CN108768175B - 一种多相交错并联dc-dc变换器装置 - Google Patents

一种多相交错并联dc-dc变换器装置 Download PDF

Info

Publication number
CN108768175B
CN108768175B CN201810622996.8A CN201810622996A CN108768175B CN 108768175 B CN108768175 B CN 108768175B CN 201810622996 A CN201810622996 A CN 201810622996A CN 108768175 B CN108768175 B CN 108768175B
Authority
CN
China
Prior art keywords
converter
current
controller
branch
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810622996.8A
Other languages
English (en)
Other versions
CN108768175A (zh
Inventor
刘彦呈
庄绪州
张勤进
刘厶源
郭昊昊
林叶锦
张博
孙小童
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201810622996.8A priority Critical patent/CN108768175B/zh
Publication of CN108768175A publication Critical patent/CN108768175A/zh
Application granted granted Critical
Publication of CN108768175B publication Critical patent/CN108768175B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种多相交错并联DC‑DC变换器装置,包括互相连接的多相交错并联变换器主电路和控制电路,所述控制电路包括电压控制器、多个并联设置的全负载范围调节器、多个并联设置的均流控制器以及PWM调制电路,所述电压控制器的输出端与全负载范围调节器的输入端相连接,所述全负载范围调节器的输出端与均流控制器的输入端相连接,所述均流控制器通过PWM调制电路与多相交错并联变换器主电路中的各支路相连接。本装置拓展了多相交错并联DC‑DC变换器的应用范围,对各相器件参数不同的情况依然适用。在全负载范围内,实现了变换器电感电流连续模式的稳定运行,解决了变换器在连续模式和断续模式切换引起的震荡和不稳定问题。

