CN108910939A - 一种超薄CuInS2纳米片及其制备方法和应用 - Google Patents

一种超薄CuInS2纳米片及其制备方法和应用 Download PDF

Info

Publication number
CN108910939A
CN108910939A CN201810883716.9A CN201810883716A CN108910939A CN 108910939 A CN108910939 A CN 108910939A CN 201810883716 A CN201810883716 A CN 201810883716A CN 108910939 A CN108910939 A CN 108910939A
Authority
CN
China
Prior art keywords
cuins
nanometer sheet
ultra
thin
mercaptoethylmaine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810883716.9A
Other languages
English (en)
Other versions
CN108910939B (zh
Inventor
薛小刚
迟华麟
熊健
徐娟
张坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201810883716.9A priority Critical patent/CN108910939B/zh
Publication of CN108910939A publication Critical patent/CN108910939A/zh
Application granted granted Critical
Publication of CN108910939B publication Critical patent/CN108910939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供一种超薄CuInS2纳米片,所述纳米片为二维介晶材料,具有单层或多层结构,厚度0.65~3nm,尺寸在100~900nm;所述超薄CuInS2纳米片的制备方法,包括以下步骤:制备巯基乙胺配位的Cu+和In3+前驱体溶液;制备巯基乙胺包裹的超小CuInS2量子点;制备单层或多层超薄CuInS2纳米片,本发明提供的超薄CuInS2纳米片具有二维介晶结构,能够用于太阳能电池和光催化等领域;本发明提供的制备方法采用水相合成工艺,可大批量制备,纳米片的厚度和尺寸易于控制,具有可控性强,工艺参数容易控制,安全绿色无污染、产率高的优点。

