CN108977684A - 一种软磁CoCuC复合材料及其制备方法 - Google Patents

一种软磁CoCuC复合材料及其制备方法 Download PDF

Info

Publication number
CN108977684A
CN108977684A CN201810863616.XA CN201810863616A CN108977684A CN 108977684 A CN108977684 A CN 108977684A CN 201810863616 A CN201810863616 A CN 201810863616A CN 108977684 A CN108977684 A CN 108977684A
Authority
CN
China
Prior art keywords
composite material
soft magnetism
preparation
cobalt
btc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810863616.XA
Other languages
English (en)
Other versions
CN108977684B (zh
Inventor
卢荷彬
邓庆保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Qinxing Electronic Technology Co.,Ltd.
Original Assignee
Changzhou Jintan Magnetic Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Jintan Magnetic Material Co Ltd filed Critical Changzhou Jintan Magnetic Material Co Ltd
Priority to CN201810863616.XA priority Critical patent/CN108977684B/zh
Publication of CN108977684A publication Critical patent/CN108977684A/zh
Application granted granted Critical
Publication of CN108977684B publication Critical patent/CN108977684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于磁性材料领域,尤其是一种Co/Cu/C软磁复合材料及其制备方法;包括无定形多孔碳骨架,所述无定形多孔碳骨架内均匀分布有球形钴和铜纳米颗粒;本发明制备一种软磁Co/Cu/C复合材料的方法,制备方法工艺简单、成本低,可实现规模化大批量生产;本发明的软磁Co/Cu/C复合材料中的金属有机骨架为前驱体的丰富且规则的孔道结构提供了完满的钴离子吸附点,其含碳元素的特点确保了复合材料中包含无定形碳最终使得Co/Cu/C复合材料展现出良好的软磁特性。

