CN109023279A - 一种Cu-CrBN纳米复合涂层及其制备方法 - Google Patents

一种Cu-CrBN纳米复合涂层及其制备方法 Download PDF

Info

Publication number
CN109023279A
CN109023279A CN201811080532.5A CN201811080532A CN109023279A CN 109023279 A CN109023279 A CN 109023279A CN 201811080532 A CN201811080532 A CN 201811080532A CN 109023279 A CN109023279 A CN 109023279A
Authority
CN
China
Prior art keywords
crbn
target
nano
composite coating
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811080532.5A
Other languages
English (en)
Inventor
王谦之
周飞
孔继周
孙欣宇
林云根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201811080532.5A priority Critical patent/CN109023279A/zh
Publication of CN109023279A publication Critical patent/CN109023279A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种Cu‑CrBN纳米复合涂层及其制备方法,属于表面改性领域,解决了CrBN硬质涂层韧性低,易碎裂的缺点。本发明包括金属Cu掺杂在CrBN涂层中,所述金属Cu以自由态形式存在;利用磁控溅射技术,在Ar和N2混合气氛中,共溅射CrB2靶(直流磁控)和Cu靶(射频磁控);或在Ar和N2混合气氛中,共溅射Cr靶(直流磁控)、Cu靶(直流磁控)和B靶(射频磁控),在钢基材上制备硬韧兼俱的Cu‑CrBN纳米复合涂层。本发明中Cu‑CrBN涂层的B元素可来源于化合物CrB2靶或单质B靶,对靶位配置数不同的磁控溅射***均适用。

