CN108709574B - 一种用于小波奇异性检测的光纤光栅传感*** - Google Patents

一种用于小波奇异性检测的光纤光栅传感*** Download PDF

Info

Publication number
CN108709574B
CN108709574B CN201810264145.0A CN201810264145A CN108709574B CN 108709574 B CN108709574 B CN 108709574B CN 201810264145 A CN201810264145 A CN 201810264145A CN 108709574 B CN108709574 B CN 108709574B
Authority
CN
China
Prior art keywords
fiber grating
wavelet
reflection spectrum
peak
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810264145.0A
Other languages
English (en)
Other versions
CN108709574A (zh
Inventor
祝连庆
李红
何巍
董明利
骆飞
刘锋
张钰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Publication of CN108709574A publication Critical patent/CN108709574A/zh
Application granted granted Critical
Publication of CN108709574B publication Critical patent/CN108709574B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提供了一种用于小波奇异性检测的光纤光栅传感***,所述***按照光路方向依次包括:光源、有源光纤、环形器、光纤光栅传感器、解调仪105,以及最后的输出连接到用户接口,其中,光源用于发出激光光束,所述激光光束经有源光纤进入到环形器,并进一步入射至光纤光栅传感器,解调仪用于解调从光纤光栅传感器反射回来的反射光谱数据,对采集光纤光栅反射谱数据进行光纤光栅传感解调寻峰。本发明寻峰效果更好,更接近真实值。

