CN108659836B - 一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用 - Google Patents

一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用 Download PDF

Info

Publication number
CN108659836B
CN108659836B CN201810812029.8A CN201810812029A CN108659836B CN 108659836 B CN108659836 B CN 108659836B CN 201810812029 A CN201810812029 A CN 201810812029A CN 108659836 B CN108659836 B CN 108659836B
Authority
CN
China
Prior art keywords
fluorescent carbon
sulfur
nitrogen
carbon dot
carbon dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810812029.8A
Other languages
English (en)
Other versions
CN108659836A (zh
Inventor
郭兴家
张立志
王祚伟
郝爱军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN201810812029.8A priority Critical patent/CN108659836B/zh
Publication of CN108659836A publication Critical patent/CN108659836A/zh
Application granted granted Critical
Publication of CN108659836B publication Critical patent/CN108659836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用。采用的技术方案是:将酒石酸和L‑半胱氨酸置于水热反应釜中,在160~210℃温度范围内,加热反应3~8小时,自然冷却至室温后加入超纯水溶解,过滤、离心、透析,冷冻干燥,得到纯化后的荧光碳点粉末。本发明制备的碳点荧光量子产率可达19.1%。本发明制得的氮硫共掺杂荧光碳点可用于指纹检测和Hg2+检测,对指纹显现、提取具有重要意义。此外氮硫共掺杂荧光碳点中的巯基与Hg2+之间具有强烈的亲合作用,使其在环境化学研究中具有重要意义。最后该荧光碳点也可用于印染废水中的亚甲基蓝的降解。