Description

一种Cu-CrBN纳米复合涂层及其制备方法
技术领域
本发明涉及表面改性领域,尤其涉及一种Cu-CrBN纳米复合涂层的制备方法。
背景技术
众所周知,硬度(H)不仅是评价材料抵抗塑性变形能力的重要参数,也是评价材料抗磨损能力的主要力学性能,被普遍认为是决定材料耐磨性的直接指标。因此,硬质涂层(H>20GPa)就成为机械零件表面耐磨材料的首选。CrBN涂层因具有CrN、CrB2纳米晶粒(nc-CrN、nc-CrB2)分布在非晶BN基质(a-BN)中的结构,这种复合结构具有硬化效果,使得CrBN涂层被视为一种能有效增强零件表面耐磨性的硬质涂层材料。然而,CrBN涂层的相关研究表明,硬度更高的CrBN涂层反而表现出更差的耐磨性,因为CrBN涂层的韧性(抵抗裂纹的能力)随着自身硬度的增加反而减弱。在这种情况下,CrBN涂层在磨损过程中主要以裂纹形成、扩展及碎裂的形式发生材料损失。因此,CrBN硬质涂层韧性的提高是保证其良好耐磨性的关键点,而关于改善CrBN硬质涂层韧性的研究还很少。
发明内容
本发明提供了一种Cu-CrBN纳米复合涂层及其制备方法,所述Cu-CrBN纳米复合涂层硬韧兼具,所述制备方法可根据磁控溅射***靶源的配置数,有针对性地选择溅射靶材种类。
为实现以上目的,本发明采用以下技术方案,包括:
一种Cu-CrBN纳米复合涂层,包括金属Cu掺杂在CrBN涂层中,所述金属Cu以自由态形式存在。
一种Cu-CrBN纳米复合涂层的制备方法,包括以下步骤:
(1)基材预处理:将基材精抛钢进行清洗,去除基材表面残留物并活化基材沉积表面;
(2)过渡层制备:保持通入高纯Ar气,在设定的脉冲偏压下,通过直流磁控溅射化合物CrB2靶或者通过直流磁控溅射金属Cr靶,在步骤(1)预处理过的钢基材上沉积一层CrB2或金属Cr过渡层;
(3)Cu-CrBN纳米复合涂层制备:通入高纯Ar和N2气,在设定的脉冲偏压下,通过直流磁控溅射化合物CrB2靶,射频磁控溅射金属Cu靶,在CrB2过渡层上制备Cu-CrBN纳米复合涂层;或者通入高纯Ar和N2气,在设定的脉冲偏压下,通过直流磁控溅射金属Cr、Cu靶,射频磁控溅射非金属B靶,在金属Cr过渡层上制备Cu-CrBN纳米复合涂层。
以上所述步骤中,步骤(2)和步骤(3)中所述的脉冲偏压为-100V,占空比为60%;步骤(2)中所述的过渡层厚度为100~200nm。
步骤(1)基材预处理包括:依次用丙酮、酒精和去离子水对精抛钢基材进行超声清洗,随后装夹在磁控溅射设备的圆形载物台上;当腔体达到高真空后通入高纯Ar气,利用离子束枪离化Ar气,在设定的脉冲偏压下对基材进行加速轰击,去除基材表面残留物并活化基材沉积表面。
步骤(2)中当磁控溅射设备有两靶位时通过直流(DC)阴极溅射金属CrB2靶,在步骤(1)预处理后的基材上沉积CrB2过渡层;当磁控溅射设备有三靶位时通过直流(DC)阴极溅射金属Cr靶,在步骤(1)预处理后的基材上沉积Cr过渡层。
步骤(3)中当磁控溅射设备有两靶位时,通过直流(DC)阴极溅射化合物CrB2靶,射频(RF)阴极溅射金属Cu靶,在步骤(2)所述的CrB2过渡层上制备Cu-CrBN纳米复合涂层;当磁控溅射设备有三靶位时通过直流(DC)阴极溅射金属Cr、Cu靶,射频(RF)阴极溅射非金属B靶,在步骤(2)所述的金属Cr过渡层上制备Cu-CrBN纳米复合涂层。本发明的有益效果:本发明提供了一种Cu-CrBN纳米复合涂层及其制备方法,该制备方法可以根据磁控溅射设备靶源的配置数(两靶或三靶)自由选择B元素的来源,当用Cr、Cu、B三靶溅射时,可以方便地调节Cu-CrBN纳米复合涂层中Cr与B元素的比例;而且可以通过调节金属Cu靶的溅射功率来控制Cu-CrBN纳米复合涂层的化学成分,从而控制涂层的硬度和韧性。采用本发明方法制备的Cu-CrBN纳米复合涂层兼具硬度和韧性,金属Cu的延展性优异,且元素Cu很难与CrBN涂层中的元素Cr、B、N形成化合物,将金属Cu掺杂进入CrBN涂层中,金属Cu多以自由态的形式存在,从而保持其良好的韧性,因此,形成Cu-CrBN纳米复合涂层硬韧兼具。
附图说明
图1是采用实施例1的方法制备的Cu-CrBN纳米复合涂层的表面(a)和截面(b)形貌扫描电子显微镜照片;
图2是采用实施例1的方法制备的Cu-CrBN纳米复合涂层的压痕裂纹分布情况;
图3是采用实施例2的方法制备的Cu-CrBN纳米复合涂层的表面(a)和截面(b)形貌扫描电子显微镜照片;
图4是采用实施例2的方法制备的Cu-CrBN纳米复合涂层的磨痕形貌光学照片;
图5是采用实施例1的方法制备Cu-CrBN耐磨耐蚀涂层的沉积***布局示意图;
图6是采用实施例2的方法制备Cu-CrBN耐磨耐蚀涂层的沉积***布局示意图。
具体实施方式
下面结合附图和实施例对本发明的技术方案进行详细说明:
实施例1
(1)基材预处理
将粗糙度精抛至50nm的45钢(Φ30×6mm2)依次在丙酮,酒精和去离子水中进行超声清洗各10分钟,用电吹风吹干并装夹在物理气相沉积***的载物台上,距离靶材17cm;当物理气相沉积***本底真空度达到7.0×10-4Pa时,通入10sccm的高纯Ar气,设定45钢基材偏压-600V,偏压的占空比为60%,利用离子束源产生的Ar+离子加速轰击45钢表面20分钟,清除基材表面的污染物并活化沉积表面;
(2)过渡层制备
Ar+离子轰击清洗基材后,调节高纯Ar气通入量为5sccm,调节45钢基材偏压至-100V,保持偏压占空比为60%,通过直流(DC)阴极溅射金属CrB2靶10分钟,加载功率为200W,在45钢基材上沉积厚度为100~200nm的CrB2过渡层,增加Cu-CrBN涂层与45钢基材的结合力;
(3)Cu-CrBN纳米复合涂层制备
通入1sccm的N2,调节高纯Ar气通入量为7sccm,通过直流(DC)阴极溅射金属CrB2靶,加载功率为200W,射频(RF)阴极溅射金属Cu靶,加载功率为100W,保持45钢基材偏压-100V,偏压占空比为60%,在室温下运行1小时25分钟,得到Cu-CrBN纳米复合涂层;
(4)薄膜的表征
表面及截面形貌表征:通过扫描电子显微镜(SEM)观察Cu-CrBN纳米复合涂层表面及截面形貌。如图1所示,Cu-CrBN纳米复合涂层呈现柱状生长,柱状晶簇尺寸均匀,整体厚度约2.6μm。
压痕裂纹表征:利用显微硬度仪测量Cu-CrBN纳米复合涂层的压痕裂纹分布。如图2所示,Cu-CrBN纳米复合涂层压痕没有出现放射性裂纹,韧性较好,由压痕面积计算涂层显微硬度约680Hv。
实施例2
(1)基材预处理
将粗糙度精抛至50nm的45钢(Φ30×6mm2)依次在丙酮,酒精和去离子水中进行超声清洗各10分钟,用电吹风吹干并装夹在物理气相沉积***的载物台上,距离靶材17cm;当物理气相沉积***本底真空度达到7.0×10-4Pa时,通入10sccm的高纯Ar气,设定45钢基材偏压-600V,偏压的占空比为60%,利用离子束源产生的Ar+离子加速轰击45钢表面20分钟,清除基材表面的污染物并活化沉积表面;
(2)过渡层制备
Ar+离子轰击清洗基材后,调节高纯Ar气通入量为5sccm,调节45钢基材偏压至-100V,保持偏压占空比为60%,通过直流(DC)阴极溅射金属Cr靶10分钟,加载功率为200W,在45钢基材上沉积厚度为100~200nm的金属Cr过渡层,增加Cu-CrBN涂层与45钢基材的结合力;
(3)Cu-CrBN纳米复合涂层制备
通入1sccm的N2,调节高纯Ar气通入量为7sccm,通过直流(DC)阴极溅射金属Cr,加载功率为200W,金属Cu靶,加载功率为55W,射频(RF)阴极溅射非金属B靶,加载功率为100W,保持45钢基材偏压-100V,偏压占空比为60%,在室温下运行1小时30分钟,得到Cu-CrBN纳米复合涂层;
(4)薄膜的表征
表面及截面形貌表征:通过扫描电子显微镜(SEM)观察Cu-CrBN纳米复合涂层表面及截面形貌。如图3所示,Cu-CrBN纳米复合涂层呈现柱状生长,柱状晶簇尺寸均匀,整体厚度约2.5μm,。
磨痕形貌表征:利用XJZ-6型金相显微镜观察Cu-CrBN纳米复合涂层磨痕形貌。如图4所示,磨痕光滑且没有脆裂的现象,说明制备的Cu-CrBN纳米复合涂层具有良好的硬度和韧性。
本发明溅射靶材种类选择很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (7)