Description

一种超薄CuInS2纳米片及其制备方法和应用
技术领域
本发明涉及纳米材料技术领域,具体是一种超薄CuInS2纳米片及其制备方法和应用。
背景技术
CuInS2是一种Ⅰ-Ⅲ-Ⅵ族直接带隙半导体材料,室温禁带宽度约为1.53eV,在可见光区域内具有很高的摩尔消光系数。由于其不含有毒Cd、Pb等高毒性重金属元素,在发光二极管(LED)、太阳能电池(Solar Cells)、生物标记、光催化等领域有着广泛的应用前景。
2009年,向卫东以硫酸铜和氯化铟为金属源,以L-半胱氨酸为硫源,在DMF中高温溶剂热反应,首次制备了以CuInS2纳米片为构筑单元的CuInS2纳米微球。2015年,Michael通过将Cu2O薄膜在氯化铟和硫代乙酰胺的乙二醇溶液中高温加热,通过离子交换得到衬底上生长的CuInS2纳米片材料,从而引起了许多学者对CuInS2二维纳米材料的研究兴趣。实际上,光催化、太阳电池、发光二极管等领域,非常需要可溶液处理的高质量的二维CuInS2纳米材料,这依赖于CuInS2纳米晶的液相合成技术。长期以来,由于容易形成Cu2S等二元相,CuInS2纳米晶很难在水溶液中直接合成,有机热注入的方法或者有机前驱体热解的方法是目前合成CuInS2纳米晶的主要方法。有机相在尺寸控制上有一定优势,然而,一方面有机相合成采用昂贵的有机溶剂和前驱体、操作温度接近溶剂和前驱体材料的闪点存在危险,另一方面很难获得超薄的二维CuInS2纳米结构。2015年,南洋理工的Say ChyeJoachim Loo课题组采用水热合成了NaInS2纳米片,随后以此为模板通过Cu+离子交换获得了CuInS2/NaInS2二维纳米异质结构,研究表明经过离子交换含CuInS2异质结构在形貌上遭到了破坏并存在严重的聚集。迄今为止,CuInS2二维纳米结构的低温水相绿色合成,仍然是一个尚未得到解决的难题。
发明内容
本发明的目的在于解决上述现有技术中存在的缺陷,提供一种超薄CuInS2纳米片;
本发明的另一目的在于提供上述超薄CuInS2纳米片的制备方法和应用。
为实现上述发明目的,本发明所采用的技术方案是:
一种超薄CuInS2纳米片,所述CuInS2纳米片为二维介晶材料,具有单层或多层结构,厚度0.65~3nm,尺寸在100~900nm。
一种所述超薄CuInS2纳米片的制备方法,包括以下步骤:
(1)制备巯基乙胺配位的Cu+和In3+前驱体溶液:按Cu+和In3+摩尔比为1:1.6~16称取铜盐和铟盐加入到去离子水中,再加入巯基乙胺后进行搅拌得白色沉淀,向上述体系中加入碱溶液调节pH值至7~12,得溶液A;
(2)制备巯基乙胺包裹的超小CuInS2量子点:将硫前驱体溶解到去离子水中制备溶液B,将所述溶液B加热至70~100℃后在搅拌下加入到所述溶液A中,得到巯基乙胺包裹的超小CuInS2量子点;
(3)制备单层或多层超薄CuInS2纳米片:向所述巯基乙胺包裹的超小CuInS2量子点水溶液中加入可溶性铝盐,在150~250℃下水热反应10~40小时,反应完成后经分离、干燥,得到所述单层或多层超薄CuInS2纳米片。
优选的,步骤(1)中所述铜盐为CuI、CuCl、CuBr、Cu(OAc)或CuSCN中的一种或几种;所述铟盐为In(OAc)3、InCl3、InBr3、InI3、In(NO3)3或In2(SO4)2中的一种或几种。
优选的,步骤(1)中所述溶液A中Cu+的浓度为3~20mmol/L。
优选的,所述步骤(1)中In3+和巯基乙胺的摩尔比1:6~7。
优选的,步骤(2)中所述硫前驱体为硫化钠、硫化钾、硫化铵或硫脲中的一种或几种。
优选的,所述步骤(2)中硫前驱体和In3+的摩尔比为1:5。
优选的,步骤(3)中所述可溶性铝盐是Al(NO3)3、Al2(SO4)3或AlCl3
优选的,所述步骤(3)中Al3+和In3+的摩尔比为1:1.6~16。
所述超薄CuInS2纳米片在制备太阳能电池或光催化中的应用。