Description

一种用于小波奇异性检测的光纤光栅传感***
本申请是申请日为2016年03月09日,申请号为CN201610131661.7,发明名称为基于小波奇异性检测的FBG传感解调寻峰方法的分案申请。
技术领域
本发明涉及一种光纤光栅传感解调寻峰方法,特别涉及一种用于小波奇异性检测的光纤光栅传感***。
背景技术
通常,光纤光栅(Fiber Bragg Grating,FBG)是目前最具有代表性的光纤无源器件之一,它具有抗电磁干扰、动态范围宽、耐腐蚀、灵敏度高、质量轻和体积小、可埋入智能结构等特点,在各物理量的传感应用中有着广阔前景。光纤光栅传感***的基本组成如图1所示。光纤光栅传感器是通过检测其中心波长的漂移来检测温度或应变等被测物理量的变化,因此光纤光栅传感器的波长峰值位置的确定至关重要。
在已有的研究中,常见的寻峰算法有:质心法(功率加权平均法)、高斯拟合法,多项式拟合,三次样条拟合,基于RBF(径向基函数)拟合,遗传算法及蚁群算法等。但在光纤光栅传感解调信号布拉格中心波长漂移的实时瞬态特性分析上,常用寻峰算法存在严重不足,因此,需要一种用于小波奇异性检测的光纤光栅传感***。
发明内容
本发明的目的在于提供一种用于小波奇异性检测的光纤光栅传感***,所述***按照光路方向依次包括:
光源、有源光纤、环形器、光纤光栅传感器、解调仪105,以及最后的输出连接到用户接口,其中,光源用于发出激光光束,所述激光光束经有源光纤进入到环形器,并进一步入射至光纤光栅传感器,解调仪用于解调从光纤光栅传感器反射回来的反射光谱数据;
所述解调仪采集光纤光栅反射谱数据进行光纤光栅传感解调寻峰,包括:
a)采集光纤光栅反射谱数据;
b)通过设置光强阀值将采集的光纤光栅反射谱分成多段;
c)对每段光纤光栅反射谱进行三次样条插值;
d)利用Mexhat小波进行多尺度小波变换;
e)依次获得各尺度上小波变换的模极大值并根据所述模极大值得到小波变换峰的道址;
f)判断各尺度小波变换峰的道址是否为峰顶点位置,如果不是则返回步骤e),如果是则进入步骤g);
g)根据光纤光栅反射谱的像素点与波长对应关系式,计算得出峰顶点位置对应像素点位置处的中心波长值。
优选地,所述小波基包括Daubechies(dbN)小波、coiflet(coifN)小波、Morlet小波、Meyer小波、样条小波和Mexican hat小波。
优选地,选取Mexican hat小波进行寻峰分析。
优选地,所述解调仪与用户接口相连接,通过分析反射光谱数据而检测出温度或应变等被测物理量的变化。
优选地,所述步骤d中选择的小波基要满足一定区间的紧支撑和足够的消失矩阶数。
优选地,在光纤光栅传感解调***的寻峰算法中,光纤光栅的反射谱输出强度可以用式(1)近似表示:
Figure BDA0001610932110000021
其中,I0表示反射谱峰值强度;λs表示反射谱强度等于对应的中心波长值;Δλs表示为反射谱的3dB宽带;λ表示反射谱的初始中心波长。
优选地,在光纤光栅传感解调***的寻峰算法中,光纤光栅的反射谱的拟合曲线采用式(2)
Figure BDA0001610932110000031
其中,y0表示反射谱峰值强度;x表示反射谱的初始中心波长值;x0表示反射普强度等于y0对应的中心波长值。
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1示意性示出了本发明用于基于小波奇异性检测的光纤光栅传感***;
图2示出了本发明光纤光栅传感解调寻峰方法的具体步骤;
图3示意性示出通过设置阀值将反射谱分段的示意图;
图4示出了本发明小波变换的原理图;
图5给出了对光栅反射谱信号进行的三种不同小波基在不同尺度下的小波变换结果。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
本发明提供一种基于小波奇异性检测的光纤光栅传感解调寻峰方法,该方法利用小波奇异性检测方法能准确地定位光纤光栅反射谱峰,显著提高了光纤光栅传感的定性分析和定量分析中的寻峰精度。
光纤光栅(Fiber Bragg Grating,光纤光栅)是目前最具有代表性的光纤无源器件之一,它具有抗电磁干扰、动态范围宽、耐腐蚀、灵敏度高、质量轻和体积小、可埋入智能结构等特点,在各物理量的传感应用中有着广阔前景。光纤光栅传感器是通过检测其中心波长的漂移来检测温度或应变等被测物理量的变化,因此光纤光栅传感器的波长峰值位置的确定至关重要。
根据本发明的用于基于小波奇异性检测的光纤光栅传感***的基本组成如图1所示。所述***按照光路方向依次包括:光源101、有源光纤102、环形器103、光纤光栅传感器104(光纤布拉格光栅传感器),解调仪105、以及最后的输出连接到用户接口106。具体地,如图1所示,光源101用于发出激光光束,所述激光光束经有源光纤102进入到环形器103,并进一步入射至光纤光栅传感器104(光纤布拉格光栅传感器),解调仪105用于解调从光纤光栅传感器反射回来的反射光谱数据,解调仪105可以与用户接口106相连接,解调仪105通过分析反射光谱数据而检测出温度或应变等被测物理量的变化。
本发明提出一种基于小波奇异性检测的光纤光栅传感解调寻峰方法,如图2所示,本发明的方法包括如下步骤:
步骤201:采集光纤光栅反射光谱数据;优选地,可以利用图1所示***中的解调仪105进行采集工作。
步骤202:设置光强阀值并根据所设阀值将光纤光栅反射谱分成多段;阀值的设定可以根据需求进行设定和调整。光纤光栅反射谱示意性地如图3所示。
步骤203:对每段光纤光栅反射谱进行三次样条插值;
步骤204:利用Mexhat小波进行多尺度小波变换;
步骤205:依次获得各尺度上小波变换的模极大值和小波变换峰的道址;
步骤206:判断各尺度小波变换峰的道址是否为峰顶点位置pt,如果不是则返回步骤205,如果是则进入步骤207;