1.一种Cu-CrBN纳米复合涂层,其特征在于,包括金属Cu掺杂在CrBN涂层中,所述金属Cu以自由态形式存在。
2.一种Cu-CrBN纳米复合涂层的制备方法,其特征在于,包括以下步骤:
(1)基材预处理:将基材精抛钢进行清洗,去除基材表面残留物并活化基材沉积表面;
(2)过渡层制备:保持通入高纯Ar气,在设定的脉冲偏压下,通过直流磁控溅射化合物CrB2靶或者通过直流磁控溅射金属Cr靶,在步骤(1)预处理过的钢基材上沉积一层CrB2或金属Cr过渡层;
(3) Cu-CrBN纳米复合涂层制备:通入高纯Ar和N2气,在设定的脉冲偏压下,通过直流磁控溅射化合物CrB2靶,射频磁控溅射金属Cu靶,在CrB2过渡层上制备Cu-CrBN纳米复合涂层;或者通入高纯Ar和N2气,在设定的脉冲偏压下,通过直流磁控溅射金属Cr、Cu靶,射频磁控溅射非金属B靶,在金属Cr过渡层上制备Cu-CrBN纳米复合涂层。
3.根据权利要求2所述Cu-CrBN纳米复合涂层的制备方法,其特征在于,步骤(2)中当磁控溅射设备有两靶位时通过直流阴极溅射金属CrB2靶,在步骤(1)预处理后的基材上沉积CrB2过渡层;当磁控溅射设备有三靶位时通过直流阴极溅射金属Cr靶,在步骤(1)预处理后的基材上沉积Cr过渡层。
4.根据权利要求2所述Cu-CrBN纳米复合涂层的制备方法,其特征在于,步骤(3)中当磁控溅射设备有两靶位时,通过直流阴极溅射化合物CrB2靶,射频阴极溅射金属Cu靶,在步骤(2)所述的CrB2过渡层上制备Cu-CrBN纳米复合涂层;当磁控溅射设备有三靶位时通过直流阴极溅射金属Cr、Cu靶,射频阴极溅射非金属B靶,在步骤(2)所述的金属Cr过渡层上制备Cu-CrBN纳米复合涂层。
5.根据权利要求2所述Cu-CrBN纳米复合涂层的制备方法,其特征在于,步骤(2)和步骤(3)中所述的脉冲偏压为-100V,偏压占空比为60 %。
6.根据权利要求2或3所述Cu-CrBN纳米复合涂层的制备方法,其特征在于,步骤(2)中所述的过渡层厚度为100~200 nm。
7.根据权利要求2所述Cu-CrBN纳米复合涂层的制备方法,其特征在于,步骤(1)基材预处理包括:依次用丙酮、酒精和去离子水对精抛钢基材进行超声清洗,随后装夹在磁控溅射设备的圆形载物台上;当腔体达到高真空后通入高纯Ar气,利用离子束枪离化Ar气,在设定的脉冲偏压下对基材进行加速轰击,去除基材表面残留物并活化基材沉积表面。
CN201811080532.5A 2018-09-17 2018-09-17 一种Cu-CrBN纳米复合涂层及其制备方法 Pending CN109023279A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811080532.5A CN109023279A (zh) 2018-09-17 2018-09-17 一种Cu-CrBN纳米复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811080532.5A CN109023279A (zh) 2018-09-17 2018-09-17 一种Cu-CrBN纳米复合涂层及其制备方法