本发明的有益效果是:1、本发明提供的单层或多层超薄CuInS2纳米片是由CuInS2量子点经组装、晶化得到,是一种二维介晶材料,具有多吸收边和激子吸收劈裂,能够用于太阳能电池和光催化等领域;2、本发明提供的制备方法采用负离子反相热注入法,以价格相对较低的无机盐作为前驱体,以铝离子作为二维组装生长促进剂,通过简单的水相合成工艺大批量制备出单层或多层CuInS2超薄纳米片;通过控制反应过程中铜铟比、铝离子浓度、生长温度和时间可以控制纳米片的厚度和尺寸,制备方法可控性强,工艺参数容易控制,安全绿色无污染、产率高。
附图说明
图1为实施例1所制备的产物的XRD图谱以及黄铜矿结构CuInS2的pdf卡片;
图2为实施例1所制备的产物的透射电镜图(a)和能谱分析结果(d),图2b和2c为图2a方形区域的高分辨率透射电镜图;
图3为实施例1所制备的产物的紫外-可见吸收光谱图(a)和由紫外-可见吸收光谱数据得到的禁带宽度图(b);
图4为实施例2所制备的产物的透射电镜图;
图5为实施例2所制备的产物的紫外可见吸收光谱图(a)和由紫外-可见吸收光谱数据得到的禁带宽度图(b);
图6为对比例1所制备的产物的高分辨率透射电镜图(HRTEM);
图7为对比例所制备的产物的紫外可见吸收光谱图(a)和由紫外-可见吸收光谱数据得到的禁带宽度图(b)。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
超薄CuInS2纳米片的制备方法,步骤如下:
(1)制备巯基乙胺配位的Cu+和In3+前驱体溶液:将0.02g Cu(OAc)和0.234g In(OAc)3在水中溶解,向其中加入0.401g巯基乙胺表面包裹剂搅拌,得到白色沉淀,加入NaOH溶液调节溶液pH值至9,得到Cu+浓度为3.2mmol/L,In3+浓度为16mmol/L,Cu+和In3+的摩尔比为1:5的金属配合物前驱体溶液;
(2)制备巯基乙胺包裹的超小CuInS2量子点:称取0.96g Na2S·9H2O溶于200ml去离子水中,将其加热至90℃并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到巯基乙胺包裹的超小CuInS2量子点;
(3)制备超薄CuInS2纳米片:向所述巯基乙胺包裹的超小CuInS2量子点水溶液中加入0.125mmol铝离子,在180℃下水热反应20小时,反应完成后用乙醇对反应溶液进行沉淀、离心分离并烘干得到产物。
图1为本实施例所制备的CuInS2纳米片的XRD图谱以及黄铜矿结构CuInS2的pdf卡片。从图中可以看出,本实施例制备得到了黄铜矿结构的CuInS2纳米晶,通过谢乐公式估算结晶尺寸在2nm以下。
图2为本实施例所制备的CuInS2纳米片的透射电镜图,图2a表明产物为超薄纳米片,其尺寸在100nm左右,内嵌电子衍射图介于单晶和纳米晶之间;图2b和图2c为纳米片的高分辨率透射电镜图,图2b表明纳米片由尺寸在2nm左右的纳米晶晶格取向一致排列并部分接合而成,这与电子衍射结果一致,表明纳米片为介晶结构,图2c可以观察到纳米片的褶皱厚度1.5nm,由此推测该纳米片的厚度为0.75nm以下,为双原子层超薄结构。图2d显示CuInS2纳米片的能谱分析结果,表明其组成为Cu、In、S,其原子比与实施案例结果一致。
图3中显示了本实施例所制备CuInS2纳米片的紫外可见吸收光谱和计算的带隙,图3a显示样品具有双吸收边,进一步证实了CuInS2的介晶态结构特征,同时激子吸收劈裂也表明了超薄结构的介晶态的形成,图3b为样品的禁带宽度图。
实施例2
超薄CuInS2纳米片的制备方法,步骤如下:
(1)制备巯基乙胺配位的Cu+和In3+前驱体溶液:将0.02g Cu(OAc)和0.234g In(OAc)3在水中溶解,向其中加入0.401g巯基乙胺表面包裹剂搅拌,得到白色沉淀,加入NaOH溶液调节溶液pH值至9,得到Cu+浓度为3.2mmol/L,In3+浓度为16mmol/L,Cu+和In3+的摩尔比为1:5的金属配合物前驱体溶液;