Description

一种软磁CoCuC复合材料及其制备方法
技术领域
本发明属于磁性材料领域,尤其是一种Co/Cu/C软磁复合材料及其制备方法。
背景技术
软磁材料因其矫顽力低,剩磁低,在电磁器件中应用广泛。其中,软磁金属钴基材料因其较高的饱和磁化强度及优良的稳定性,获得了广泛的研究及关注。Ding等人采用多步法成功制备Co@C微球,直径约为500 nm,钴颗粒直径约为480 nm,所制备的复合微球展现出较高的饱和磁化强度及较低的矫顽力(Carbon 2017, 111, 722-732)。目前钴基软磁材料的研究热点集中于矫顽力的降低及涡流损耗的削弱。大量研究表面,颗粒尺寸对磁性材料的矫顽力影响巨大。Ghimbeu等人采用激光激发自组装法合成钴纳米颗粒均匀镶嵌的碳材料,其中钴纳米颗粒的直径约为5 nm,复合材料展现出超顺磁性(Nanoscale 2015,7,10111-10122)。另外,科学家也采取多种措施降低软磁材料的涡流损耗,常见的技术措施为复合具有降低电导率的材料。本发明采用金属有机骨架为前驱体,其丰富且规则的孔道结构提供了完满的钴离子吸附点,其含碳元素的特点确保了复合材料中包含无定形碳最终使得Co/Cu/C复合材料展现出良好的软磁特性。本发明采用的工艺新颖有效,无毒无害,适用于大规模工业生产。
发明内容
本发明的目的是:克服现有技术中不足,提供一种软磁Co/Cu/C复合材料,该软磁Co/Cu/C复合材料,其中的金属有机骨架为前驱体的丰富且规则的孔道结构提供了完满的钴离子吸附点,其含碳元素的特点确保了复合材料中包含无定形碳最终使得Co/Cu/C复合材料展现出良好的软磁特性;
本发明的另一个目的是提供一种软磁Co/Cu/C复合材料的制备方法,该制备方法工艺简单、成本低,可实现规模化大批量生产。
为实现上述目的,本发明采用的技术方案如下:
一种软磁Co/Cu/C复合材料,包括无定形多孔碳骨架,所述无定形多孔碳骨架内均匀分布有球形钴和铜纳米颗粒。
进一步的,所述钴纳米颗粒直径为1~100 nm,铜纳米颗粒直径为1~100 nm,碳骨架孔径为1~200 nm,颗粒均匀分布,相互之间由无定形碳分隔。
一种软磁Co/Cu/C复合材料的制备方法,所述方法包括以下步骤:
(1)制备Cu3(btc)2前驱体:分别配置一定体积及浓度的铜盐的水溶液及均苯三酸的乙醇溶液,混合两溶液后搅拌一定时间,分离洗涤产物得所述Cu3(btc)2前驱体;
(2)制备Cu3(btc)2/Co2+前驱体:配置一定浓度的钴盐的乙醇溶液,取步骤(1)中制备的Cu3(btc)2前驱体与研钵中,将配置的钴盐乙醇溶液倒入Cu3(btc)2前驱体粉末中,研磨一定时间,放入烘箱中烘干,获得所述Cu3(btc)2/Co2+前驱体;
(3)制备软磁Co/Cu/C复合材料:将步骤(2)得到的Cu3(btc)2/Co2+前驱体物在惰性气氛的保护下热处理。
进一步的,步骤(1)中,所述铜盐的水溶液体积为100 mL,浓度为80 mmol•L-1,所述均苯三酸的乙醇溶液体积为100 mL,浓度为80 mmol•L-1,搅拌时间为18h。
进一步的,所述铜盐选用硝酸铜、氯化铜、硫酸铜、乙酸铜中的一种。
进一步的,步骤(2)中,所述钴盐的乙醇溶液体积为1~10 mL,浓度为0.2~1.4g•mL-1,研磨时间为30min,烘干温度为60 ℃。
进一步的,所述钴盐选用硝酸钴、氯化钴、硫酸钴、乙酸钴中的一种。
进一步的,步骤(3)中,所述惰性气氛选用N2或Ar,升温速率为5 ℃•min-1,保温温度为700℃。
采用本发明的技术方案的有益效果是:
1、本发明制备一种软磁Co/Cu/C复合材料的方法,制备方法工艺简单、成本低,可实现规模化大批量生产。
2、本发明的软磁Co/Cu/C复合材料中的金属有机骨架为前驱体的丰富且规则的孔道结构提供了完满的钴离子吸附点,其含碳元素的特点确保了复合材料中包含无定形碳最终使得Co/Cu/C复合材料展现出良好的软磁特性。
3、本发明不仅有利于软磁材料的研究,也为新工艺的出现提供了思路。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明实施例1制得的Cu3(btc)2的X射线衍射图谱;
图2为本发明实施例1制得的Cu3(btc)2/Co2+的热失重曲线图;
图3为本发明实施例1制得的软磁Co/Cu/C复合材料的X射线衍射图谱;
图4为本发明实施例1制得的软磁Co/Cu/C复合材料的TEM照片;
图5为本发明实施例1制得的软磁Co/Cu/C复合材料的孔径分布图;
图6为本发明实施例1制得的软磁Co/Cu/C复合材料的磁滞回线图。
图7为本发明实施例2制得的软磁Co/Cu/C复合材料的X射线衍射图谱;
图8为本发明实施例2制得的软磁Co/Cu/C复合材料的TEM照片;
