CN108610056A - 一种氮化硅陶瓷及其制备方法 - Google Patents

一种氮化硅陶瓷及其制备方法 Download PDF

Info

Publication number
CN108610056A
CN108610056A CN201810821476.XA CN201810821476A CN108610056A CN 108610056 A CN108610056 A CN 108610056A CN 201810821476 A CN201810821476 A CN 201810821476A CN 108610056 A CN108610056 A CN 108610056A
Authority
CN
China
Prior art keywords
silicon nitride
powder
nitride ceramics
preparation
melamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810821476.XA
Other languages
English (en)
Other versions
CN108610056B (zh
Inventor
郭伟明
牛文彬
吴利翔
曾令勇
林华泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Totall Material Technology Co ltd
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201810821476.XA priority Critical patent/CN108610056B/zh
Publication of CN108610056A publication Critical patent/CN108610056A/zh
Application granted granted Critical
Publication of CN108610056B publication Critical patent/CN108610056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及陶瓷制备领域,具体涉及一种氮化硅陶瓷及其制备方法。本发明提供的一种氮化硅陶瓷的制备方法包括以下步骤:步骤1:将二氧化硅粉体和三聚氰胺粉体混料得到二氧化硅‑三聚氰胺混合粉体;步骤2:将所述二氧化硅‑三聚氰胺混合粉体通过干压法制得二氧化硅‑三聚氰胺坯体;步骤3:将所述二氧化硅‑三聚氰胺坯体经过第一烧结、保温和第二烧结得到氮化硅陶瓷。本发明提供了一种氮化硅陶瓷及其制备方法,解决了现有技术中制备周期长、工艺复杂且制备得到的氮化硅陶瓷粉体纯度不高进而导致氮化硅陶瓷致密性不高和性能不佳的技术问题。

