CN108611702A - CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途 - Google Patents

CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途 Download PDF

Info

Publication number
CN108611702A
CN108611702A CN201810426544.2A CN201810426544A CN108611702A CN 108611702 A CN108611702 A CN 108611702A CN 201810426544 A CN201810426544 A CN 201810426544A CN 108611702 A CN108611702 A CN 108611702A
Authority
CN
China
Prior art keywords
tic
compound porous
solution
coni
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810426544.2A
Other languages
English (en)
Other versions
CN108611702B (zh
Inventor
刘瑞来
胡家朋
林皓
徐婕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuyi University
Original Assignee
晋江瑞碧科技有限公司
武夷学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晋江瑞碧科技有限公司, 武夷学院 filed Critical 晋江瑞碧科技有限公司
Priority to CN201810426544.2A priority Critical patent/CN108611702B/zh
Publication of CN108611702A publication Critical patent/CN108611702A/zh
Application granted granted Critical
Publication of CN108611702B publication Critical patent/CN108611702B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/02Chemical after-treatment of artificial filaments or the like during manufacture of cellulose, cellulose derivatives, or proteins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/06Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/53Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with hydrogen sulfide or its salts; with polysulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明提供了一种CoNi2S4/TiC/C复合多孔纳米纤维的制备方法,其包括如下步骤:TCA/PMMA/TiO2复合纳米纤维的制备、TiC/C复合多孔纳米纤维的制备、CoNi2S4/TiC/C复合多孔纳米纤维的制备。本发明具有如下有益效果:本发明制备的CoNi2S4/TiC/C复合多孔纳米纤维工艺简单、成本低廉、可大量工业化生产,获得的复合电极材料具有很高的比电容和优越的循环使用稳定性,是一种优良的超级电容器电极材料。