步骤207:根据光纤光栅反射光谱的像素点与波长对应关系式,计算得出峰顶点位置pt对应像素点位置处的中心波长值。由此获得了寻峰结果。
具体地,步骤204中选择的小波基要满足一定区间的紧支撑和足够的消失矩阶数,这样就能有效地消除噪声并发现奇异点。本发明可用的小波基包括Daubechies(dbN)小波、coiflet(coifN)小波、Morlet小波、Meyer小波、样条小波和Mexican hat小波等,图5给出了对光栅反射谱信号进行的三种不同小波基在不同尺度下的小波变换结果。
如果小波变换函数Ψs(x)具有n阶消失矩且是紧支的,则一定存在紧支集函数θs *,使得
Figure BDA0001610932110000051
定义
Figure BDA0001610932110000052
则小波变换公式为:
Figure BDA0001610932110000053
即小波函数具有n阶消失矩,则其小波变换就是相当于一个n阶多尺度微分算子。当n=1时,小波变换函数具有一阶消失矩,则其小波变换正比于f*θs(x)的一阶导数,即公式(4)
Figure BDA0001610932110000054
公式(5)W2f(s,x)是正比于f*θs(x)的二阶导数。
Figure BDA0001610932110000055
公式(6)为Mexican hat小波基函数
Figure BDA0001610932110000056
s为变换尺度,尺度空间(s,x)中经小波变换得到的局部模极大值点连线可得到模极大值线。
优选地,本发明选取Mexican hat小波进行寻峰分析。Mexican hat小波基对突变信号峰值奇异点具有良好的定位特性和分析精度。Mexican hat小波基函数见上式(6)及其频域解析式(7)。
Figure BDA0001610932110000057
设小波基具有n阶消失矩,并且n阶可微,具有紧支撑。这里n为正整数,奇异性指数α≤n,反射谱信号f(x)∈L2(R),如果在x0的邻域内和所有的尺度,存在一个常数A满足式(8):
|W f(s,x)|≤A(sα+|x-x0|α) (8)
可根据以上结论,利用小波变换确定反射谱信号f(x)在点x0的奇异性指数α。从式(8)可知,奇异点分布在模极值线上,其奇异性指数α不等于1,并且奇异性指数α>0,则称反射谱信号f(x)在x0点奇异,从而实现利用小波变换来确定光纤光栅反射谱信号奇异性。
具体地,步骤205的实现步骤如下:设一光滑函数θ(x),且满足下列条件
Figure BDA0001610932110000061
Figure BDA0001610932110000062
并且定义
Figure BDA0001610932110000063
定义两小波函数
Figure BDA0001610932110000064
对于f(x)∈L2(R),其小波变换为
Figure BDA0001610932110000065
Figure BDA0001610932110000066
f*θs起着光滑化f(x)的作用。对每一尺度s,其W1f(s,x)、W2f(s,x)分别正比于f*θs(x)|的一阶导数和二阶导数,图4直观地表示了它们之间的关系。
由图4可知,f(x)上的奇异点,通过小波变换,在W1f(s,x)上表现为极大值,而在W2f(s,x)上为过零点。因此奇异点位置可以转化为求W1f(s,x)的极大值或W2f(s,x)的过零点。由于过零点易受噪声的干扰,并且W2f(s,x)的过零点有时反映的是f*θs的转折点,对奇异性的判断是没有必要的,因此使用W1f(s,x)的极大值更为方便。
W1f(s,x)的极大值随着s具有传递性,如果小波在更小的尺度上不存在局部模极大值,那么在该邻域不可能有奇异点。所以奇异点的存在与每一个尺度都具有模极大值有关。一般情况下,尺度从大到小时,其模极大值点会聚为奇异点,构成一条模极大值线。据此,采用检索小波变换系数的模极大值点,就可以检测出信号的突变点,即能确定光纤光栅传感信号的峰值位置。
根据上述基于小波奇异性检测的光纤光栅传感解调寻峰方法,本发明还提供了一个具体的实施例,实施例中光纤布拉格光栅中心波长的初始值为1535nm,然而通过普通光谱仪获得光纤光栅的反射谱,设置普通光谱仪的分辨率为0.02nm,采样点数为1000、扫描带宽为2nm,从而测得光纤布拉格光栅原始谱的中心波长为1535.0835nm。
在光纤光栅传感解调***的寻峰算法中,光纤光栅的反射谱输出强度可以用式(13)近似表示,拟合曲线采用式(14)。
Figure BDA0001610932110000071
其中,I0表示反射谱峰值强度;λs表示反射谱强度等于对应的中心波长值;Δλs表示为反射谱的3dB宽带;λ表示反射谱的初始中心波长。
Figure BDA0001610932110000072
其中,y0表示反射谱峰值强度;x表示反射谱的初始中心波长值;x0表示反射普强度等于y0对应的中心波长值。
表1示出了基于高斯拟合法寻峰结果与小波奇异性检测寻峰法之间的精度对比,同时给出了两种寻峰算法结果相对于原始谱的定位精度。
表1不同算法定位精度比较
Figure BDA0001610932110000073
通过本实施例也可以得出小波分析的奇异性检测对于光纤光栅传感非稳态信号的寻峰效果更好,更接近真实值。小波奇异性检测方法能准确地定位光纤光栅反射谱峰,能定量分析信号的奇异性,并实现寻峰,在工程应用中有重要的实用价值。小波奇异性检测方法对光纤光栅传感解调的寻峰效果受到多重因素影响,如所用的小波基函数、小波变换的系数的选择和噪声干扰,以及一些具体参数的确定,在实际应用中,还需要根据实际情况综合考虑各个因素。
所述附图仅为示意性的并且未按比例画出。虽然已经结合优选实施例对本发明进行了描述,但应当理解本发明的保护范围并不局限于这里所描述的实施例。
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (6)