图9为本发明实施例2制得的软磁Co/Cu/C复合材料的磁滞回线图。
具体实施方式
下面的实施例可以使本专业技术人员更全面地理解本发明,但是这些实施例不是对本发明保护范围的限制,以下所有实施例的组分配比全部以质量分数计。此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。所有实施例
实施例1
一种软磁Co/Cu/C复合材料,包括无定形多孔碳骨架,无定形多孔碳骨架内均匀分布有球形钴和铜纳米颗粒;钴纳米颗粒直径为1~100 nm,铜纳米颗粒直径为1~100 nm,碳骨架孔径为1~200 nm,颗粒均匀分布,相互之间由无定形碳分隔。
上述一种软磁Co/Cu/C复合材料的制备方法,具体包含如下步骤:
步骤1,制备Cu3(btc)2前驱体:配置100 mL 80mmol•L-1硝酸铜的水溶液及100 mL80mmol•L-1均苯三酸的乙醇溶液,将二者混合搅拌18h,经离心、洗涤、干燥后获得所述Cu3(btc)2前驱体;
步骤2,制备Cu3(btc)2/Co2+前驱体:配置1.4 g•mL-1的硝酸钴的乙醇溶液5 mL,将其滴加到1 g步骤1所得的Cu3(btc)2前驱体,研磨0.5h后,放入60 ℃烘箱中至干燥;
步骤3,制备软磁Co/Cu/C复合材料:将步骤2得到的Cu3(btc)2/Co2+前驱体放在石英管中,氮气气氛,700 ℃下煅烧2 h,升温速率为5 ℃/min。
实施例2
上述一种软磁Co/Cu/C复合材料的制备方法,具体包含如下步骤:
步骤1,制备Cu3(btc)2前驱体:配置100 mL 80mmol•L-1硝酸铜的水溶液及100 mL80mmol•L-1均苯三酸的乙醇溶液,将二者混合搅拌18h,经离心、洗涤、干燥后获得所述Cu3(btc)2前驱体;
步骤2,制备Cu3(btc)2/Co2+前驱体:配置0.2 g•mL-1的硝酸钴的乙醇溶液5 mL,将其滴加到1 g步骤1所得的Cu3(btc)2前驱体,研磨0.5h后,放入60 ℃烘箱中至干燥;
步骤3,制备软磁Co/Cu/C复合材料:将步骤2得到的Cu3(btc)2/Co2+前驱体放在石英管中,氮气气氛,700 ℃下煅烧2 h,升温速率为5 ℃/min。
实施例1-2中步骤1和步骤2中的体积,根据实际需要选取,
图1为本发明实施例1制得的Cu3(btc)2的X射线衍射图谱,从图1可以看出,所制备的Cu3(btc)2前驱体结晶度高,纯度高。
图2为本发明实施例1制得的Cu3(btc)2/Co2+的热失重曲线图。从图2可以看出,在300 ℃以上温度的情况下,前驱体剧烈分解,在700℃左右基本分解完全。第一阶段的失重应属于钴离子的还原,第二阶段的失重应属于铜离子的还原。
图3为实施例1制得的软磁Co/Cu/C复合材料的X射线衍射图谱。从图3可以看出,44.2°、51.5°、75.8°的衍射峰属于体心立方钴,43.3°、50.4°、74.1°的衍射峰属于体心立方铜,说明所制备Co/Cu/C复合材料的纯度。另外,衍射峰尖锐也说明材料的结晶度较高。
图4为实施例1制得的软磁Co/Cu/C复合材料的TEM照片。从图4可以看出,钴和铜纳米粒子均匀分布与碳骨架中,其直径约为20 nm。
图5为实施例1制得的软磁软磁Co/Cu/C复合材料的孔径分布图,从图5可以看出,其孔道直径集中于3.3 nm、27.8 nm和107 nm。结合TEM照片可知孔结构主要存在于碳骨架中。
图6为实施例1制得的软磁软磁Co/Cu/C复合材料的磁滞回线图。可以看出复合材料拥有典型的软磁特性,饱和磁化强度为36.5 emug-1,矫顽力为250 Oe。
图7为实施例2制得的软磁Co/Cu/C复合材料的X射线衍射图谱。从图7可以看出,44.2°的衍射峰属于体心立方钴,43.3°、50.4°、74.1°的衍射峰属于体心立方铜,说明所制备材料同时包含Co和Cu且结晶度较高。
图8为实施例2制得的软磁Co/Cu/C复合材料的TEM照片。从图8可以看出,钴和铜纳米粒子均匀分布与碳骨架中,其直径约为30 nm。
图9为实施例2制得的软磁软磁Co/Cu/C复合材料的磁滞回线图。可以看出复合材料拥有软磁特性,饱和磁化强度为5.1 emug-1,矫顽力为352 Oe。
综上所述:
1、本发明制备一种软磁Co/Cu/C复合材料的方法,制备方法工艺简单、成本低,可实现规模化大批量生产。
2、本发明的软磁Co/Cu/C复合材料中的金属有机骨架为前驱体的丰富且规则的孔道结构提供了完满的钴离子吸附点,其含碳元素的特点确保了复合材料中包含无定形碳最终使得Co/Cu/C复合材料展现出良好的软磁特性。
3、本发明不仅有利于软磁材料的研究,也为新工艺的出现提供了思路。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