Description

CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途
技术领域
本发明涉及一种CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途,属于纳米材料和电化学领域。
背景技术
超级电容器作为一种新型的储能设备,由于具有快速充放电过程,使用寿命长、能量密度大、环保等优点,被广泛应用于混合动力电动车、大型电子设备、记忆存储设备和可再生能源发电站。如何制备简单、廉价的电极材料,成为超级电容器发展的关键。目前主要有三类材料作为超级电容器的电极。第一类为碳材料及其衍生物,包括颗粒碳、石墨烯、碳纳米管等;第二类为金属化合物及其衍生物,包括金属氧化物、氢氧化物、硫化物及其磷酸盐等;第三类为导电聚合物及其衍生物,包括聚苯胺、聚吡咯、酚醛树脂等。碳材料的比电容较低、导电聚合物容易发生机械降解,限制了其作为超级电容器材料使用。与碳材料和导电聚合物相比,金属化合物虽然导电性差,不仅可以与碳材料一样实现静电储能,还可以通过电化学法拉第反应实现储能。早期金属化合物的研究主要集中在RuO2,然而RuO2价格昂贵,限制了其商业化应用。后来人们采用廉价的金属化合物,如Co、Ni、Fe、Mn等化合物。
与单组分氧化物相比二元镍钴氧化物(NiCo2O4),具有更高的电化学活性、优良的导电性,因此研究者制备了不同形貌的NiCo2O4电极材料,如纳米线、纳米带、NiCo2O4-CNT和、NiCo2O4-氧化石墨烯等。与NiCo2O4相比,NiCo2S4具有更高的比电容、更低的光学禁带能隙和更高的导电性,即氧化还原时具有更多的活性点来实现电荷的快速转移,实际应用中满足快速充放电需求。如何进一步提高NiCo2S4的比电容及其循环稳定性,成为研究的关键。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途。
本发明是通过以下技术方案实现的:
本发明提供了一种CoNi2S4/TiC/C复合多孔纳米纤维的制备方法,其包括如下步骤:
S1、将三醋酸纤维素和聚甲基丙烯酸甲酯溶解于N,N’-二甲基甲酰胺/1,4-二氧六环/丙酮的三元混合溶剂中,溶解后得到形成溶液A;将钛酸异丙酯加入DMF/冰醋酸的二元混合溶剂中,得到溶液B,将所述溶液B加入溶液A中,共混后得到前驱体淬火溶液;
S2、将所述前驱体淬火溶液在-40~-10℃进行淬火后,萃取除去三元混合溶剂和二元混合溶剂,经洗涤、干燥得到TCA/PMMA/TiO2复合纳米纤维;
S3、将所述TCA/PMMA/TiO2复合纳米纤维浸泡于氢氧化钠的乙醇溶液中后,经洗涤、干燥得到纤维素/PMMA/TiO2复合纳米纤维;
S4、将所述纤维素/PMMA/TiO2复合纳米纤维浸泡在丙酮中,除去PMMA后,经洗涤、干燥得到纤维素/TiO2复合多孔纳米纤维;
S5、将所述纤维素/TiO2复合多孔纳米纤维依次经过预氧化、一步碳化、二步碳化和碳热还原,得到TiC/C复合多孔纳米纤维;
S6、将硝酸镍、醋酸钴和硫脲溶于去离子水中后,得到溶液C,将所述溶液C转入内衬有聚四氟乙烯的不锈钢管式高压釜中,依次加入所述TiC/C复合多孔纳米纤维和去离子水,至不锈钢管式高压釜中容积的80%,以5℃/min的升温速率由室温升温至160~180℃,保温反应后,得到所述CoNi2S4/TiC/C复合多孔纳米纤维。
作为优选方案,所述三元混合溶剂中,N,N’-二甲基甲酰胺、1,4-二氧六环和丙酮的质量比为5:(0.5~1):(0.5~1);所述二元混合溶剂中,DMF和冰醋酸的质量比为15:1。
作为优选方案,所述前驱体淬火溶液中,三醋酸纤维素的质量分数为2~5%,聚甲基丙烯酸甲酯的质量分数为1~2%,钛酸异丙酯的质量分数为0.4~1%。
作为优选方案,所述预氧化、一步碳化、二步碳化的具体操作为:
在50~100μL/min流量的氮气气氛中,以3~5℃/min的速率由室温升温至300~360℃,保温2h后,保持氮气流量不变,以3~5℃/min的速率由300~360℃升温至700~800℃,保温1h后,保持氮气流量不变,以3℃/min的速率由700~800升温至1000℃,保温1h。
作为优选方案,所述碳热还原的具体操作为:
在50~100μL/min流量的氩气气氛中,以2~3℃/min的速率由1000℃升温至1100~1300℃,保温2h。
一种由前述的制备方法得到的CoNi2S4/TiC/C复合多孔纳米纤维超级电容器中的用途。
本发明的基本原理为:
1、以三醋酸纤维素和聚甲基丙烯酸甲酯为聚合物前驱体,通过热致相分离方法制备纳米纤维,纳米纤维的形成主要是聚合物前驱体在溶液中结晶有序规整排列形成纳米纤维结构,得到TCA/PMMA/TiO2复合纳米纤维。
2、将TCA/PMMA/TiO2复合纳米纤维,浸泡在NaOH的乙醇溶液中,将三醋酸纤维素上的乙酰基转变为羟基,即TCA转变为纤维素,由热塑性材料转变为热固性材料,防止其在后续加热过程中发生熔融,无法保持纤维形貌,得到纤维素/PMMA/TiO2复合纳米纤维。
2、前驱体中引入的聚甲基丙烯酸甲酯,后通过丙酮浸泡方式将其溶解去除,留下多孔结构,得到纤维素/TiO2复合多孔纳米纤维,提高纤维比表面积,并有利于后续镍、钴二元硫化物在纤维上的复合。
3、通过一系列的预氧化、一步碳化和二步碳化使多孔纳米纤维中的纤维素转变为碳纤维,而采用分布碳化法主要是为了提高得碳率。
4、碳热还原主要是通过高温将多孔碳纤维中的部分碳与二氧化钛反应,形成TiC/C多孔纳米纤维。