Description

一种多相交错并联DC-DC变换器装置
技术领域
本发明涉及电力电子技术领域,尤其涉及一种多相交错并联DC-DC变换器装置。
背景技术
随着风能发电、太阳能发电、燃料电池等新能源的发展,DC-DC变换器的应用越来越广泛,而且对变换器提出了新的要求,即需要更大的功率、更高的可靠性、更高的开关频率。
提升单相DC-DC变换器的容量,则大功率开关价格昂贵,电感和变压器设计复杂;而多台DC-DC变换器并联工作需要考虑变换器间的均流问题,***可靠性降低,产品辅助用料增加,增大成本。DC-DC变换器的并联技术大致可分为电力电子器件的并联和多台变换器的并联两种方式,多台变换器的并联需要各台变换器协调控制,算法复杂不易推广,增加故障点,还可能存在环流的问题。所以目前多相交错并联DC-DC变换器成为提升变换器功率的理想方案,减少多台变换器并联的复杂性,提高可靠性。但目前多相交错并联DC-DC变换器要求各相支路的参数严格一致,在参数不一致时无法实现各相均流。同时Buck和Boost存在电感电流连续和电感电流断续两种模式,数学模型分别为二阶***和一阶***,控制算法迥异,不能实现全负载范围内的电流调节。
发明内容
根据现有技术存在的问题,本发明公开了一种多相交错并联DC-DC变换器装置,包括互相连接的多相交错并联变换器主电路和控制电路,所述控制电路包括电压控制器、多个并联设置的全负载范围调节器、多个并联设置的均流控制器以及PWM调制电路,所述电压控制器的输出端与全负载范围调节器的输入端相连接,所述全负载范围调节器的输出端与均流控制器的输入端相连接,所述均流控制器通过PWM调制电路与多相交错并联变换器主电路中的各支路相连接;
所述电压控制器用于接收所述多相交错并联变换器主电路的输出电压反馈信号对输出电压进行调节;所述均流控制器用于接收所述多相交错并联变换器主电路中各支路的电流反馈信号对电流进行按比例分配。
所述电压控制器的输出值经过全负载范围调节器处理作为各支路均流控制器的给定值;所述多相交错并联变换器主电路的各支路电流的比例由各支路电流反馈系数K1、K2……Kn确定,即系数K1:K2:……Kn=I1max:I2max:……Inmax
所述全负载范围调节器按照电流切换值Ir1、Ir2……Irn控制工作支路数量,其中全负载范围调节器的电流切换值
Figure BDA0001698485670000021
Iimin为第i支路的临界电感电流。当实际电流值小于切换值时,滞环与符号函数输出-1,使得该支路电流给定值为负数,使得该支路退出工作;否则该支路与其他支路并联运行。
当各支路电感临界电流为各支路最大电流的10%,则多相交错并联变换器主电路的最小电流为变换器最大电流的
Figure BDA0001698485670000022
所述PWM调制电路中每个支路的驱动波形相位依次相差360°/n。
所述多相交错并联变换器主电路中的控制电路为Buck变换器、Boost变换器或反激式变换器。
所述Buck变换器、Boost变换器或反激式变换器的各个支路中有源功率开关管、二极管、电感或变压器的参数相同或者不同设置。
所述电压控制器和均流控制器为比例控制器、PI控制器、PD控制器、PID控制器、模糊控制器、鲁棒控制器、滑模控制器或自适应控制器。
由于采用了上述技术方案,本发明提供的一种多相交错并联DC-DC变换器装置,本装置拓展了多相交错并联DC-DC变换器的应用范围,对各相器件参数不同的情况依然适用。在全负载范围内,实现了变换器电感电流连续模式的稳定运行,解决了变换器在连续模式和断续模式切换引起的震荡和不稳定问题;根据负载大小,无缝切换工作支路数量,空载时仅单支路工作,极大的提高了空载效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明多相交错并联Buck变换器装置的总体框图;
图2是本发明的多相交错并联Buck变换器装置的原理图;
图3是本发明的多相交错并联Boost变换器装置的原理图;
图4是本发明的多相交错并联反激式变换器装置的原理图。
具体实施方式
为使本发明的技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:
如图1所示的一种多相交错并联DC-DC变换器装置,具体包括:彼此之间互相连接的多相交错并联变换器主电路1和控制电路2,控制电路2包括电压控制器21、多个并联设置的全负载范围调节器4、多个并联设置的均流控制器3以及PWM调制电路5。其中电压控制器21的输出端与全负载范围调节器4的输入端相连接,所述全负载范围调节器4的输出端与均流控制器3的输入端相连接,所述均流控制器3通过PWM调制电路5与多相交错并联变换器主电路1中的各支路相连接。其中电压控制器21用于接收所述多相交错并联变换器主电路1的输出电压反馈信号对输出电压进行调节;所述均流控制器3用于接收所述多相交错并联变换器主电路1中各支路的电流反馈信号对电流进行按比例分配。
进一步的,其中均流控制器3包括分多个支路并联设置的电流控制器。不论多相交错并联DC-DC变换器各支路的参数和容量是否相同,均可实现各支路电流按比例分配。电压控制器21的输出作为各支路电流控制器的给定值,各支路电流的比例由各支路电流反馈系数K1、K2……Kn确定,系数K1:K2:……Kn=I1max:I2max:……Inmax。通过全负载范围调节器按照电流切换值Ir1、Ir2……Irn来控制工作支路数量,使得多相交错并联DC-DC变换器在全负载范围内实现电感电流连续模式运行,全负载范围调节器的电流切换值
Figure BDA0001698485670000031
其中Iimin为第i支路的临界电感电流。各支路电感临界电流设计为各支路最大电流的10%,则多相交错并联DC-DC变换器的最小电流仅为变换器最大电流的
Figure BDA0001698485670000032
当实际电流值小于切换值时,滞环与符号函数输出-1,该支路电流给定值为负数,使得该支路退出工作;否则该支路与其他支路并联运行。
进一步的,所述PWM调制电路5中每个支路的驱动波形相位依次相差360°/n。
进一步的,如图2、图3和图4所示,所述多相交错并联变换器主电路1中的控制电路为Buck变换器、Boost变换器或反激式变换器。
进一步的,所述Buck变换器、Boost变换器或反激式变换器的各个支路中有源功率开关管、二极管、电感或变压器的参数相同或者不同设置。当设计变换器要求各支路电流相等时,只需将各支路采用同参数的有源功率开关管、二极管和电感。当各支路容量依次增大,整个变换器的最小电流取决于容量最小的支路,变换器加一个很小的假负载,变换器实现全负载范围内的调节,变换器空载效率得到极大提高。