Description

一种氮化硅陶瓷及其制备方法
技术领域
本发明涉及陶瓷合成领域,具体公开了一种氮化硅陶瓷及其制备方法。
背景技术
氮化硅陶瓷在机械方面,用于涡轮叶片、高温轴承、高速切削工具等;在冶金方面,用于坩埚、燃烧嘴、铝电解槽衬里等热工设备上的部件;在化学方面,用于耐磨耐蚀零件,如球阀、泵体、燃烧器汽化器等。由此可见,氮化硅陶瓷在高温、高速、强腐蚀条件下的应用中体现了其特殊的价值。
现有的制备氮化硅(Si3N4)陶瓷粉体的方法主要有硅粉直接氮化法,硅亚胺热解法和SiO2碳热还原法。硅粉直接氮化法对硅粉纯度要求较高,在反应结束后粉体中会有氧杂质,严重影响后续所制备Si3N4陶瓷粉体的性能,且由于反应放热且升温速率过快容易导致流硅现象,因此,该方法的升温速率仅为0.5℃/min,导致其氮化硅陶瓷粉体的致密性不高且制备周期较长。硅亚胺热解法,通过液相界面反应的硅亚胺热解法,需要在低温下反应生成生成硅酸氨,同时又需要在较高温度下获得晶态Si3N4粉,工艺复杂。而SiO2碳热还原法需要高纯度细颗粒的SiO2粉和碳粉在氮气或者氨气气氛中,加热到1350℃以上才能反应,并且需要进行后期处理,使得制备氮化硅(Si3N4)陶瓷粉体的工艺较复杂,不适宜大批量工艺生产。
因此,现有技术中制备周期长、工艺复杂且制备得到的Si3N4陶瓷粉体纯度不高的缺陷成为了本领域技术人员亟待解决的技术问题
发明内容
有鉴于此,本发明提供了一种氮化硅陶瓷及其制备方法,解决了现有技术中制备周期长、工艺复杂且制备得到的Si3N4陶瓷粉体纯度不高从而导致Si3N4陶瓷致密度不高且性能不佳的技术问题。
本发明提供了一种氮化硅陶瓷的制备方法,包括以下步骤:
步骤1:将二氧化硅粉体和三聚氰胺粉体混料得到二氧化硅-三聚氰胺混合粉体;
步骤2:将所述二氧化硅-三聚氰胺混合粉体通过干压法制得二氧化硅-三聚氰胺坯体;
步骤3:将所述二氧化硅-三聚氰胺坯体经过第一烧结、保温和第二烧结得到氮化硅陶瓷。
优选的,所述混料为湿混。
更优选的,所述湿混的溶剂为乙醇或丙酮。
优选的,所述二氧化硅粉体和三聚氰胺粉体的摩尔比为1:1~5:1。
更优选的,所述二氧化硅粉体与所述三聚氰胺粉体的摩尔比为3:1。
更优选的,所述二氧化硅粉体与所述三聚氰胺粉体的粒径均为5~10μm。
进一步优选,所述二氧化硅粉体与所述三聚氰胺粉体的粒径为5μm或10μm。
优选的,还包括三氧化二铝粉体和Re2O3粉体,其中,Re选自钪元素、钇元素、镧元素、铈元素、镨元素、钕元素、钷元素、钐元素、铕元素、钆元素、铽元素、镝元素、钬元素、铒元素、铥元素、镱元素或镥元素;
所述步骤1具体包括将所述二氧化硅粉体、所述三聚氰胺粉体、所述三氧化二铝粉体和所述Re2O3粉体混料得到二氧化硅-三聚氰胺-三氧化二铝-Re2O3混合粉体。
优选的,所述干压法为冷等静压成型。
更优选的,所述二氧化硅粉体、所述三聚氰胺粉体、所述三氧化二铝粉体和所述Re2O3粉体的纯度均为95~100%。
进一步优选,所述二氧化硅粉体、所述三聚氰胺粉体、所述三氧化二铝粉体和所述Re2O3粉体的纯度均为98%~100%。
优选的,所述第一烧结具体包括:将所述二氧化硅-三聚氰胺坯体升温至400~600℃得到第一坯体。
优选的,所述第二烧结具体包括:将所述第一坯体升温至1300~1600℃,得到所述氮化硅陶瓷粉体。
更优选的,所述第一烧结的温度为550℃。所述第二烧结的温度1500℃或1600℃。
优选的,所述第一烧结和所述第二烧结的升温速率均为5~10℃/min。
更优选的,所述第一烧结地升温速率为10℃/min。所述第二烧结的升温速率为5℃/min。
优选的,所述保温的时间为1~8h。
更优选的,所述保温的时间为2h。
本发明还提供了一种氮化硅陶瓷,由上述氮化硅陶瓷的制备方法制得。
从以上技术方案可知,本发明通过采用二氧化硅粉体和三聚氰胺粉体作为原料,在烧结过程中三聚氰胺分解成氮化物,氮化物进而与二氧化硅反应生成氮化硅,该方法使二氧化硅粉直接氮化,避免了因流硅现象而导致粉体中硅原子的流失,进而降低粉体中氮化硅的含量。此外,本发明提供的制备方法采用分段式烧结法,将原料进行第一烧结、保温和第二烧结,可除净氮化硅陶瓷粉体的氧杂质,烧结中氧离子含量越低越有利于陶瓷的致密化,从而进一步降低陶瓷的缺陷,提高了氮化硅陶瓷的性能。此外,原料二氧化硅粉体和三聚氰胺粉体均为低成本物质,该方法大大的减小了氮化硅陶瓷的生产成本,使其更适用于大批量生产。在本发明实施例中,由该方法制得的氮化硅陶瓷的致密度、维氏硬度、抗弯强度和断裂韧性均远远高于现有技术制得的氮化硅陶瓷,表明本发明制得的氮化硅陶瓷性能更佳。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更详细说明本发明,下面结合实施例对本发明提供的一种氮化硅陶瓷及其制备方法进行具体地描述。