5、在反应体系中加入TiC/C多孔纳米纤维,通过水热反应将Ni2+和Co2+与硫脲反应生成二元硫化物CoNi2S4,生成的二元硫化物CoNi2S4原位复合到多孔纤维上,得到CoNi2S4/TiC/C多孔纳米纤维。
与现有技术相比,本发明具有如下的有益效果:
1、本发明制备的CoNi2S4/TiC/C复合多孔纳米纤维,尺寸为纳米级的多孔材料,大大提高了材料的比表面积,因此提高电解液与电极材料之间的浸润性。
2、前驱体聚合物中引入PMMA,后采用煅烧将其去除,留下多孔结构,有利于后续CoNi2S4与TiC/C复合纤维的之间的复合。
3、本发明制备的CoNi2S4/TiC/C复合多孔纳米纤维,与单组分镍钴硫化物相比,二元镍钴硫化物(CoNi2S4),具有更高的电化学活性、优良的导电性。
4、CoNi2S4与TiC/C纤维复合后,TiC和C的引入提高了电极材料的电导率、化学稳定性和机械强度。因此大大提高了材料的比电容和循环使用次数。
5、本发明制备的CoNi2S4/TiC/C复合多孔纳米纤维工艺简单、成本低廉、可大量工业化生产,获得的复合电极材料具有很高的比电容和优越的循环使用稳定性,是一种优良的超级电容器电极材料。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明中实施例1制备的CoNi2S4/TiC/C复合多孔纳米纤维的扫描电镜照片。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
1)TCA/PMMA/TiO2复合纳米纤维的制备
S1:将2g TCA和1g PMMA溶解在50g DMF、5g 1,4-二氧六环和5g丙酮的三元混合溶剂中,50℃磁力搅拌5h溶解,形成溶液A。将0.4g钛酸异丙酯加入30g DMF、2g冰醋酸混合溶液中,得到溶液B。将溶液B倒入溶液A中,常温下磁力搅拌共混,得到前驱体淬火溶液。
S2:将步骤S1得到的前驱体淬火溶液取倒入培养皿中,将培养皿放入预先预冷至-10℃冰箱中淬火3h。淬火结束后,将培养皿快速取出,将500mL冰水混合物倒入培养皿中,萃取溶液中的DMF、THF、丙酮和冰醋酸溶剂,每隔8h换一次蒸馏水,总共换四次,无水乙醇洗涤3遍,鼓风干燥、真空干燥,得到TCA/PMMA/TiO2复合纳米纤维。
S3:将TCA/PMMA/TiO2复合纳米纤维浸泡在0.05mol/LNaOH乙醇溶液浸泡中24h,将TCA转化为纤维素,蒸馏水洗涤、干燥,得到纤维素/PMMA/TiO2复合纳米纤维。
2)TiC/C复合多孔纳米纤维的制备
S1:将纤维素/PMMA/TiO2复合纳米纤维,浸泡在丙酮中,恒温水浴震荡24h,以除去前驱体聚合物PMMA,丙酮洗涤3遍、干燥,得到纤维素/TiO2复合多孔纳米纤维。
S2:将纤维素/TiO2复合多孔纳米纤维,在氮气保护条件下置于气氛炉中,氮气流量为50μL/min,从25℃升温到300℃,升温速率为3℃/min,在该温度下保温2h,从300℃升温到700℃,升温速率为3℃/min,在该温度下保温1h。从700℃升温到1000℃,升温速率为3℃/min,在该温度下保温1h。
S3:通50μL/min氩气条件下,从1000℃升温到1100℃,升温速率为2℃/min,在该温度下保温2h。保温结束后,自然降温至常温,得到TiC/C复合多孔纳米纤维。
3)CoNi2S4/TiC/C复合多孔纳米纤维的制备
将0.04gNi(NO2)2·6H2O、0.08g Co(Ac)·4H2O和0.54g硫脲加入20mL去离子水中,磁力搅拌溶解。将溶液倒入50mL内衬为聚四氟乙烯的不锈钢管式高压釜中,依次加入0.05gTiC/C复合多孔纳米纤维,和去离子水至总容量的80%。将高压反应釜置于鼓风箱中,从室温升温至160℃,升温速率为5℃/min,保温12h。反应结束后自然降温至常温,抽滤、洗涤、干燥得到CoNi2S4/TiC/C复合多孔纳米纤维。
本实施例制备的CoNi2S4/TiC/C复合多孔纳米纤维的扫描电镜如图1所示。纤维的直径为132±46nm、孔隙率为91.04%、比表面积为215.3m2/g。电流密度为1A/g条件下,比电容为315F/g,循环使用800次后,电容为初始值的89.2%。
实施例2
1)TCA/PMMA/TiO2复合纳米纤维的制备
S1:将2g TCA和1g PMMA溶解在50g DMF、5g 1,4-二氧六环和5g丙酮的三元混合溶剂中,50℃磁力搅拌5h溶解,形成溶液A。将0.4g钛酸异丙酯加入30g DMF、2g冰醋酸混合溶液中,得到溶液B。将溶液B倒入溶液A中,常温下磁力搅拌共混,得到前驱体淬火溶液。
S2:将步骤S1得到的前驱体淬火溶液取倒入培养皿中,将培养皿放入预先预冷至-10℃冰箱中淬火3h。淬火结束后,将培养皿快速取出,将500mL冰水混合物倒入培养皿中,萃取溶液中的DMF、THF、丙酮和冰醋酸溶剂,每隔8h换一次蒸馏水,总共换四次,无水乙醇洗涤3遍,鼓风干燥、真空干燥,得到TCA/PMMA/TiO2复合纳米纤维。
S3:将TCA/PMMA/TiO2复合纳米纤维浸泡在0.05mol/LNaOH乙醇溶液浸泡中24h,将TCA转化为纤维素,蒸馏水洗涤、干燥,得到纤维素/PMMA/TiO2复合纳米纤维。
2)TiC/C复合多孔纳米纤维的制备
S1:将纤维素/PMMA/TiO2复合纳米纤维,浸泡在丙酮中,恒温水浴震荡24h,以除去前驱体聚合物PMMA,丙酮洗涤3遍、干燥,得到纤维素/TiO2复合多孔纳米纤维。