(2)制备巯基乙胺包裹的超小CuInS2量子点:称取0.96g Na2S·9H2O溶于200ml去离子水中,将其加热至90℃并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到巯基乙胺包裹的超小CuInS2量子点;
(3)制备超薄CuInS2纳米片:向步骤所述巯基乙胺包裹的超小CuInS2量子点水溶液中加入0.25mmol铝离子,在180℃条件下水热反应20小时,反应完成后用乙醇对反应溶液进行沉淀、离心分离并烘干得到产物。
图4为本实施例所制备的CuInS2纳米片的透射电镜图片,表明其为超薄纳米片,其尺寸在150nm左右。
图5显示了本实施例所制备CuInS2纳米片的紫外可见吸收光谱和计算的带隙,图5a显示纳米片具有双吸收边,表明其同时具有量子点和大尺寸单晶的吸收特征,进一步证实了CuInS2的介晶态结构特征。同时峰位置在412和465nm的激子吸收劈裂,表明该介晶态结构的纳米片是双层或多层超薄结构。吸收边红移表明该纳米片在尺寸和厚度上均高于实施例1,样品厚度和尺寸可以通过铝离子浓度调节,图5b为样品的禁带宽度图。
实施例3
超薄CuInS2纳米片的制备方法,步骤如下:
(1)制备巯基乙胺配位的Cu+和In3+前驱体溶液:将0.03g Cu(OAc)和0.234g In(OAc)3在水中溶解,向其中加入0.401g巯基乙胺表面包裹剂搅拌,得到白色沉淀,加入NaOH溶液调节溶液pH值至9,得到Cu+浓度为4.8mmol/L,In3+浓度为16mmol/L,Cu+和In3+的摩尔比为3:10的金属配合物前驱体溶液;
(2)制备巯基乙胺包裹的超小CuInS2量子点:称取0.96g Na2S·9H2O溶于200ml去离子水中,将其加热至90℃并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到巯基乙胺包裹的超小CuInS2量子点;
(3)制备超薄CuInS2纳米片:向所述巯基乙胺包裹的超小CuInS2量子点水溶液中加入0.125mmol铝离子,在180℃下水热反应20小时,反应完成后用乙醇对反应溶液进行沉淀、离心分离并烘干得到产物。
实施例4
超薄CuInS2纳米片的制备方法,步骤如下:
(1)制备巯基乙胺配位的Cu+和In3+前驱体溶液:将0.016g CuCl和0.234g In(OAc)3在水中溶解,向其中加入0.401g巯基乙胺表面包裹剂搅拌,得到白色沉淀,加入NaOH溶液调节溶液pH值至9,得到Cu+浓度为3.2mmol/L,In3+浓度为16mmol/L,Cu+和In3+的摩尔比为1:5的金属配合物前驱体溶液;
(2)制备巯基乙胺包裹的超小CuInS2量子点:称取0.96g Na2S·9H2O溶于200ml去离子水中,将其加热至90℃并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到巯基乙胺包裹的超小CuInS2量子点;
(3)制备超薄CuInS2纳米片:向所述巯基乙胺包裹的超小CuInS2量子点水溶液中加入0.25mmol铝离子,180℃水热条件下加热20小时,反应完成后用乙醇对反应溶液进行沉淀、离心分离并烘干得到产物。
对比例
CuInS2纳米晶的制备,步骤如下:
(1)制备巯基乙胺配位的Cu+和In3+前驱体溶液:将0.02g Cu(OAc)和0.234g In(OAc)3在水中溶解,向其中加入0.401g巯基乙胺表面包裹剂搅拌,得到白色沉淀,加入NaOH溶液调节溶液pH值至9,得到Cu+浓度为3.2mmol/L,In3+浓度为16mmol/L,Cu+和In3+的摩尔比为1:5的金属配合物前驱体溶液;
(2)制备巯基乙胺包裹的超小CuInS2量子点:称取0.96g Na2S·9H2O溶于200ml去离子水中,将其加热至90℃并保温半小时,将该溶液在搅拌下迅速注入到上述金属配合物前驱体溶液中,得到巯基乙胺包裹的超小CuInS2量子点;
(3)制备CuInS2纳米晶:将所述巯基乙胺包裹的超小CuInS2量子点水溶液直接在180℃水热条件下加热20小时,反应完成后用乙醇对反应溶液进行沉淀、离心分离并烘干得到产物。