1.一种用于小波奇异性检测的光纤光栅传感***,其特征在于,所述***按照光路方向依次包括:
光源、有源光纤、环形器、光纤光栅传感器、解调仪,以及最后的输出连接到用户接口,其中,光源用于发出激光光束,所述激光光束经有源光纤进入到环形器,并进一步入射至光纤光栅传感器,解调仪用于解调从光纤光栅传感器反射回来的反射光谱数据;
所述解调仪采集光纤光栅反射谱数据进行光纤光栅传感解调寻峰,包括:
a)采集光纤光栅反射谱数据;
b)通过设置光强阀值将采集的光纤光栅反射谱分成多段;
c)对每段光纤光栅反射谱进行三次样条插值;
d)利用Mexhat小波进行多尺度小波变换;
e)依次获得各尺度上小波变换的模极大值并根据所述模极大值得到小波变换峰的道址;
f)判断各尺度小波变换峰的道址是否为峰顶点位置,如果不是则返回步骤e),如果是则进入步骤g);
g)根据光纤光栅反射谱的像素点与波长对应关系式,计算得出峰顶点位置对应像素点位置处的中心波长值。
2.根据权利要求1所述的光纤光栅传感***,其特征在于:所述Mexhat小波包括Daubechies(dbN)小波、coiflet(coifN)小波、Morlet小波、Meyer小波、样条小波或Mexicanhat小波。
3.根据权利要求2所述的光纤光栅传感***,其特征在于:选取Mexican hat小波进行寻峰分析。
4.根据权利要求1所述的光纤光栅传感***,其特征在于:所述解调仪与用户接口相连接,通过分析反射光谱数据而检测出温度或应变被测物理量的变化。
5.根据权利要求1所述的光纤光栅传感***,其特征在于:所述步骤d中利用的Mexhat小波要满足一定区间的紧支撑和足够的消失矩阶数。
6.根据权利要求1所述的光纤光栅传感***,其特征在于:在光纤光栅传感***的寻峰算法中,光纤光栅的反射谱输出强度可以用式(1)近似表示:
Figure FDA0002508703580000021
其中,I0表示反射谱峰值强度;λs表示反射谱强度等于对应的中心波长值;Δλs表示为反射谱的3dB宽带;λ表示反射谱的初始中心波长。
CN201810264145.0A 2015-10-13 2016-03-09 一种用于小波奇异性检测的光纤光栅传感*** Active CN108709574B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510670641 2015-10-13
CN2015106706412 2015-10-13
CN201610131661.7A CN105841723B (zh) 2015-10-13 2016-03-09 基于小波奇异性检测的fbg传感解调寻峰方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610131661.7A Division CN105841723B (zh) 2015-10-13 2016-03-09 基于小波奇异性检测的fbg传感解调寻峰方法