S2:将纤维素/TiO2复合多孔纳米纤维,在氮气保护条件下置于气氛炉中,氮气流量为50μL/min。从25℃升温到320℃,升温速率为3℃/min,在该温度下保温2h。从320℃升温到750℃,升温速率为3℃/min,在该温度下保温1h。从750℃升温到1000℃,升温速率为3℃/min,在该温度下保温1h。
S3:通50μL/min氩气条件下,从1000℃升温到1200℃,升温速率为2℃/min,在该温度下保温2h。保温结束后,自然降温至常温,得到TiC/C复合多孔纳米纤维。
3)CoNi2S4/TiC/C复合多孔纳米纤维的制备
将0.04gNi(NO3)2·6H2O、0.08g Co(Ac)·4H2O和0.54g硫脲加入20mL去离子水中,磁力搅拌溶解。将溶液倒入50mL内衬为聚四氟乙烯的不锈钢管式高压釜中,依次加入0.05gTiC/C复合多孔纳米纤维,和去离子水至总容量的80%。将高压反应釜置于鼓风箱中,从室温升温至160℃,升温速率为5℃/min,保温12h。反应结束后自然降温至常温,抽滤、洗涤、干燥得到CoNi2S4/TiC/C复合多孔纳米纤维。
本实施例制备的CoNi2S4/TiC/C复合多孔纳米纤维。纤维的直径为122±39nm、孔隙率为93.12%、比表面积为222.9m2/g。电流密度为1A/g条件下,比电容为330F/g,循环使用800次后,电容为初始值的87.2%。
实施例3
1)TCA/PMMA/TiO2复合纳米纤维的制备
S1:将3g TCA和1.5g PMMA溶解在50g DMF、5g 1,4-二氧六环和5g丙酮的三元混合溶剂中,50℃磁力搅拌5h溶解,形成溶液A。将0.6g钛酸异丙酯加入30g DMF、2g冰醋酸混合溶液中,得到B溶液。将B溶液倒入溶液A中,常温下磁力搅拌共混,得到前驱体淬火溶液。
S2:将步骤S1得到的前驱体淬火溶液取倒入培养皿中,将培养皿放入预先预冷至-20℃冰箱中淬火4h。淬火结束后,将培养皿快速取出,将500mL冰水混合物倒入培养皿中,萃取溶液中的DMF、THF、丙酮和冰醋酸溶剂,每隔8h换一次蒸馏水,总共换四次,无水乙醇洗涤3遍,鼓风干燥、真空干燥,得到TCA/PMMA/TiO2复合纳米纤维。
S3:将TCA/PMMA/TiO2复合纳米纤维浸泡在0.1mol/LNaOH乙醇溶液浸泡中24h,将TCA转化为纤维素,蒸馏水洗涤、干燥,得到纤维素/PMMA/TiO2复合纳米纤维。
2)TiC/C复合多孔纳米纤维的制备
S1:将纤维素/PMMA/TiO2复合纳米纤维,浸泡在丙酮中,恒温水浴震荡24h,以除去前驱体聚合物PMMA,丙酮洗涤3遍、干燥,得到纤维素/TiO2复合多孔纳米纤维。
S2:将纤维素/TiO2复合多孔纳米纤维,在氮气保护条件下置于气氛炉中,氮气流量为80μL/min。从25℃升温到320℃,升温速率为4℃/min,在该温度下保温2h。从320℃升温到750℃,升温速率为4℃/min,在该温度下保温1h。从750℃升温到1000℃,升温速率为3℃/min,在该温度下保温1h。
S3:通80μL/min氩气条件下,从1000℃升温到1200℃,升温速率为3℃/min,在该温度下保温2h。保温结束后,自然降温至常温,得到TiC/C复合多孔纳米纤维。
3)CoNi2S4/TiC/C复合多孔纳米纤维的制备
将0.04gNi(NO3)2·6H2O、0.08g Co(Ac)·4H2O和0.54g硫脲加入20mL去离子水中,磁力搅拌溶解。将溶液倒入50mL内衬为聚四氟乙烯的不锈钢管式高压釜中,依次加入0.1gTiC/C复合多孔纳米纤维,和去离子水至总容量的80%。将高压反应釜置于鼓风箱中,从室温升温至170℃,升温速率为5℃/min,保温12h。反应结束后自然降温至常温,抽滤、洗涤、干燥得到CoNi2S4/TiC/C复合多孔纳米纤维。
本实施例制备的CoNi2S4/TiC/C复合多孔纳米纤维的扫描电镜如图1所示。纤维的直径为151±51nm、孔隙率为88.25%、比表面积为201.4m2/g。电流密度为1A/g条件下,比电容为310F/g,循环使用800次后,电容为初始值的90.1%。
实施例4
1)TCA/PMMA/TiO2复合纳米纤维的制备
S1:将4g TCA和1.5g PMMA溶解在45g DMF、9g 1,4-二氧六环和9g丙酮的三元混合溶剂中,50℃磁力搅拌5h溶解,形成溶液A。将0.8g钛酸异丙酯加入30g DMF、2g冰醋酸混合溶液中,得到溶液B。将溶液B倒入溶液A中,常温下磁力搅拌共混,得到前驱体淬火溶液。
S2:将步骤S1得到的前驱体淬火溶液取倒入培养皿中,将培养皿放入预先预冷至-20℃冰箱中淬火4h。淬火结束后,将培养皿快速取出,将500mL冰水混合物倒入培养皿中,萃取溶液中的DMF、THF、丙酮和冰醋酸溶剂,每隔8h换一次蒸馏水,总共换四次,无水乙醇洗涤3遍,鼓风干燥、真空干燥,得到TCA/PMMA/TiO2复合纳米纤维。
S3:将TCA/PMMA/TiO2复合纳米纤维浸泡在0.1mol/LNaOH乙醇溶液浸泡中24h,将TCA转化为纤维素,蒸馏水洗涤、干燥,得到纤维素/PMMA/TiO2复合纳米纤维。
2)TiC/C复合多孔纳米纤维的制备
S1:将纤维素/PMMA/TiO2复合纳米纤维,浸泡在丙酮中,恒温水浴震荡24h,以除去前驱体聚合物PMMA,丙酮洗涤3遍、干燥,得到纤维素/TiO2复合多孔纳米纤维。