图6为本对比例所制备的CuInS2纳米晶的高分辨透射电镜图片,由图可知,其为超小的纳米晶聚集体,不具有超薄纳米片形貌和晶格有序排列结构。
图7显示了本对比例所制备的CuInS2纳米晶的紫外可见吸收光谱,其吸收无超薄CuInS2纳米片的特征劈裂激子吸收峰。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种超薄CuInS2纳米片,其特征在于,所述CuInS2纳米片为二维介晶材料,具有单层或多层结构,厚度0.65~3nm,尺寸在100~900nm。
2.一种权利要求1所述的超薄CuInS2纳米片的制备方法,其特征在于,包括以下步骤:
(1)制备巯基乙胺配位的Cu+和In3+前驱体溶液:按Cu+和In3+摩尔比为1:1.6~16称取铜盐和铟盐加入到去离子水中,再加入巯基乙胺后进行搅拌得白色沉淀,向上述体系中加入碱溶液调节pH值至7~12,得溶液A;
(2)制备巯基乙胺包裹的超小CuInS2量子点:将硫前驱体溶解到去离子水中制备溶液B,将所述溶液B加热至70~100℃后在搅拌下加入到所述溶液A中,得到巯基乙胺包裹的超小CuInS2量子点;
(3)制备单层或多层超薄CuInS2纳米片:向所述巯基乙胺包裹的超小CuInS2量子点水溶液中加入可溶性铝盐,在150~250℃下水热反应10~40小时,反应完成后经分离、干燥,得到所述单层或多层超薄CuInS2纳米片。
3.根据权利要求2所述的超薄CuInS2纳米片的制备方法,其特征在于,步骤(1)中所述铜盐为CuI、CuCl、CuBr、Cu(OAc)或CuSCN中的一种或几种;所述铟盐为In(OAc)3、InCl3、InBr3、InI3、In(NO3)3或In2(SO4)2中的一种或几种。
4.根据权利要求2所述的超薄CuInS2纳米片的制备方法,其特征在于,步骤(1)中所述溶液A中Cu+的浓度为3~20mmol/L。
5.根据权利要求2所述的超薄CuInS2纳米片的制备方法,其特征在于,所述步骤(1)中In3+和巯基乙胺的摩尔比1:6~7。
6.根据权利要求2所述的超薄CuInS2纳米片的制备方法,其特征在于,步骤(2)中所述硫前驱体为硫化钠、硫化钾、硫化铵或硫脲中的一种或几种。
7.根据权利要求2所述的超薄CuInS2纳米片的制备方法,其特征在于,所述步骤(2)中硫前驱体和In3+的摩尔比为1:1~5。
8.根据权利要求2所述的超薄CuInS2纳米片的制备方法,其特征在于,步骤(3)中所述可溶性铝盐是Al(NO3)3、Al2(SO4)3或AlCl3
9.根据权利要求2所述的超薄CuInS2纳米片的制备方法,其特征在于,所述步骤(3)中Al3+和In3+的摩尔比为1:1.6~16。
10.权利要求1所述的超薄CuInS2纳米片或权利要求2~9所制备的超薄CuInS2纳米片在制备太阳能电池或光催化中的应用。
CN201810883716.9A 2018-08-06 2018-08-06 一种超薄CuInS2纳米片及其制备方法和应用 Active CN108910939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810883716.9A CN108910939B (zh) 2018-08-06 2018-08-06 一种超薄CuInS2纳米片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810883716.9A CN108910939B (zh) 2018-08-06 2018-08-06 一种超薄CuInS2纳米片及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108910939A true CN108910939A (zh) 2018-11-30
CN108910939B CN108910939B (zh) 2020-11-10