1.一种软磁Co/Cu/C复合材料,其特征在于:包括无定形多孔碳骨架,所述无定形多孔碳骨架内均匀分布有球形钴和铜纳米颗粒。
2.根据权利要求1所述的一种软磁Co/Cu/C复合材料,其特征在于:所述钴纳米颗粒直径为1~100 nm,铜纳米颗粒直径为1~100 nm,碳骨架孔径为1~200 nm,颗粒均匀分布,相互之间由无定形碳分隔。
3.一种如权利要求1-2中任一项所述的软磁Co/Cu/C复合材料的制备方法,其特征在于:所述方法包括以下步骤:
(1)制备Cu3(btc)2前驱体:分别配置一定体积及浓度的铜盐的水溶液及均苯三酸的乙醇溶液,混合两溶液后搅拌一定时间,分离洗涤产物得所述Cu3(btc)2前驱体;
(2)制备Cu3(btc)2/Co2+前驱体:配置一定浓度的钴盐的乙醇溶液,取步骤(1)中制备的Cu3(btc)2前驱体与研钵中,将配置的钴盐乙醇溶液倒入Cu3(btc)2前驱体粉末中,研磨一定时间,放入烘箱中烘干,获得所述Cu3(btc)2/Co2+前驱体;
(3)制备软磁Co/Cu/C复合材料:将步骤(2)得到的Cu3(btc)2/Co2+前驱体物在惰性气氛的保护下热处理。
4.据权利要求3所述的一种软磁Co/Cu/C复合材料的制备方法,其特征在于:步骤(1)中,所述铜盐的水溶液体积为100 mL,浓度为80 mmol•L-1,所述均苯三酸的乙醇溶液体积为100 mL,浓度为80 mmol•L-1,搅拌时间为18h。
5.据权利要求3所述的一种软磁Co/Cu/C复合材料的制备方法,其特征在于:所述铜盐选用硝酸铜、氯化铜、硫酸铜、乙酸铜中的一种。
6.根据权利要求3所述的一种软磁Co/Cu/C复合材料的制备方法,其特征在于:步骤(2)中,所述钴盐的乙醇溶液体积为5mL,浓度为0.2~1.4 g•mL-1,研磨时间为30min,烘干温度为60 ℃。
7.根据权利要求3所述的一种软磁Co/Cu/C复合材料的制备方法,其特征在于:所述钴盐选用硝酸钴、氯化钴、硫酸钴、乙酸钴中的一种。
8.根据权利要求3所述的一种软磁Co/Cu/C复合材料的制备方法,其特征在于:步骤(3)中,所述惰性气氛选用N2或Ar,升温速率为5 ℃•min-1,保温温度为700℃。
CN201810863616.XA 2018-08-01 2018-08-01 一种软磁CoCuC复合材料及其制备方法 Active CN108977684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810863616.XA CN108977684B (zh) 2018-08-01 2018-08-01 一种软磁CoCuC复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810863616.XA CN108977684B (zh) 2018-08-01 2018-08-01 一种软磁CoCuC复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108977684A true CN108977684A (zh) 2018-12-11
CN108977684B CN108977684B (zh) 2020-09-04