S2:将纤维素/TiO2复合多孔纳米纤维,在氮气保护条件下置于气氛炉中,氮气流量为80μL/min。从25℃升温到350℃,升温速率为4℃/min,在该温度下保温2h。从350℃升温到800℃,升温速率为4℃/min,在该温度下保温1h。从800℃升温到1000℃,升温速率为3℃/min,在该温度下保温1h。
S3:通100μL/min氩气条件下,从1000℃升温到1250℃,升温速率为3℃/min,在该温度下保温2h。保温结束后,自然降温至常温,得到TiC/C复合多孔纳米纤维。
3)CoNi2S4/TiC/C复合多孔纳米纤维的制备
将0.04gNi(NO3)2·6H2O、0.08g Co(Ac)·4H2O和0.54g硫脲加入20mL去离子水中,磁力搅拌溶解。将溶液倒入50mL内衬为聚四氟乙烯的不锈钢管式高压釜中,依次加入0.1gTiC/C复合多孔纳米纤维,和去离子水至总容量的80%。将高压反应釜置于鼓风箱中,从室温升温至170℃,升温速率为5℃/min,保温12h。反应结束后自然降温至常温,抽滤、洗涤、干燥得到CoNi2S4/TiC/C复合多孔纳米纤维。
本实施例制备的CoNi2S4/TiC/C复合多孔纳米纤维的扫描电镜如图1所示。纤维的直径为148±36nm、孔隙率为90.18%、比表面积为199.5m2/g。电流密度为1A/g条件下,比电容为290F/g,循环使用800次后,电容为初始值的91.2%。
实施例5
1)TCA/PMMA/TiO2复合纳米纤维的制备
S1:将5g TCA和2g PMMA溶解在45g DMF、9g 1,4-二氧六环和9g丙酮的三元混合溶剂中,50℃磁力搅拌5h溶解,形成溶液A。将0.8g钛酸异丙酯加入30g DMF、2g冰醋酸混合液中,得到溶液B。将溶液B倒入溶液A中,常温下磁力搅拌共混,得到前驱体淬火溶液。
S2:将步骤S1得到的前驱体淬火溶液取倒入培养皿中,将培养皿放入预先预冷至-30℃冰箱中淬火5h。淬火结束后,将培养皿快速取出,将500mL冰水混合物倒入培养皿中,萃取溶液中的DMF、THF、丙酮和冰醋酸溶剂,每隔8h换一次蒸馏水,总共换四次,无水乙醇洗涤3遍,鼓风干燥、真空干燥,得到TCA/PMMA/TiO2复合纳米纤维。
S3:将TCA/PMMA/TiO2复合纳米纤维浸泡在0.15mol/LNaOH乙醇溶液浸泡中24h,将TCA转化为纤维素,蒸馏水洗涤、干燥,得到纤维素/PMMA/TiO2复合纳米纤维。
2)TiC/C复合多孔纳米纤维的制备
S1:将纤维素/PMMA/TiO2复合纳米纤维,浸泡在丙酮中,恒温水浴震荡24h,以除去前驱体聚合物PMMA,丙酮洗涤3遍、干燥,得到纤维素/TiO2复合多孔纳米纤维。
S2:将纤维素/TiO2复合多孔纳米纤维,在氮气保护条件下置于气氛炉中,氮气流量为100μL/min。从25℃升温到350℃,升温速率为5℃/min,在该温度下保温2h。从350℃升温到800℃,升温速率为5℃/min,在该温度下保温1h。从800℃升温到1000℃,升温速率为3℃/min,在该温度下保温1h。
S3:通100μL/min氩气条件下,从1000℃升温到1250℃,升温速率为3℃/min,在该温度下保温2h。保温结束后,自然降温至常温,得到TiC/C复合多孔纳米纤维。
3)CoNi2S4/TiC/C复合多孔纳米纤维的制备
将0.04gNi(NO3)2·6H2O、0.08g Co(Ac)·4H2O和0.54g硫脲加入20mL去离子水中,磁力搅拌溶解。将溶液倒入50mL内衬为聚四氟乙烯的不锈钢管式高压釜中,依次加入0.1gTiC/C复合多孔纳米纤维,和去离子水至总容量的80%。将高压反应釜置于鼓风箱中,从室温升温至180℃,升温速率为5℃/min,保温12h。反应结束后自然降温至常温,抽滤、洗涤、干燥得到CoNi2S4/TiC/C复合多孔纳米纤维。
本实施例制备的CoNi2S4/TiC/C复合多孔纳米纤维的扫描电镜如图1所示。纤维的直径为150±39nm、孔隙率为92.18%、比表面积为210.6m2/g。电流密度为1A/g条件下,比电容为301F/g,循环使用800次后,电容为初始值的88.7%。
对比例1
在实施例1的基础上,未添加PMMA,得到CoNi2S4/TiC/C复合纳米纤维。纤维的直径为165±45nm、孔隙率为78.22%、比表面积为116.2m2/g。电流密度为1A/g条件下,比电容为189.5F/g,循环使用800次后,电容为初始值的85.3%。相比于实施例1,材料的比表面积和孔隙率大幅度降低,因此导致其比电容降低。
对比例2
在实施例1的基础上,步骤3)CoNi2S4/TiC/C复合多孔纳米纤维的制备,只采用加入0.04gNi(NO3)2·6H2O,未加入0.08g Co(Ac)·4H2O,最终只能得到NiS/TiC/C复合多孔纳米纤维,纤维的直径为136±66nm、孔隙率为90.25%、比表面积为206.1m2/g。电流密度为1A/g条件下,比电容为206.1F/g,循环使用800次后,电容为初始值的88.4%。
对比例3
在实施例1的基础上,步骤3)CoNi2S4/TiC/C复合多孔纳米纤维的制备,只采用加入0.08g Co(Ac)·4H2O,未加入0.04gNi(NO3)2·6H2O,最终只能得到CoS/TiC/C复合多孔纳米纤维,纤维的直径为138±46nm、孔隙率为89.09%、比表面积为222.1m2/g。电流密度为1A/g条件下,比电容为189F/g,循环使用800次后,电容为初始值的86.2%。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (6)

