolution
Ghorui et al. In situ metallic copper incorporation into novel g-C3N4/ZnWO4 nanocomposite semiconductor for efficient thin film solar cell application
CN107634192A (zh) 一种锌基电池用负极材料及其制备方法
Zhang et al. Excellent near-infrared response performance in p-CuS/n-Si heterojunction using a low-temperature solution method
Liu et al. In-doped Sn3O4 flower-like nanosheets for efficient visible-light photocatalytic hydrogen production
Jiang et al. Fabricated local surface plasmon resonance Cu2O/Ni-MOF hierarchical heterostructure photocatalysts for enhanced photoreduction of CO2
CN109107612A (zh) 一种聚3,4-乙撑二氧噻吩/生物质碳/SnO2-x纳米复合材料的制备方法
Wu et al. Partial phosphating of Ni-MOFs and Cu2S snowflakes form 2D/2D structure for efficiently improved photocatalytic hydrogen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190101

WW01 Invention patent application withdrawn after publication