进一步的,所述电压控制器21和均流控制器3为比例控制器、PI控制器、PD控制器、PID控制器、模糊控制器、鲁棒控制器、滑模控制器或自适应控制器。
实施例:
如图2所示为本发明实施例多相交错并联Buck变换器装置的原理图,Buck变换器的包括输入电源Uin、输入电容Cin、输出电容CO和n条支路;各支路由有源开关管S、电感L和二极管构成,各支路均为Buck拓扑。该变换器n条支路开关管的驱动依次相差360°/n,因此各支路的电感电流也相差360°/n。由于各相电感电流相互交错,总得电感电流纹波减小。
在图2中将变换器的输出电压作为反馈,与电压给定值比较,两者的差值作为电压控制器21的输入信号,采用PI等方法控制输出电压稳定在给定值。电压控制器21的输出Iref作为各支路电流环的给定值,即各支路电流给定值相等;改变各支路电流反馈系数K1、K2……Kn即可确定各支路电流分配比例。对于第i条支路,将电流Ii乘以反馈系数Ki后与电流给定值Iref比较,经过电流控制器控制该支路占空比调节电感电流大小。
第i条支路的电流大小为:
Ii=Iref/Ki
各支路电流分配比例为:
I1:I2:…In=1/K1:1/K2:…1/Kn
即调节反馈系数Ki即可改变第i条支路的电流分配比例。
由于Buck变换器具有电感电流连续和断续两种模式,所谓电感电流连续(CCM)是指电感L中的电流保持连续,最小值大于零;电感电流断续(DCM)是指电感L中的电流存在等于零的时刻,电流在一个周期内出现断续。在电感连续模式下,Buck变换器的数学模型是二阶模型;在电感断续模式下,Buck变换器的数学模型是一阶模型。因为两种模式下的数学模型不同,因此控制器差异较大,在整个负载范围内难以实现统一的控制策略。
传统的设计方式是将变换器设计为单一工作模式,电流连续的Buck变换器将临界电流取为额定值的10%;同时为了防止变换器进入断续模式,在电感电流低于临界电流时加入固定的假负载。由于需要维持变换器电流始终连续,空载时必须计入假负载,因此空载效率低于90%,实际上由于开关损耗等效率往往更低。
本发明根据电感电流大小,设定n级不同的电流切换值,来控制工作的支路数量。每条支路的电流切换值:
Figure BDA0001698485670000051
第i条支路的电流环给定值:
Iri=Iref·sgn(Ici-IL)
当电感电流IL>0.1ILmax时,各支路电流环的给定值均为Iref,n条支路按照比例1/K1:1/K2:…1/Kn均匀分配电流。当电感电流
Figure BDA0001698485670000061
时,第n条支路的切换值Icn大于IL,差值经过符号函数sgn(x)后输出-1,第n条支路的电流环给定值Irn<0,则第n条支路停止工作,其余支路仍工作在连续模式。为了防止频繁切换,在符号函数前加入滞环进行调节。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种多相交错并联DC-DC变换器装置,其特征在于:包括互相连接的多相交错并联变换器主电路(1)和控制电路(2),所述控制电路(2)包括电压控制器(21)、多个并联设置的全负载范围调节器(4)、多个并联设置的均流控制器(3)以及PWM调制电路(5),所述电压控制器(21)的输出端与全负载范围调节器(4)的输入端相连接,所述全负载范围调节器(4)的输出端与均流控制器(3)的输入端相连接,所述均流控制器(3)通过PWM调制电路(5)与多相交错并联变换器主电路(1)中的各支路相连接;
所述电压控制器(21)用于接收所述多相交错并联变换器主电路(1)的输出电压反馈信号对输出电压进行调节;所述均流控制器(3)用于接收所述多相交错并联变换器主电路(1)中各支路的电流反馈信号对电流进行按比例分配;
所述电压控制器(21)的输出值经过全负载范围调节器(4)处理作为各支路均流控制器(3)的给定值;所述多相交错并联变换器主电路(1)的各支路电流的比例由各支路电流反馈系数K1、K2……Kn确定,即系数K1:K2:……Kn=I1max:I2max:……Inmax
所述全负载范围调节器(4)按照电流切换值Ir1、Ir2……Irn控制工作支路数量,其中全负载范围调节器(4)的电流切换值
Figure FDA0002392054360000011
Iimin为第i支路的临界电感电流,当实际电流值小于切换值时,滞环与符号函数输出-1,使得该支路电流给定值为负数,使得该支路退出工作;否则该支路与其他支路并联运行,
当各支路电感临界电流为各支路最大电流的10%,则多相交错并联变换器主电路(1)的最小电流为变换器最大电流的
Figure FDA0002392054360000012
2.根据权利要求1所述的一种多相交错并联DC-DC变换器装置,其特征还在于:所述PWM调制电路(5)中每个支路的驱动波形相位依次相差360°/n。
3.根据权利要求1-2任意一项权利要求所述的一种多相交错并联DC-DC变换器装置,其特征还在于:所述多相交错并联变换器主电路(1)中的控制电路为Buck变换器、Boost变换器或反激式变换器。
4.根据权利要求3所述的一种多相交错并联DC-DC变换器装置,其特征还在于:所述Buck变换器、Boost变换器或反激式变换器的各个支路中有源功率开关管、二极管、电感或变压器的参数相同或者不同设置。
5.根据权利要求4所述的一种多相交错并联DC-DC变换器装置,其特征还在于:所述电压控制器(21)和均流控制器(3)为比例控制器、PI控制器、PD控制器、PID控制器、模糊控制器、鲁棒控制器、滑模控制器或自适应控制器。
CN201810622996.8A 2018-06-15 2018-06-15 一种多相交错并联dc-dc变换器装置 Expired - Fee Related CN108768175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810622996.8A CN108768175B (zh) 2018-06-15 2018-06-15 一种多相交错并联dc-dc变换器装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810622996.8A CN108768175B (zh) 2018-06-15 2018-06-15 一种多相交错并联dc-dc变换器装置