1.一种CoNi2S4/TiC/C复合多孔纳米纤维的制备方法,其特征在于,包括如下步骤:
S1、将三醋酸纤维素和聚甲基丙烯酸甲酯溶解于N,N’-二甲基甲酰胺/1,4-二氧六环/丙酮的三元混合溶剂中,溶解后得到形成溶液A;将钛酸异丙酯加入DMF/冰醋酸的二元混合溶剂中,得到溶液B,将所述溶液B加入溶液A中,共混后得到前驱体淬火溶液;
S2、将所述前驱体淬火溶液在-40~-10℃进行淬火后,萃取除去三元混合溶剂和二元混合溶剂,经洗涤、干燥得到TCA/PMMA/TiO2复合纳米纤维;
S3、将所述TCA/PMMA/TiO2复合纳米纤维浸泡于氢氧化钠的乙醇溶液中后,经洗涤、干燥得到纤维素/PMMA/TiO2复合纳米纤维;
S4、将所述纤维素/PMMA/TiO2复合纳米纤维浸泡在丙酮中,除去PMMA后,经洗涤、干燥得到纤维素/TiO2复合多孔纳米纤维;
S5、将所述纤维素/TiO2复合多孔纳米纤维依次经过预氧化、一步碳化、二步碳化和碳热还原,得到TiC/C复合多孔纳米纤维;
S6、将硝酸镍、醋酸钴和硫脲溶于去离子水中后,得到溶液C,将所述溶液C转入内衬有聚四氟乙烯的不锈钢管式高压釜中,依次加入所述TiC/C复合多孔纳米纤维和去离子水,至不锈钢管式高压釜中容积的80%,以5℃/min的升温速率由室温升温至160~180℃,保温反应后,得到所述CoNi2S4/TiC/C复合多孔纳米纤维。
2.如权利要求1所述的CoNi2S4/TiC/C复合多孔纳米纤维的制备方法,其特征在于,所述三元混合溶剂中,N,N’-二甲基甲酰胺、1,4-二氧六环和丙酮的质量比为5:(0.5~1):(0.5~1);所述二元混合溶剂中,DMF和冰醋酸的质量比为15:1。
3.如权利要求1所述的CoNi2S4/TiC/C复合多孔纳米纤维的制备方法,其特征在于,所述前驱体淬火溶液中,三醋酸纤维素的质量分数为2~5%,聚甲基丙烯酸甲酯的质量分数为1~2%,钛酸异丙酯的质量分数为0.4~1%。
4.如权利要求1所述的CoNi2S4/TiC/C复合多孔纳米纤维的制备方法,其特征在于,所述预氧化、一步碳化、二步碳化的具体操作为:
在50~100μL/min流量的氮气气氛中,以3~5℃/min的速率由室温升温至300~360℃,保温2h后,保持氮气流量不变,以3~5℃/min的速率由300~360℃升温至700~800℃,保温1h后,保持氮气流量不变,以3℃/min的速率由700~800℃升温至1000℃,保温1h。
5.如权利要求1所述的CoNi2S4/TiC/C复合多孔纳米纤维的制备方法,其特征在于,所述碳热还原的具体操作为:
在50~100μL/min流量的氩气气氛中,以2~3℃/min的速率由1000℃升温至1100~1300℃,保温2h。
6.一种由权利要求1所述的制备方法得到的CoNi2S4/TiC/C复合多孔纳米纤维在超级电容器中的用途。
CN201810426544.2A 2018-05-07 2018-05-07 CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途 Expired - Fee Related CN108611702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810426544.2A CN108611702B (zh) 2018-05-07 2018-05-07 CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810426544.2A CN108611702B (zh) 2018-05-07 2018-05-07 CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途