Family

ID=64394582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810883716.9A Active CN108910939B (zh) 2018-08-06 2018-08-06 一种超薄CuInS2纳米片及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108910939B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270350A (zh) * 2019-05-05 2019-09-24 中国科学技术大学 一种金属掺杂的硫化铟纳米片、其制备方法及应用
CN111689512A (zh) * 2019-03-13 2020-09-22 中国科学院上海高等研究院 In掺杂的Cu-S基热电材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100124802A (ko) * 2008-03-06 2010-11-29 바이엘 테크놀로지 서비시즈 게엠베하 구리 인듐 설파이드 나노입자 및 이의 제조 방법
CN102041555A (zh) * 2011-01-14 2011-05-04 南开大学 一种CuInS2纳米晶材料的制备方法
CN104876258A (zh) * 2015-04-27 2015-09-02 中国科学院广州能源研究所 一种制备锌黄锡矿相铜锌锡硫半导体纳米晶的方法
CN107298459A (zh) * 2017-08-09 2017-10-27 安徽工程大学 一种黄铜矿结构3D‑CuInS2及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100124802A (ko) * 2008-03-06 2010-11-29 바이엘 테크놀로지 서비시즈 게엠베하 구리 인듐 설파이드 나노입자 및 이의 제조 방법
CN102041555A (zh) * 2011-01-14 2011-05-04 南开大学 一种CuInS2纳米晶材料的制备方法
CN104876258A (zh) * 2015-04-27 2015-09-02 中国科学院广州能源研究所 一种制备锌黄锡矿相铜锌锡硫半导体纳米晶的方法
CN107298459A (zh) * 2017-08-09 2017-10-27 安徽工程大学 一种黄铜矿结构3D‑CuInS2及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIE YANG ET AL.: "In situ grown vertically oriented CuInS2 nanosheets and their high catalytic activity as counter electrodes in dye-sensitized solar cells", 《CHEM. COMMUN》 *
蔡文等: "L-半胱氨酸分子辅助溶剂热合成铜铟硫光伏材料", 《稀有金属材料与工程》 *
郭健勇: "三元系CuInS2纳米光伏材料的液相方法合成与研究", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111689512A (zh) * 2019-03-13 2020-09-22 中国科学院上海高等研究院 In掺杂的Cu-S基热电材料及其制备方法
CN110270350A (zh) * 2019-05-05 2019-09-24 中国科学技术大学 一种金属掺杂的硫化铟纳米片、其制备方法及应用
CN110270350B (zh) * 2019-05-05 2021-10-01 中国科学技术大学 一种金属掺杂的硫化铟纳米片、其制备方法及应用

Also Published As

Publication number Publication date
CN108910939B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
Foo et al. Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application
Pu et al. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS)
Zhao et al. Synthesis and characterization of CdSe nanocrystalline thin films deposited by chemical bath deposition
Zhang et al. A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties
Molefe et al. Phase formation of hexagonal wurtzite ZnO through decomposition of Zn (OH) 2 at various growth temperatures using CBD method
CN109021970B (zh) 一种AgInS2或CuInS2超小量子点及其制备方法和应用
Xia et al. Wurtzite and zinc-blende CdSe based core/shell semiconductor nanocrystals: Structure, morphology and photoluminescence
Huang et al. Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4: Yb, Er (Tm)/FC transparent nanocomposite thin films
Wang et al. Effects of sulfur sources on properties of Cu 2 ZnSnS 4 nanoparticles
CN108910939A (zh) 一种超薄CuInS2纳米片及其制备方法和应用
Chen et al. Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs
Kumar et al. Growth of novel ZnO nanostructures by soft chemical routes
Cao et al. A novel approach to coat silica on quantum dots: Forcing decomposition of tetraethyl orthosilicate in toluene at high temperature
Gao et al. Green synthesis of nanocrystalline α-Al2O3 powders by both wet-chemical and mechanochemical methods
CN103128305B (zh) 一种制备Ag/Co磁性纳米复合材料的方法
Li et al. Control synthesis of semiconductor ZnSe quasi-nanospheres by reverse micelles soft template
Madiraju et al. CZTS synthesis in aqueous media by microwave irradiation
Qu et al. Controlled growth and optical properties of Al3+ doped ZnO nanodisks and nanorod clusters
Yan et al. Solvothermal synthesis of CuInS 2 powders and CuInS 2 thin films for solar cell application
CN113122233A (zh) 量子点复合材料及其制备方法、量子点发光二极管
Gao et al. Synthesis of highly emissive CdSe quantum dots by aqueous precipitation method
Li et al. Highly photoluminescent water-soluble ZnSe/ZnS/ZnS quantum dots via successive shell growth approach
CN106129176B (zh) 一种可控Cu掺杂位ZnSe/ZnS/L‑cys纳米晶的制备方法
CN102786038B (zh) 一种立方晶相InSe纳米片的水热合成方法
Wang et al. Surfactant-assisted synthesis of monodispersed ZnO nanorods at low temperature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181130

Assignee: Guilin Sensing Material Technology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2022450000575

Denomination of invention: An ultra-thin CuInS2nano sheet and its preparation method and application

Granted publication date: 20201110

License type: Common License

Record date: 20221230

EE01 Entry into force of recordation of patent licensing contract