Publications (1)

Publication Number Publication Date
CN109023279A true CN109023279A (zh) 2018-12-18

Family

ID=64622086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811080532.5A Pending CN109023279A (zh) 2018-09-17 2018-09-17 一种Cu-CrBN纳米复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN109023279A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778119A (zh) * 2019-01-09 2019-05-21 南京航空航天大学 一种Ni-CrSiN耐磨耐蚀涂层及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103469169A (zh) * 2013-09-04 2013-12-25 南京航空航天大学 Cr-B-C纳米复合薄膜的制备方法
CN104480443A (zh) * 2014-12-08 2015-04-01 中国人民解放军装甲兵工程学院 一种硬韧纳米复合ZrAlCuN涂层及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103469169A (zh) * 2013-09-04 2013-12-25 南京航空航天大学 Cr-B-C纳米复合薄膜的制备方法
CN104480443A (zh) * 2014-12-08 2015-04-01 中国人民解放军装甲兵工程学院 一种硬韧纳米复合ZrAlCuN涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K.P.BUDNA ET AL.: "Synthesis-structure-property relations for Cr-B-N coatings sputter deposited reactively from a Cr-B target with 20at% B", 《VACUUM》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778119A (zh) * 2019-01-09 2019-05-21 南京航空航天大学 一种Ni-CrSiN耐磨耐蚀涂层及其制备方法

Similar Documents

Publication Publication Date Title
Baptista et al. On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications
Ehiasarian et al. Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique
Ou et al. Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering
Lin et al. High rate deposition of thick CrN and Cr2N coatings using modulated pulse power (MPP) magnetron sputtering
Wei et al. Effects of pulsed bias duty ratio on microstructure and mechanical properties of TiN/TiAlN multilayer coatings
Sanchette et al. Nanostructured hard coatings deposited by cathodic arc deposition: From concepts to applications
Lin et al. Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering
CN101792898B (zh) 一种提高镁合金抗磨损性能的碳膜及其制备方法
Yang et al. Structure and properties of Ti films deposited by dc magnetron sputtering, pulsed dc magnetron sputtering and cathodic arc evaporation
Zhang et al. Improving the mechanical and anti-wear properties of AlTiN coatings by the hybrid arc and sputtering deposition
Song et al. Microstructure and indentation toughness of Cr/CrN multilayer coatings by arc ion plating
CN110453190A (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN110241387A (zh) 一种基于HIPIMS技术的CrAlN涂层制备方法
Biswas et al. Defect growth in multilayer chromium nitride/niobium nitride coatings produced by combined high power impulse magnetron sputtering and unbalance magnetron sputtering technique
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN108977781A (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
Ma et al. Enhanced discharge and surface properties of TiSiCN coatings deposited by pulse-enhanced vacuum arc evaporation
CN109778119A (zh) 一种Ni-CrSiN耐磨耐蚀涂层及其制备方法
Tang et al. Mechanical properties of TiN deposited in synchronous bias mode through high-power impulse magnetron sputtering
CN105316634A (zh) 一种Cr-B-C-N纳米复合薄膜的制备方法
CN103732785B (zh) 阴极电弧沉积法
CN109207923A (zh) 一种TiN/ZrN纳米多层涂层及其制备方法和应用
CN109023279A (zh) 一种Cu-CrBN纳米复合涂层及其制备方法
CN103317793B (zh) 一种类金刚石基纳米复合涂层刀具及其制备方法
Hovsepian et al. CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181218