Publications (2)

Publication Number Publication Date
CN108611702A true CN108611702A (zh) 2018-10-02
CN108611702B CN108611702B (zh) 2020-09-01

Family

ID=63662367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810426544.2A Expired - Fee Related CN108611702B (zh) 2018-05-07 2018-05-07 CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN108611702B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564318A (zh) * 2020-04-30 2020-08-21 梅火开 一种Ni2CoS4-石墨化多孔碳纳米纤维的超级电容器电极材料及其制法
CN111877019A (zh) * 2020-08-06 2020-11-03 晋江瑞碧科技有限公司 一种导电水凝胶的制备方法
CN113355918A (zh) * 2021-06-07 2021-09-07 晋江瑞碧科技有限公司 微孔碳纤维接枝聚苯胺/CoNi2S4复合材料的制备方法及用途
CN114824204A (zh) * 2022-04-14 2022-07-29 中南大学 一种碳包覆的钴镍二元过渡金属硫化物负极材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141326A (ja) * 1984-08-01 1986-02-27 Mitsubishi Rayon Co Ltd 炭素繊維製造用プレカ−サ−の製造方法
CN102127828A (zh) * 2011-01-25 2011-07-20 华南师范大学 多孔纳米碳纤维材料、锂电池正极材料和正极片
CN102653891A (zh) * 2012-05-03 2012-09-05 东华大学 一种具有磁性的苯并噁嗪基碳纳米纤维材料的制备方法
CN104264286A (zh) * 2014-10-18 2015-01-07 中复神鹰碳纤维有限责任公司 一种适用于干湿法聚丙烯腈碳纤维原丝凝固成型的方法
CN105603584A (zh) * 2016-01-28 2016-05-25 东华大学 超级电容器电极用聚丙烯腈介孔活性碳纤维及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141326A (ja) * 1984-08-01 1986-02-27 Mitsubishi Rayon Co Ltd 炭素繊維製造用プレカ−サ−の製造方法
CN102127828A (zh) * 2011-01-25 2011-07-20 华南师范大学 多孔纳米碳纤维材料、锂电池正极材料和正极片
CN102653891A (zh) * 2012-05-03 2012-09-05 东华大学 一种具有磁性的苯并噁嗪基碳纳米纤维材料的制备方法
CN104264286A (zh) * 2014-10-18 2015-01-07 中复神鹰碳纤维有限责任公司 一种适用于干湿法聚丙烯腈碳纤维原丝凝固成型的方法
CN105603584A (zh) * 2016-01-28 2016-05-25 东华大学 超级电容器电极用聚丙烯腈介孔活性碳纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
西鹏 主编: "《高技术纤维概论》", 30 November 2015 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111564318A (zh) * 2020-04-30 2020-08-21 梅火开 一种Ni2CoS4-石墨化多孔碳纳米纤维的超级电容器电极材料及其制法
CN111877019A (zh) * 2020-08-06 2020-11-03 晋江瑞碧科技有限公司 一种导电水凝胶的制备方法
CN111877019B (zh) * 2020-08-06 2022-11-18 晋江瑞碧科技有限公司 一种导电水凝胶的制备方法
CN113355918A (zh) * 2021-06-07 2021-09-07 晋江瑞碧科技有限公司 微孔碳纤维接枝聚苯胺/CoNi2S4复合材料的制备方法及用途
CN113355918B (zh) * 2021-06-07 2022-07-29 晋江瑞碧科技有限公司 微孔碳纤维接枝聚苯胺/ CoNi2S4复合材料的制备方法及用途
CN114824204A (zh) * 2022-04-14 2022-07-29 中南大学 一种碳包覆的钴镍二元过渡金属硫化物负极材料的制备方法