Description

一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用
技术领域
本发明涉及碳纳米材料技术领域,具体涉及一种氮和硫共掺杂荧光碳点的制备方法及其应用。
背景技术
碳点(Carbon Dots)作为一种尺寸小于10nm的荧光纳米材料,其表面主要含有-COOH和-OH等官能团,使其具有良好的水溶性和生物相容性,此外它还具有低毒性、光稳定性、抗光漂白性和优良的光致发光性能。在过去的十几年中受到越来越多的科研工作者的关注,将碳点开发并应用于各个领域。比如将碳点作为荧光探针检测金属离子和抗菌药物,或是应用于细胞与活体成像中,或是应用于光催化、光电器件和有机太阳能电池等。虽然关于碳点的制备和相关的应用研究已经有很多,但是依然存在制备过程复杂,荧光量子产率低,发光机理不明确等问题,因此寻找简单,荧光量子产率高的荧光碳点的制备方法非常必要,此外对荧光碳点的应用的不断扩充也是很有必要。
发明内容
本发明的目的在于提供一种制备方法简单,量子产率高,光学性能优异的荧光碳点的制备方法。
为实现本发明的目的,本发明采用的技术方案如下:一种高量子产率氮硫共掺杂荧光碳点,制备方法如下:将酒石酸和L-半胱氨酸置于水热反应釜中,水热反应3~8小时,室温下自然冷却后,加入超纯水溶解,过滤、离心、透析,制得氮硫共掺杂荧光碳点。
优选的,上述的高量子产率氮硫共掺杂荧光碳点,水热反应温度为160℃~210℃。
优选的,上述的高量子产率氮硫共掺杂荧光碳点,按质量比,酒石酸:L-半胱氨酸=0.3:0.2~0.7。
上述的高量子产率氮硫共掺杂荧光碳点在指纹检测中的应用。方法如下:取淀粉和浓度为100μg/mL的上述的高量子产率氮硫共掺杂荧光碳点的水溶液,混合均匀,加入丙酮,搅拌均匀,超声2h,得到的糊状物在60C°下烘干后,研磨成粉末,将粉末均匀抖落至带有指纹的载体上,用指纹刷顺着指纹纹路刷显,除去多余粉末后,拍摄在365nm紫外灯照射下的指纹图像。
上述的高量子产率氮硫共掺杂荧光碳点在Hg2+检测中的应用。方法如下:于上述的高量子产率氮硫共掺杂荧光碳点的水溶液中加入磷酸盐缓冲溶液,再加入含有Hg2+的溶液,搅拌均匀反应5min后,扫描荧光光谱。
上述的高量子产率氮硫共掺杂荧光碳点在催化降解有机污染物中的应用。方法如下:于含有有机污染物的废水中,加入上述的高量子产率氮硫共掺杂荧光碳点的水溶液,在黑暗环境下搅拌吸附1h,然后加入H2O2,用250W高汞灯下照射100~120min。优选的,所述的有机污染物是亚甲基蓝。
本发明的有益效果是:
1.本发明采用一步高温固相反应法合成荧光碳点,制备方法简单且反应条件温和可控,所
用药品价廉易得,易于实现工业化。
2.本发明制备的荧光碳点可应用于指纹检测、Hg2+检测和降解印染废水中的亚甲基蓝。
3.本发明制备的荧光碳点的荧光量子产率高达19.1%。
4.本发明制备的荧光碳点最大激发波长和最大发射波长分别为360nm和443nm,该荧光
碳点的Stokes位移为83nm,较大的Stokes位移有利于荧光性能的分析与检测。此外该
荧光碳点表现出优异的发光性能,在365nm的紫外灯照射下发出明亮的蓝色荧光。最
后本发明所制备的荧光碳点水溶性好、稳定性好,常温放置在暗处一年不会变质。
附图说明
图1a是荧光碳点的透射电镜图。
图1b是荧光碳点的粒径分布图。
图2是荧光碳点的X射线衍射图。
图3是荧光碳点的红外光谱。
图4是荧光碳点溶液的zeta电位。
图5a是荧光碳点的X射线光电子能谱图。
图5b是荧光碳点的C1s的X射线光电子能谱图。
图5c是荧光碳点的N1s的X射线光电子能谱图。
图5d是荧光碳点的O1s的X射线光电子能谱图。
图5e是荧光碳点的S2p的X射线光电子能谱图。
图6是荧光碳点溶液的紫外-可见吸收光谱。
图7是荧光碳点溶液荧光激发和发射光谱。
图8是不同波长光激发下荧光碳点溶液的荧光发射光谱。
图9是pH值对碳点溶液荧光的影响(λex=360nm)。
图10是NaCl浓度对荧光碳点溶液荧光的影响(λex=360nm)。
图11是光照对荧光碳点溶液荧光的影响(λex=360nm)。
图12是荧光碳点在365nm紫外灯下的指纹检测图。
图13是在荧光碳点溶液中加入一系列浓度Hg2+后的荧光光谱,内嵌图是ΔF和Hg2+浓度的线性关系曲线。
图14随光照时间的不同亚甲基蓝的降解情况。
具体实施方式
实施例1
(一)高量子产率氮硫共掺杂荧光碳点的制备方法
将0.30g的酒石酸和0.50g的L-半胱氨酸置于聚四氟乙烯的反应釜中,在210℃水热反应5小时后,自然冷却至室温,加入20mL超纯水溶解,之后用滤纸过滤,离心机离心(10000rpm,10min),再用0.22μm的滤头过滤,最后进行透析,即可得到棕色的氮硫共掺杂荧光碳点溶液。将此碳点溶液置于365nm紫外灯照射下,可观察到该碳点溶液发射出明亮的蓝色荧光。将该碳点溶液冷冻干燥,可得到荧光碳点固体粉末。