Publications (2)

Publication Number Publication Date
CN108709574A CN108709574A (zh) 2018-10-26
CN108709574B true CN108709574B (zh) 2020-07-31

Family

ID=56587041

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610131661.7A Active CN105841723B (zh) 2015-10-13 2016-03-09 基于小波奇异性检测的fbg传感解调寻峰方法
CN201810264145.0A Active CN108709574B (zh) 2015-10-13 2016-03-09 一种用于小波奇异性检测的光纤光栅传感***

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610131661.7A Active CN105841723B (zh) 2015-10-13 2016-03-09 基于小波奇异性检测的fbg传感解调寻峰方法

Country Status (1)

Country Link
CN (2) CN105841723B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490397B (zh) * 2016-09-14 2018-05-04 北京卫星环境工程研究所 高精度自适应滤波fbg光谱快速寻峰方法
CN107941255B (zh) * 2017-12-29 2020-05-05 武汉理工光科股份有限公司 基于fpga的弱光纤光栅高速解调装置及方法
CN109632712A (zh) * 2019-01-16 2019-04-16 北京信息科技大学 光纤锥型结构的飞秒直写fbg温度和折射率测量方法
CN113076962B (zh) * 2021-05-14 2022-10-21 电子科技大学 一种基于可微神经网络搜索技术的多尺度目标检测方法
CN113551701B (zh) * 2021-06-19 2023-01-31 湖北经济学院 一种总线式光纤光栅解调***
CN114861723B (zh) * 2022-05-07 2024-07-19 重庆邮电大学 一种应用于光纤布拉格光栅解调的***及方法
CN115655323A (zh) * 2022-10-28 2023-01-31 广州市南沙区北科光子感知技术研究院 一种光纤光栅传感网络的光谱类型识别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110032514A (ko) * 2009-09-23 2011-03-30 한국에너지기술연구원 다중 필터 창 fp 필터를 이용한 fbg 센서의 다중 파장 고속 복조화 장치
CN103940363A (zh) * 2014-04-30 2014-07-23 中国科学院半导体研究所 基于小波互相关技术的高精度光纤应变低频传感解调方法
CN104048617A (zh) * 2014-07-09 2014-09-17 中国科学院半导体研究所 对偏振态变化不敏感的高精度光纤光栅传感解调方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945666A (en) * 1996-05-20 1999-08-31 The United States Of America As Represented By The Secretary Of The Navy Hybrid fiber bragg grating/long period fiber grating sensor for strain/temperature discrimination
CN102435214B (zh) * 2011-09-20 2014-02-12 华北电力大学(保定) 光纤光栅谱峰高精度快速寻峰方法
WO2014074974A1 (en) * 2012-11-09 2014-05-15 Gangbing Song Dynamic fiber bragg grating interrogation system and method
CN103487074B (zh) * 2013-10-12 2015-08-05 重庆邮电大学 利用三点寻峰算法处理fbg传感信号的方法
CN104111082A (zh) * 2014-07-11 2014-10-22 中南大学 一种高精度fbg传感信号寻峰方法
CN104634460B (zh) * 2015-03-04 2017-05-24 重庆邮电大学 一种分布式fbg传感网络多峰自适应精确寻峰方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110032514A (ko) * 2009-09-23 2011-03-30 한국에너지기술연구원 다중 필터 창 fp 필터를 이용한 fbg 센서의 다중 파장 고속 복조화 장치
CN103940363A (zh) * 2014-04-30 2014-07-23 中国科学院半导体研究所 基于小波互相关技术的高精度光纤应变低频传感解调方法
CN104048617A (zh) * 2014-07-09 2014-09-17 中国科学院半导体研究所 对偏振态变化不敏感的高精度光纤光栅传感解调方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Comparison of Different Peak Detection Algorithms with Regards to Spectrometic Fiber Bragg rating;Thomas Bodendorfer,etl;《2009 International Symposium on Optomechatronic Technologies》;20091110;122-126 *
改进的小波变换用于处理FBG信号;陈勇,贺明玲,陈丽娟,刘涣淋;《红外与激光工程》;20131127(第10期);2784-2789 *