Also Published As

Publication number Publication date
CN108611702B (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN108611702A (zh) CoNi2S4/TiC/C复合多孔纳米纤维的制备方法及其用途
CN108103616B (zh) 一种氮掺杂的木质素基碳纤维复合材料的制备方法
Wang et al. Integrated fiber electrodes based on marine polysaccharide for ultrahigh-energy-density flexible supercapacitors
CN108841174B (zh) 氮掺杂多孔活性碳/MnS复合纳米纤维的制备方法及其用途
KR20140120861A (ko) 리튬이온전지 흑연 음극재료 및 이의 제조방법
CN108315834A (zh) 一种阵列式磁性还原氧化石墨烯-炭纳米纤维的制备方法
Jiang et al. Fabrication of NiO@ Co3O4 core/shell nanofibres for high-performance supercapacitors
CN105314614A (zh) 一种氮掺杂多孔碳纳米管材料、制备方法及其在超级电容器电极的应用
CN111118883B (zh) 一种纤维素基碳纳米纤维复合材料及其制备和应用
CN108950736A (zh) 纳米多孔碳纤维及其制备方法
CN110079895A (zh) 一种钛酸盐与二氧化钛复合物纳米线及其制备方法
CN108039285A (zh) 一种轻质柔性中空复合超级电容器电极材料的制备方法
CN106554004A (zh) 一种基于芳香族化合物单体制备的多孔碳材料及其制备方法和用途
CN113363085B (zh) 氮硫共掺杂碳纤维接枝聚噻吩/MnS复合材料及其电极的制备方法
CN106683898A (zh) 超级电容器用复合电极材料及其制备方法和超级电容器
CN108642885A (zh) 活性碳/聚苯胺-对苯二胺共聚物复合纳米纤维的制备方法及用途
CN107881600B (zh) 一种用于锂离子电池负极的纳米碳纤维的制备方法及其应用
CN107104005B (zh) 一种NiO@石墨烯纤维超级电容器电极材料的制备方法
KR101370868B1 (ko) 폴리퍼퓨릴 알콜을 이용한 탄소섬유 및 그의 제조방법
CN104916451A (zh) 一种微碳管上生长氧化镍纳米片的超级电容器电极材料的制备方法
CN108642607A (zh) MnO2/TiC/C复合多孔纳米纤维的制备方法
CN107749349A (zh) 一种c@f2o3复合结构的电极材料制备的新方法
CN108615615B (zh) NiO/TiC/C复合多孔纳米纤维的制备方法及其用途
CN112599737B (zh) 一种钠离子电池过渡金属硫化物碳复合负极材料及其制备方法和应用
CN114334484A (zh) 一种镍铜氧化物/碳复合纳米纤维电极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200806

Address after: 354300 No. 16 Wuyi Road, Nanping, Fujian, Wuyishan

Applicant after: WUYI University

Address before: 362201 Fujian city of Quanzhou province Jinjiang City Meiling Street Meiling Road 10 building 402 CATIC Yue

Applicant before: JINJIANG RUIBI TECHNOLOGY Co.,Ltd.

Applicant before: WUYI University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200901

Termination date: 20210507

CF01 Termination of patent right due to non-payment of annual fee