本实施例制备的碳点溶液以硫酸奎宁为标准物,可测得该碳点的荧光量子产率为19.1%。
(二)结果
图1a和图1b为氮硫共掺杂荧光碳点的透射电镜图和粒径分布图,由图可知,所制备的碳点为球形且粒径大小均匀,未出现团聚现象,其粒径在2-3nm。
图2是氮硫共掺杂荧光碳点的X射线衍射图。由图可知,在2θ=25°处出现一个较宽的衍射峰,对应于碳(002)晶面,表明所制备的碳点是以无定型碳和石墨碳的复合体形式存在的。
图3是氮硫共掺杂荧光碳点的红外光谱图,3404cm-1吸收峰为N-H的伸缩振动峰,3245cm-1吸收峰为O-H的伸缩振动峰,2980cm-1吸收峰为C-H的伸缩振动峰,2365cm-1吸收峰为S-H的伸缩振动峰,1707cm-1吸收峰为C=O伸缩振动峰,1595cm-1吸收峰为N-H的弯曲振动峰,1402cm-1吸收峰为C-N伸缩振动峰,1205cm-1吸收峰为C-S的伸缩振动峰。说明合成的荧光碳点带有-NH2、-OH、-COOH和-SH等官能团。
图4是氮硫共掺杂荧光碳点溶液的zeta电位图,在pH为6.0时的溶液中,碳点的zeta电位值为-5.24,这表明碳点表面带负电荷。
图5a-图5e是氮硫共掺杂荧光碳点的X射线光电子能谱图,由图5a可知,该荧光碳点含有以下几种元素C、N、O和S,说明N元素和S元素被成功掺杂到荧光碳点上。由图5b可知,该荧光碳点有五种不同的碳元素,281.5eV、282.1eV、282.6eV、283.4eV、285.3eV分别对应于C-N、C-H、C-O、C-C和C=O基团。由图5c可知,该荧光碳点有两种不同的氮元素,396.5eV、397.4eV分别对应于C-N和N-H基团。由图5d可知,该荧光碳点有三种不同的氧元素,528.7eV、528.9eV、529.2eV分别对应于C=O、C-O和O-H基团。由图5e可知,该荧光碳点有两种不同的硫元素,161.3eV、161.7eV分别对应于C-S和S-H基团。荧光碳点的XPS图再一次证明了合成的碳点带有-NH2、-OH、-COOH和-SH等官能团。
图6是氮硫共掺杂荧光碳点溶液的紫外-可见吸收光谱图。由图可知,碳点溶液在a(307nm)处有明显的特征吸收峰。
如图7为氮硫共掺杂荧光碳点溶液的荧光激发和发射光谱。由图可见,本实验所制备的荧光碳点的最大激发波长和最大发射波长分别为360nm和443nm。
在不同波长光激发下荧光碳点溶液的荧光发射光谱如图8所示。随着激发波长的不断增加(从310nm增加到400nm),可以观察到荧光碳点的发射峰逐渐红移,这说明所制备的碳点对激发波长具有一定的依赖性。
pH值的影响如图9所示。当pH值从3到11变化时,荧光碳点的强度先升高后降低,当pH为7时荧光最强,说明溶液的酸碱度对碳点的发光有一定的影响。
图10为NaCl浓度对荧光碳点的影响。如图所示,在0~2.0mol/L范围内,碳点溶液的荧光强度并未发生明显变化。说明所制备的荧光碳点有良好的抗盐能力。
图11是光照对碳点溶液荧光的影响。将荧光碳点溶液用250W高汞灯连续照射0.5、1、2、3、4、5h,之后分别测其荧光强度。由图11可以看出,碳点的荧光强度并未随着光照时间发生明显的变化,说明制备的荧光碳点具有良好的稳定性和抗光漂白性。
实施例2氮硫共掺杂荧光碳点在指纹检测中的应用
取0.5g淀粉和1mL浓度为100μg/mL的实施例1制备的荧光碳点水溶液,混合后,加入5mL丙酮,搅拌均匀,之后超声2h,得到糊状物,在60C°下烘干,用玛瑙研钵研磨成粉末,待用。之后用刑侦专用指纹刷,将上述粉末均匀抖落至带有指纹的玻璃片上,然后顺着指纹纹路刷显,除去多余粉末后,拍摄在365nm紫外灯照射下的指纹图像。如图12所示,该荧光碳点在365nm紫外光照射下显示出清晰的指纹图像。
实施例3氮硫共掺杂荧光碳点在Hg2+检测中的应用
在2mL浓度为150μg/mL的实施例1制备的荧光碳点水溶液中,加入1mL(pH5.91)磷酸盐缓冲溶液,之后再加入梯度体积的Hg2+溶液,搅拌均匀反应5min后,扫描荧光光谱得到图13。由图13可知,随着Hg2+的不断加入,碳点的荧光强度逐渐降低,在50~125μg/mL范围内有良好的线性关系,线性方程为F=0.396[Hg2+]+147.5,相关系数R2=0.996,检出限为5.69μg/mL。该检测方法操作方便,灵敏度高,是一种优秀的Hg2+荧光探针。
实施例4氮硫共掺杂荧光碳点在降解亚甲基蓝中的应用
方法:将50mL(10mg/L)的亚甲基蓝溶液置于烧杯中,之后加入2mL(150μg/mL)的实施例1制备的荧光碳点水溶液,在黑暗环境下搅拌吸附1h,然后加入0.1mL(30%)的H2O2,用250W高汞灯照射,每隔20min取一次样,最后测定亚甲基蓝溶液在波长664nm处的吸光度,亚甲基蓝脱色率的计算公式为:
脱色率=(A0–At)/A0×100%
其中:A0为亚甲基蓝降解前的吸光度,At为降解不同t时刻亚甲基蓝的吸光度。
如图14所示,氮硫共掺杂荧光碳点具有一定的光催化性能,可用于印染废水中亚甲基蓝的降解。