Family

ID=64552623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810863616.XA Active CN108977684B (zh) 2018-08-01 2018-08-01 一种软磁CoCuC复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108977684B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109310038A (zh) * 2018-09-19 2019-02-05 南京航空航天大学 一种以铜MOFs为前驱体制得的多孔Co/Cu/C复合吸波材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1505188A (zh) * 2002-11-30 2004-06-16 中南大学 用于锂离子电池的复合纳米金属负极材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1505188A (zh) * 2002-11-30 2004-06-16 中南大学 用于锂离子电池的复合纳米金属负极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XUEDONG WEI ET.AL.: "Cu@C nanoporous composites containing little copper oxides derived from dimethyl imidazole modifed MOF199 as electrocatalysts for hydrogen evolution reaction", 《APPLIED SURFACE SCIENCE》 *
张斌等: "有机物原位包裹Co微米球的溶剂热制备及其磁性能", 《化工学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109310038A (zh) * 2018-09-19 2019-02-05 南京航空航天大学 一种以铜MOFs为前驱体制得的多孔Co/Cu/C复合吸波材料及其制备方法

Also Published As

Publication number Publication date
CN108977684B (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN106180745B (zh) 一种泡沫铜粉及其制备方法
CN109310038A (zh) 一种以铜MOFs为前驱体制得的多孔Co/Cu/C复合吸波材料及其制备方法
Gandha et al. Synthesis and characterization of FeCo nanowires with high coercivity
CN105820796A (zh) 负载磁性合金的多孔碳球复合吸波材料的制备方法
Srivastava et al. Room temperature ferromagnetism in magic-sized Cr-doped CdS diluted magnetic semiconducting quantum dots
Hazra et al. A novel but simple “One‐Pot” synthetic route for preparation of (NiFe2O4) x–(BaFe12O19) 1− x composites
CN106684348B (zh) 一种纳米氟化铁基正极材料及其制备方法
Liu et al. Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@ Fe3O4 microspheres with enhanced mesoporous structure
CN106430327B (zh) 一种多孔海胆状Fe3O4@C复合材料及其制备方法
Zhang et al. Room‐Temperature Synthesis of Ni Nanoparticles as the Absorbent Used for Sewage Treatment
CN103755336B (zh) 一种纳米铁氧体颗粒的制备方法
CN107042087A (zh) 一种原位水热制备磁性金属有机骨架核壳材料的方法
CN105268997B (zh) 一种NiFe204@α‑Fe核壳结构微纳米复合材料的制备方法
CN108941611A (zh) 一种铁磁纳米线的制备方法及产品
CN104722276A (zh) 一种瓜环/氧化石墨烯磁性复合材料及其制备方法
CN112094623A (zh) 一种二氧化钛包覆镍碳中空核壳纳米微球吸波材料的制备方法及应用
Zhang et al. Multiple Shell hollow CoFe2O4 spheres: Synthesis, formation mechanism and properties
CN108977684A (zh) 一种软磁CoCuC复合材料及其制备方法
CN106745316B (zh) 一种片层花状Fe3O4@C复合材料及其制备方法
CN104096836B (zh) 一种石墨烯包覆磁性纳米镍粒子及其制备方法
Wang et al. Space-confined pyrolysis for fabrication of peacods-like Fe3O4@ C-Ni nanostructures for catalysis and protein adsorption
CN104985194B (zh) 一种氧化物弥散强化铁钴纳米复合粉末的制备方法
Mueller et al. One-pot synthesis of iron oxide mesoporous silica core/shell nanocomposites
Liu et al. Water-dispersible and magnetically recoverable Fe 3 O 4/Pd@ nitrogen-doped carbon composite catalysts for the catalytic reduction of 4-nitrophenol
Monsef Khoshhesab et al. Magnetic solid-phase extraction to preconcentrate trace amounts of gold (III) using nickel ferrite magnetic nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210924

Address after: No. 280, changzhugeng village committee, Jincheng Town, Jintan District, Changzhou City, Jiangsu Province, 213200

Patentee after: Changzhou Qinxing Electronic Technology Co.,Ltd.

Address before: 213200 Xinghua Road, Jintan District, Changzhou, Jiangsu Province, No. 258

Patentee before: CHANGZHOU JINTAN MAGNETIC MATERIALS Co.,Ltd.

TR01 Transfer of patent right