实施例1
(1)以二氧化硅粉体、三聚氰胺粉体、三氧化二铝粉体(Al2O3)和Re2O3粉体为原料,按C3H6N6:SiO2的摩尔分数比为1:3的配比将上述两种粉体进行混合。其中,SiO2粉体的纯度为98%~100%,粒径为5μm,C3H6N6粉体的纯度为98%~100%,粒径为5μm。Al2O3和Re2O3粉体的纯度为98%~100%,粒径为0.1μm
(2)以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,转数为100r/min,干燥后,得到二氧化硅-三聚氰胺-Al2O3-Re2O3混合粉体。
(3)将上述混合粉体通过冷等静压成型制备得到致密坯体。
(4)将坯体放入氮化硼坩埚中,先以10℃/min升温至550℃,保温1h;然后以5℃/min的升温速率将温度升至1500℃,并保温2h,经过两步真空烧结后获得致密氮化硅陶瓷,其中,真空度为10Pa。
实施例2
1)以二氧化硅粉体、三聚氰胺粉体、Al2O3和Re2O3粉体为原料,按C3H6N6:SiO2的摩尔分数比为1:3的配比将上述两种粉体进行混合。其中,SiO2粉体的纯度为98%~100%,粒径为5μm,C3H6N6粉体的纯度为98%~100%,粒径为5μm。Al2O3和Re2O3粉体的纯度为98%~100%,粒径为0.1μm
(2)以乙醇为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,转数为100r/min,干燥后,得到二氧化硅-三聚氰胺-三氧化二铝-Re2O3混合粉体。
(3)将上述混合粉体通过冷等静压成型制备得到致密坯体。
(4)将坯体放入氮化硼坩埚中,先以10℃/min升温至550℃,保温1h;然后以5℃/min的升温速率将温度升至1600℃,并保温2h,经过两步真空烧结后获得致密氮化硅陶瓷,其中,真空度为10Pa。
实施例3
(1)以二氧化硅粉体、三聚氰胺粉体、Al2O3粉体和Re2O3粉体为原料,按C3H6N6:SiO2的摩尔分数比为1:3的配比将上述两种粉体进行混合。其中,SiO2粉体的纯度为98%~100%,粒径为5μm,C3H6N6粉体的纯度为98%~100%,粒径为5μm。Al2O3和Re2O3粉体的纯度为98%~100%,粒径为0.1μm
(2)以丙酮为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,转数为100r/min,干燥后,得到二氧化硅-三聚氰胺-三氧化二铝-Re2O3混合粉体。
(3)将上述混合粉体通过冷等静压成型制备得到致密坯体。
(4)将坯体放入氮化硼坩埚中,先以10℃/min升温至550℃,保温1h;然后以5℃/min的升温速率将温度升至1500℃,并保温2h,经过两步真空烧结后获得致密氮化硅陶瓷,其中,真空度为10Pa。
实施例4
1)以二氧化硅粉体、三聚氰胺粉体、Al2O3粉体和Re2O3粉体为原料,按C3H6N6:SiO2的摩尔分数比为1:3的配比将上述两种粉体进行混合。其中,SiO2粉体的纯度为98%~100%,粒径为5μm,C3H6N6粉体的纯度为98%~100%,粒径为5μm。Al2O3和Re2O3粉体的纯度为98%~100%,粒径为0.1μm
(2)以丙酮为溶剂,以Si3N4球为球磨介质,在辊式球磨机上混合24h,转数为100r/min,干燥后,得到二氧化硅-三聚氰胺-三氧化二铝-Re2O3混合粉体。
(3)将上述混合粉体通过冷等静压成型制备得到致密坯体。
(4)将坯体放入氮化硼坩埚中,先以10℃/min升温至550℃,保温1h;然后以5℃/min的升温速率将温度升至1600℃,并保温2h,经过两步真空烧结后获得致密氮化硅陶瓷,其中,真空度为10Pa。
对比例1
步骤1:将硅粉置于反应炉内,通入氮气或氨气,硅碳反应开始缓慢进行,600~900℃反应明显,1100~1320℃反应进行剧烈,1400℃反应结束。其化学反应式为:
3Si+2N2→Si3N4
3Si+4NH3→Si3N4+6H2
氮化反应后得到α-Si3N4相为主的松散块状,经粉碎磨细得到α-Si3N4细粉。氮化后的粉末中含有Fe、Ca、Al等杂质。
步骤二:将制备的氮化硅粉体与Al2O3和Re2O3经乙醇混合后冷等静压,压块后放入碳化硼坩埚中,真空中1600℃烧结得到氮化硅陶瓷,其中,真空度为10Pa,
对比例2
步骤一:通过硅压胺热解法制的氮化硅粉体,其反应方程式为SiCl4(液)+6NH3→Si(NH)2+4NH4Cl