Claims (2)

1.高量子产率氮硫共掺杂荧光碳点在Hg2+检测中的应用,其特征在于,所述高量子产率氮硫共掺杂荧光碳点的制备方法如下:将0.30 g的酒石酸和0.50 g的L-半胱氨酸置于聚四氟乙烯的反应釜中,在210 ℃反应5小时后,自然冷却至室温,加入20 mL超纯水溶解,之后用滤纸过滤,离心机10000 rpm ,离心10 min,再用0.22 μm的滤头过滤,最后进行透析,得棕色的氮硫共掺杂荧光碳点溶液。
2.根据权利要求1所述的应用,其特征在于,检测方法如下:于高量子产率氮硫共掺杂荧光碳点的水溶液中加入磷酸盐缓冲溶液,再加入含有Hg2+的溶液,搅拌均匀反应5 min后,扫描荧光光谱。
CN201810812029.8A 2018-07-23 2018-07-23 一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用 Active CN108659836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810812029.8A CN108659836B (zh) 2018-07-23 2018-07-23 一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810812029.8A CN108659836B (zh) 2018-07-23 2018-07-23 一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108659836A CN108659836A (zh) 2018-10-16
CN108659836B true CN108659836B (zh) 2021-06-01

Family

ID=63789405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810812029.8A Active CN108659836B (zh) 2018-07-23 2018-07-23 一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108659836B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536163B (zh) * 2018-12-17 2021-09-14 太原科技大学 一种氮硫双掺杂碳量子点及其制备方法和应用
CN109880614A (zh) * 2019-03-16 2019-06-14 复旦大学 用于潜指纹检测的碳点-淀粉复合荧光粉及其制备方法
CN111573653B (zh) * 2020-05-19 2022-09-20 山西大学 一种氮硫自掺杂荧光碳量子点及其制备方法和应用
CN112986197A (zh) * 2021-02-18 2021-06-18 军事科学院军事医学研究院环境医学与作业医学研究所 用于检测汞离子的比率荧光探针、荧光纸芯片和检测方法
CN113004894B (zh) * 2021-03-19 2022-11-29 陕西师范大学 一种巯基修饰的青色荧光碳量子点及其快速检测水中砷离子的应用
CN113511642A (zh) * 2021-04-22 2021-10-19 华南农业大学 一种油溶性碳点在指纹检测中的应用
CN113640258B (zh) * 2021-06-29 2024-07-05 北京农业信息技术研究中心 一种薄膜型荧光传感器及其制备方法和应用
CN113698928A (zh) * 2021-09-02 2021-11-26 深圳大学 碳点及其制备方法和在制备靶向线粒体的荧光探针中的应用
CN114316966B (zh) * 2021-12-30 2023-10-13 杭州电子科技大学 一种氮硫共掺杂三波长荧光碳点的制备方法及其应用
CN114958360B (zh) * 2022-05-11 2023-09-22 北京兴德通医药科技股份有限公司 一种氮硫双掺杂碳量子点的制备方法及应用
CN115029131B (zh) * 2022-05-27 2023-05-12 福建医科大学 一种去甲肾上腺素修饰的碳点及其制备方法和应用
CN114956049B (zh) * 2022-06-17 2023-07-18 山西大学 一种长波长比率荧光碳点及其制备方法和应用
CN115041216B (zh) * 2022-07-11 2024-01-26 深圳大学 一种受光调控诱导产生氧自由基的纳米酶的制备方法
CN115287065B (zh) * 2022-08-09 2023-07-18 山西大学 一种氮磷共掺杂碳点的制备方法及其应用
CN115746837B (zh) * 2022-11-16 2024-01-26 太原工业学院 一种疏水红色发射粉末荧光碳材料及其制备方法和应用
CN116622368B (zh) * 2023-04-28 2024-04-16 济南大学 一种废弃风电叶片纤维粉为碳源的蓝色荧光碳点及制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987863A (zh) * 2015-06-25 2015-10-21 西安交通大学 一种氮、磷、硫掺杂或共掺杂碳点及其批量可控制备方法和应用
CN105796113A (zh) * 2016-03-08 2016-07-27 沈阳大学 一种基碳纳米粒子为荧光标记物的指纹检测方法
CN106629657A (zh) * 2016-11-21 2017-05-10 辽宁大学 一种荧光碳点及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987863A (zh) * 2015-06-25 2015-10-21 西安交通大学 一种氮、磷、硫掺杂或共掺杂碳点及其批量可控制备方法和应用
CN105796113A (zh) * 2016-03-08 2016-07-27 沈阳大学 一种基碳纳米粒子为荧光标记物的指纹检测方法
CN106629657A (zh) * 2016-11-21 2017-05-10 辽宁大学 一种荧光碳点及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their application for sensitive detection of Hg2+ and biothiols and cellular imaging;Shouming Xu et al.;《Analytica Chimica Acta.》;20170131;第964卷;第150-160页 *