Publications (2)

Publication Number Publication Date
CN108768175A CN108768175A (zh) 2018-11-06
CN108768175B true CN108768175B (zh) 2020-06-16

Family

ID=63978382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810622996.8A Expired - Fee Related CN108768175B (zh) 2018-06-15 2018-06-15 一种多相交错并联dc-dc变换器装置

Country Status (1)

Country Link
CN (1) CN108768175B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728717A (zh) * 2018-12-29 2019-05-07 国网天津市电力公司电力科学研究院 基于直流微网***用交错并联双向直流变换器控制方法
CN110649808B (zh) * 2019-09-20 2021-03-23 山东建筑大学 交错并联dc-dc变换器的切换控制方法、控制器及***
CN111193397B (zh) * 2020-01-14 2021-04-02 四川航电微能源有限公司 一种三相交错并联双向dc/dc变换器开关管动态休眠控制方法
CN113098248A (zh) * 2021-04-09 2021-07-09 华中科技大学 一种可配相数交错并联开关电源变换器
CN113014098B (zh) * 2021-04-09 2022-05-17 哈尔滨工业大学(威海) 用于交错并联型双向dc/dc变换器的模糊自整定pid控制算法
CN113872438B (zh) * 2021-09-02 2024-07-05 联合汽车电子有限公司 多相交错并联型dcdc变换器的断路检测方法及***
CN114679058B (zh) * 2022-05-25 2022-09-23 浙江大学 多相交错并联直流变换器及其控制方法
CN117394690A (zh) * 2023-10-24 2024-01-12 东莞光亚智能科技有限公司 基于四相交错dc-dc电路的自适应pi调节方法、变换器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103515958B (zh) * 2012-06-29 2015-11-25 台达电子工业股份有限公司 一种电能质量设备及其控制装置
CN105514964A (zh) * 2014-09-26 2016-04-20 中车大连电力牵引研发中心有限公司 均流电路及均流控制方法
CN105406719B (zh) * 2015-12-02 2018-03-13 中国电子科技集团公司第四十一研究所 应用于程控直流电源模块并联均流的装置及其均流方法

Also Published As

Publication number Publication date
CN108768175A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108768175B (zh) 一种多相交错并联dc-dc变换器装置
US8184456B1 (en) Adaptive power converter and related circuitry
US6069801A (en) Power factor correction in switching power conversion
US7391132B2 (en) Methods and apparatus providing double conversion/series-parallel hybrid operation in uninterruptible power supplies
KR20120035911A (ko) Smps에서 pwm과 pfm 사이를 천이하는 시스템, 방법 및 장치
Czarkowski DC–DC Converters
Kim et al. An enhanced control algorithm for improving the light-load efficiency of noninverting synchronous buck–boost converters
Battula et al. Analysis and dual-loop PI control of bidirectional quasi Z-source DC-DC converter
CN108599537A (zh) 一种供电方法及控制器
US20220393472A9 (en) Vehicle-grid-home power interface
Danyali et al. A novel multi-input medium-gain DC-DC boost converter with soft-switching performance
Muhammad et al. Modelling and control of non-isolated high voltage gain boost converter employing coupled inductor and switched capacitor
Wang et al. Analysis and implementation of a transformerless interleaved ZVS high-step-down DC-DC converter
KR20220153399A (ko) 컨버터 제어장치 및 제어방법
Zhang et al. 1MHz LLC resonant DC-DC converter with PWM output regulation capability
CN112994190A (zh) 一种光伏充电模块的控制方法及其控制装置
Mostaan et al. A Symmetric Bipolar Quadratic Buck–Boost Converter With Synchronous Triple Switches
JP6976145B2 (ja) 電力変換装置
Qin et al. Mechanisim of Duty Cycle Mutation and a New Mode Smooth Switching Control Method in High Efficiency Four-Mode Four-Switch Buck-Boost Converter
Sano et al. Improving dynamic performance and efficiency of a resonant switched-capacitor converter based on phase-shift control
CN113098281A (zh) 一种应用于准并联结构变换器的变占空比软启动控制***
Yedukondalu et al. Effective phase utilization and efficiency improvement of high power interleaved DC–DC converter using modified rotating phase shedding control
Hasanpour et al. Dual-Output Classic Buck and Buck-Boost Converter with Fast Dynamic Response
Indragandhi et al. Performance analysis, modeling and control of multi-port DC-DC boost converter for an integrated power generation system
Rajpathak et al. Hybrid converter with simultaneous dc and ac outputs using fuzzy controllers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200616

Termination date: 20210615

CF01 Termination of patent right due to non-payment of annual fee