Also Published As

Publication number Publication date
CN105841723B (zh) 2018-04-10
CN108709574A (zh) 2018-10-26
CN105841723A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN108709574B (zh) 一种用于小波奇异性检测的光纤光栅传感***
CN108955734B (zh) 一种光纤f-p温度/压力复合传感器的腔长解调方法
CN103487074B (zh) 利用三点寻峰算法处理fbg传感信号的方法
CN105973282A (zh) 光纤f-p传感器腔长小波相位提取解调方法
CN104111082A (zh) 一种高精度fbg传感信号寻峰方法
CN107490397B (zh) 高精度自适应滤波fbg光谱快速寻峰方法
CN104634460A (zh) 一种分布式fbg传感网络多峰自适应精确寻峰方法
CN108534811A (zh) 一种短腔光纤法珀传感器的腔长解调算法
CN106017522A (zh) 一种光纤f-p传感器的快速高精度信号解调方法
CN113358239A (zh) 一种基于fbg的波长特征识别方法
CN108225385A (zh) 一种重叠fbg传感信号峰值定位方法
CN103743470B (zh) 一种汽车噪声频谱分析方法
CN104296868B (zh) 一种光谱仪的设计方法以及光谱仪
CN106643835A (zh) 光纤法珀腔解调方法及装置和光纤法珀干涉仪
CN113091781B (zh) 用于偏光干涉型光纤传感器的解调方法、***、设备
CN110049423A (zh) 一种利用广义互相关和能量谱检测麦克风的方法和***
CN112050942B (zh) 基于相位补偿的光纤干涉光谱腔长校正方法
CN112129535A (zh) 一种基于光纤光栅传感的刮板输送机轴承故障监测***
CN109163894B (zh) 一种基于摩擦温度信号的磨合状态识别方法
CN115310304A (zh) 一种基于改进svd的干式空心电抗器光纤传感降噪方法
CN111707303A (zh) 一种光纤f-p传感器变步长快速高精度信号解调方法
CN111707304A (zh) 一种变步长光纤f-p传感器离散腔长快速解调方法
CN108303196B (zh) 全同光纤光栅数字化解调及区域温度监测方法及其***
CN113607679A (zh) 一种基于离散极大值的太赫兹吸收峰位提取方法
CN114166814A (zh) 一种基于双尺度相关运算的拉曼谱峰识别方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181026

Assignee: NINGBO TIANDE INNOVATION INTELLIGENT TECHNOLOGY Co.,Ltd.

Assignor: Beijing Information Science & Technology University

Contract record no.: X2020990000715

Denomination of invention: A fiber Bragg grating sensing system for wavelet singularity detection

Granted publication date: 20200731

License type: Common License

Record date: 20201230

EE01 Entry into force of recordation of patent licensing contract