3Si(NH)2→Si3N4+3NH3
该方法中的结晶化工艺需要严格控制热处理条件,热处理条件不同,得到的Si3N4粉末的晶粒尺寸、晶粒形状、α相含量和残余Cl离子的含量也不同。
步骤二:将制备的氮化硅粉体与Al2O3和Re2O3经乙醇混合后冷等静压,压块后放入碳化硼坩埚中,真空中1600℃烧结得到氮化硅陶瓷,其中,真空度为10Pa。
对比例3
步骤一:通过SiO2碳热还原法制的氮化硅粉体,其反应方程式为:3SiO2+6C+2N2→Si3N4+6CO。由该方法合成的Si3N4粉末还须在氧气气氛与600℃下加热处理,除去剩余的碳,得到纯度较高但致密度较低的疏松Si3N4粉末。
步骤二:将制备的氮化硅粉体与Al2O3和Re2O3经酒精混合后冷等静压,压块后放入碳化硼坩埚中,真空中1600℃烧结得到氮化硅陶瓷,其中,真空度为10Pa。
综上所述,实施例1~4与对比例1~3制备的氮化硅陶瓷粉体性能如表1所示
表1实施例1~4与对比例1~3制备的氮化硅陶瓷性能
由表1可知,在本发明实施例1~4中,由该方法制得的氮化硅陶瓷粉体相比于对比例1~3制得的氮化硅陶瓷,其致密度、维氏硬度、抗弯强度和断裂韧性均得到了有效提高,使得由本发明实施例制备的氮化硅氮化硅陶瓷相比于现有的氮化硅陶瓷,其各方面的性能更好。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种氮化硅陶瓷的制备方法,其特征在于,包括以下步骤:
步骤1:将二氧化硅粉体和三聚氰胺粉体混料得到二氧化硅-三聚氰胺混合粉体;
步骤2:将所述二氧化硅-三聚氰胺混合粉体通过干压法制得二氧化硅-三聚氰胺坯体;
步骤3:将所述二氧化硅-三聚氰胺坯体经过第一烧结、保温和第二烧结得到氮化硅陶瓷。
2.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,所述混料为湿混。
3.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,所述二氧化硅粉体和三聚氰胺粉体的摩尔比为1:1~5:1。
4.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,还包括三氧化二铝粉体和Re2O3粉体,其中,Re选自钪元素、钇元素、镧元素、铈元素、镨元素、钕元素、钷元素、钐元素、铕元素、钆元素、铽元素、镝元素、钬元素、铒元素、铥元素、镱元素或镥元素;
所述步骤1具体包括将所述二氧化硅粉体、所述三聚氰胺粉体、所述三氧化二铝粉体和所述Re2O3粉体混料得到二氧化硅-三聚氰胺-三氧化二铝-Re2O3混合粉体。
5.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,所述干压法为冷等静压成型。
6.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,所述第一烧结具体包括:将所述二氧化硅-三聚氰胺坯体升温至400~600℃得到第一坯体。
7.根据权利要求6所述的氮化硅陶瓷的制备方法,其特征在于,所述第二烧结具体包括:将所述第一坯体升温至1300~1600℃,得到所述氮化硅陶瓷。
8.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,所述第一烧结和所述第二烧结的升温速率均为5~10℃/min。
9.根据权利要求1所述的氮化硅陶瓷的制备方法,其特征在于,所述保温的时间为1~8h。
10.一种氮化硅陶瓷,其特征在于,由上述权利要求1~9任意一项所述的氮化硅陶瓷的制备方法制得。
CN201810821476.XA 2018-07-24 2018-07-24 一种氮化硅陶瓷及其制备方法 Active CN108610056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810821476.XA CN108610056B (zh) 2018-07-24 2018-07-24 一种氮化硅陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810821476.XA CN108610056B (zh) 2018-07-24 2018-07-24 一种氮化硅陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN108610056A true CN108610056A (zh) 2018-10-02
CN108610056B CN108610056B (zh) 2021-07-06