Also Published As

Publication number Publication date
CN108659836A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN108659836B (zh) 一种高量子产率氮硫共掺杂荧光碳点及其制备方法和应用
Ng et al. Comparison between hydrothermal and microwave-assisted synthesis of carbon dots from biowaste and chemical for heavy metal detection: A review
Rajabi et al. High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation
CN113148979B (zh) 利用烟草废弃物制备同一波长下显现不同颜色碳点的方法及应用
Isa et al. Rapid photodecolorization of methyl orange and rhodamine B using zinc oxide nanoparticles mediated by pullulan at different calcination conditions
CN108504347B (zh) 增强型双发射荧光复合材料及其制备方法和应用
Kottam et al. Luminescent carbon nanodots: current prospects on synthesis, properties and sensing applications
Xu et al. Red-emissive carbon dots from spinach: Characterization and application in visual detection of time
Kuang et al. Dye degradation study by incorporating Cu-doped ZnO photocatalyst into polyacrylamide microgel
Mathew et al. Carbon dots from green sources as efficient sensor and as anticancer agent
CN111088043A (zh) 一种可见光激发、长波长发射的荧光碳点及其制备方法和应用
Tejwan et al. Green synthesis of a novel carbon dots from red Korean ginseng and its application for Fe2+ sensing and preparation of nanocatalyst
CN107325815B (zh) 氮掺杂的高量子产率荧光碳点及其制备方法和应用
Qin et al. pH sensing and bioimaging using green synthesized carbon dots from black fungus
CN114108374A (zh) 一种碳量子点荧光纸的制备方法
Palanivel et al. Effect of rGO support on Gd@ ZnO for UV–visible-light driven photocatalytic organic pollutant degradation
Cheng et al. High quantum yield nitrogen and boron co-doped carbon dots for sensing Ag+, biological imaging and fluorescent inks
Ahamed et al. Probing the photocatalytic degradation of acid orange 7 dye with chitosan impregnated hydroxyapatite/manganese dioxide composite
Zhu et al. Hydrothermal oxidation method to synthesize nitrogen containing carbon dots from compost humic acid as selective Fe (III) sensor
CN114950358B (zh) 一种锰钛氧化物-生物质炭复合材料及其制备方法和应用
CN116534812A (zh) 一种荧光石墨相氮化碳量子点、其制备方法及应用
García et al. Assessment of the arsenic removal from water using Lanthanum Ferrite
Steplin Paul Selvin et al. Photocatalytic degradation of rhodamine B using cysteine capped ZnO/P (3HB-co-3HHx) fiber under UV and visible light irradiation
CN103301886A (zh) 一种导电聚合物印迹金属离子负载型光催化剂的制备方法
Behnood et al. Synthesis of Ag4Bi2O5 nanoparticles and evaluation of their photocatalytic activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant