CN109037667A - 种子辅助水热合成微储能***正极材料的方法 - Google Patents

种子辅助水热合成微储能***正极材料的方法 Download PDF

Info

Publication number
CN109037667A
CN109037667A CN201810659366.8A CN201810659366A CN109037667A CN 109037667 A CN109037667 A CN 109037667A CN 201810659366 A CN201810659366 A CN 201810659366A CN 109037667 A CN109037667 A CN 109037667A
Authority
CN
China
Prior art keywords
micro
energy
positive electrode
storage system
hydrothermal synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810659366.8A
Other languages
English (en)
Inventor
贺高红
李祥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanting (dalian) Technology Co Ltd
Original Assignee
Lanting (dalian) Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanting (dalian) Technology Co Ltd filed Critical Lanting (dalian) Technology Co Ltd
Priority to CN201810659366.8A priority Critical patent/CN109037667A/zh
Publication of CN109037667A publication Critical patent/CN109037667A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种种子辅助水热合成微储能***正极材料的方法。在镍网上直接制备高载量多元金属氢氧化物纳米片。为改善循环稳定性和提升容量,制备具有良好的空间分布的核‑壳或主干‑分支围观结构;为获得更高的理论容量,更好的导电性与倍率性能,使用多元金属元素代替原有的单一金属氧氢氧化物。

Description

种子辅助水热合成微储能***正极材料的方法
技术领域
本发明属于清洁能源技术领域,具体涉及一种种子辅助水热合成微储能***正极材料的方法。
背景技术
过渡金属氢氧化物在储能领域具有十分广泛应用。不论是传统的镍氢电池的正极,还是有望成为下一代储能设备代表的新型锂离子电池的正极和混合型超级电容器的赝电容极,氢氧化物的电化学性能和载量都具有重要意义。
发明内容
本发明提供的一种种子辅助水热合成微储能***正极材料的方法,其特征在于,在镍网上直接制备高载量多元金属氢氧化物纳米片。
为改善循环稳定性和提升容量,制备具有良好的空间分布的核-壳或主干-分支围观结构;为获得更高的理论容量,更好的导电性与倍率性能,使用多元金属元素代替原有的单一金属氧氢氧化物。
附图说明
图1本发明实施例正极材料微观结构图。

Claims (2)

1.一种种子辅助水热合成微储能***正极材料的方法,其特征在于,在镍网上直接制备高载量多元金属氢氧化物纳米片。
2.根据权利要求1所述的种子辅助水热合成微储能***正极材料的方法,其特征在于,为改善循环稳定性和提升容量,制备具有良好的空间分布的核-壳或主干-分支围观结构;为获得更高的理论容量,更好的导电性与倍率性能,使用多元金属元素代替原有的单一金属氧氢氧化物。
CN201810659366.8A 2018-06-25 2018-06-25 种子辅助水热合成微储能***正极材料的方法 Pending CN109037667A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810659366.8A CN109037667A (zh) 2018-06-25 2018-06-25 种子辅助水热合成微储能***正极材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810659366.8A CN109037667A (zh) 2018-06-25 2018-06-25 种子辅助水热合成微储能***正极材料的方法

Publications (1)

Publication Number Publication Date
CN109037667A true CN109037667A (zh) 2018-12-18

Family

ID=64611069

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810659366.8A Pending CN109037667A (zh) 2018-06-25 2018-06-25 种子辅助水热合成微储能***正极材料的方法

Country Status (1)

Country Link
CN (1) CN109037667A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938431A (zh) * 2014-04-19 2014-07-23 青岛农业大学 采用层状双氢氧化物制备的超疏水布及其制备工艺
CN105070515A (zh) * 2015-08-19 2015-11-18 华东理工大学 一种制备泡沫镍复合材料的方法和由此获得的泡沫镍复合材料及其应用
CN106206055A (zh) * 2016-07-27 2016-12-07 河南师范大学 一种层状钴锌双氢氧化物‑石墨烯复合物超级电容器电极的制备方法
CN107497444A (zh) * 2017-07-25 2017-12-22 陕西科技大学 一种镍钒双金属氢氧化物纳米片阵列水氧化催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938431A (zh) * 2014-04-19 2014-07-23 青岛农业大学 采用层状双氢氧化物制备的超疏水布及其制备工艺
CN105070515A (zh) * 2015-08-19 2015-11-18 华东理工大学 一种制备泡沫镍复合材料的方法和由此获得的泡沫镍复合材料及其应用
CN106206055A (zh) * 2016-07-27 2016-12-07 河南师范大学 一种层状钴锌双氢氧化物‑石墨烯复合物超级电容器电极的制备方法
CN107497444A (zh) * 2017-07-25 2017-12-22 陕西科技大学 一种镍钒双金属氢氧化物纳米片阵列水氧化催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAZHI ZHANG等: ""Preparation of Nickel−Aluminum-Containing Layered Double Hydroxide Films by Secondary (Seeded) Growth Method and Their Electrochemical Properties"", 《LANGMUIR》 *

Similar Documents

Publication Publication Date Title
Wang et al. Nickel@ nickel oxide core–shell electrode with significantly boosted reactivity for ultrahigh‐energy and stable aqueous Ni–Zn battery
Wang et al. In situ synthesis of CuCo2S4@ N/S-doped graphene composites with pseudocapacitive properties for high-performance lithium-ion batteries
Liu et al. Growth of uniform CuCo2O4 porous nanosheets and nanowires for high-performance hybrid supercapacitors
Lee et al. Self-assembled NiO/Ni (OH) 2 nanoflakes as active material for high-power and high-energy hybrid rechargeable battery
Yao et al. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries
Jian et al. Facile synthesis of Ni (OH) 2/carbon nanofiber composites for improving NiZn battery cycling life
Li et al. Hierarchical nanosheet-built CoNi2S4 nanotubes coupled with carbon-encapsulated carbon nanotubes@ Fe2O3 composites toward high-performance aqueous hybrid supercapacitor devices
CN103956483B (zh) 钴酸锌/氧化镍核壳纳米线阵列的制备方法和应用
Zhu et al. Evolution of useless iron rust into uniform α-Fe2O3 nanospheres: a smart way to make sustainable anodes for hybrid Ni–Fe cell devices
CN101222047B (zh) 薄膜锂离子电池的负极材料及其制备方法
CN104051728A (zh) 一种表面具有多级纳微米结构的材料、其制备方法和正极中包含该材料的镍锌电池
CN101937989A (zh) 锂离子电池三维纳米多孔金属氧化物电极材料及其制备方法
Ni et al. Self-supported Fe-doped CoP nanowire arrays grown on carbon cloth with enhanced properties in lithium-ion batteries
Zhu et al. Hydrothermal synthesis of nanoflake-assembled (Ni0. 5Co0. 5) 0.85 Se microspheres as the cathode and reduced graphene oxide/porous Fe2O3 nanospheres composite as the anode for novel alkaline aqueous batteries
CN106373788A (zh) 一种锂离子超级电容器预嵌锂极片的制备方法
Chen et al. Designing NiS/CoS decorated NiCo2S4 nanoflakes towards high performance binder-free supercapacitors
Shen et al. Root reason for the failure of a practical Zn–Ni battery: shape changing caused by uneven current distribution and Zn dissolution
Song et al. Surface spatial confinement effect on Mn–Co LDH@ Carbon dots for high-performance supercapacitors
CN107785586A (zh) 用于二次金属锂电池负极的三维多孔铜/石墨烯复合集流体
Wang et al. Hierarchically hybrid porous Co3O4@ NiMoO4/CoMoO4 heterostructures for high-performance electrochemical energy storage
CN105449166A (zh) 一种钠离子电池用负极极片的制作方法
Spencer et al. Free-standing transition metal oxide electrode architectures for electrochemical energy storage
Yi et al. Porous Ni2P/Co2 (P2O7) heterojunction nanosheets as an advanced electrode for high-performance supercapacitors
Jiang et al. A review on system and materials for aqueous flexible metal–air batteries
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181218

WD01 Invention patent application deemed withdrawn after publication