Family

ID=63666690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810821476.XA Active CN108610056B (zh) 2018-07-24 2018-07-24 一种氮化硅陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108610056B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437921A (zh) * 2018-12-27 2019-03-08 沈阳金瓷科技开发有限责任公司 基于表面改性低温合成制备氮化硅陶瓷粉体的方法
CN110105082A (zh) * 2019-05-09 2019-08-09 西安航空学院 一种纤维增韧多孔氮化硅陶瓷的制备方法
CN110328739A (zh) * 2019-08-16 2019-10-15 刘得顺 一种陶瓷涡轮的制作方法
CN114751764A (zh) * 2021-02-09 2022-07-15 海南大学 一种多功能陶瓷纳米纤维海绵及其制备方法
CN114790107A (zh) * 2022-04-29 2022-07-26 江苏大学 一种利用多晶硅切割废料在低温下制备SiO2-Si3N4复合陶瓷的方法
CN116813354A (zh) * 2023-06-06 2023-09-29 东莞理工学院 一种原位制备氮化硅陶瓷的方法、制得的氮化硅陶瓷及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131357A (ja) * 1984-07-20 1986-02-13 株式会社ブリヂストン 窒化物系セラミツクスの製造方法
CN104671795A (zh) * 2015-02-05 2015-06-03 武汉科技大学 一种单相α-Si3N4超细粉体及其制备方法
CN105254308A (zh) * 2015-11-04 2016-01-20 苏州知瑞光电材料科技有限公司 一种陶瓷散热复合材料的制备方法
CN107746285A (zh) * 2017-10-18 2018-03-02 武汉科技大学 一种三维多孔氮化物纳米陶瓷及其制备方法
CN107793174A (zh) * 2017-11-14 2018-03-13 中国人民解放军国防科技大学 一种氮化硼纤维三维结构材料制备方法及其制品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131357A (ja) * 1984-07-20 1986-02-13 株式会社ブリヂストン 窒化物系セラミツクスの製造方法
CN104671795A (zh) * 2015-02-05 2015-06-03 武汉科技大学 一种单相α-Si3N4超细粉体及其制备方法
CN105254308A (zh) * 2015-11-04 2016-01-20 苏州知瑞光电材料科技有限公司 一种陶瓷散热复合材料的制备方法
CN107746285A (zh) * 2017-10-18 2018-03-02 武汉科技大学 一种三维多孔氮化物纳米陶瓷及其制备方法
CN107793174A (zh) * 2017-11-14 2018-03-13 中国人民解放军国防科技大学 一种氮化硼纤维三维结构材料制备方法及其制品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROMAN SHUBA等: "Machinable α-SiAlON/BN Composites", 《JOURNAL AMERICAN CERAMIC SOCIETY》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109437921A (zh) * 2018-12-27 2019-03-08 沈阳金瓷科技开发有限责任公司 基于表面改性低温合成制备氮化硅陶瓷粉体的方法
CN109437921B (zh) * 2018-12-27 2021-08-24 沈阳金瓷科技开发有限责任公司 基于表面改性低温合成制备氮化硅陶瓷粉体的方法
CN110105082A (zh) * 2019-05-09 2019-08-09 西安航空学院 一种纤维增韧多孔氮化硅陶瓷的制备方法
CN110105082B (zh) * 2019-05-09 2021-06-01 西安航空学院 一种纤维增韧多孔氮化硅陶瓷的制备方法
CN110328739A (zh) * 2019-08-16 2019-10-15 刘得顺 一种陶瓷涡轮的制作方法
CN114751764A (zh) * 2021-02-09 2022-07-15 海南大学 一种多功能陶瓷纳米纤维海绵及其制备方法
CN114751764B (zh) * 2021-02-09 2023-06-09 海南大学 一种多功能陶瓷纳米纤维海绵及其制备方法
CN114790107A (zh) * 2022-04-29 2022-07-26 江苏大学 一种利用多晶硅切割废料在低温下制备SiO2-Si3N4复合陶瓷的方法
CN116813354A (zh) * 2023-06-06 2023-09-29 东莞理工学院 一种原位制备氮化硅陶瓷的方法、制得的氮化硅陶瓷及其应用

Also Published As

Publication number Publication date
CN108610056B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN108610056A (zh) 一种氮化硅陶瓷及其制备方法
JP3175483B2 (ja) 窒化ホウ素含有材料およびその製造方法
US6579819B2 (en) Silicon nitride sintered products and processes for their production
CA1201453A (en) Ceramic product and method of forming a ceramic product
JPH07277814A (ja) アルミナ基セラミックス焼結体
CN102515767B (zh) 一种制备SiC-AlN固溶体陶瓷粉末的方法
JP5046221B2 (ja) 高い信頼性を持つ高熱伝導窒化ケイ素セラミックスの製造方法
JPH0460051B2 (zh)
Sun et al. Effect of LiYO2 on the synthesis and pressureless sintering of Y2SiO5
CN110240132B (zh) 一种基于熔盐法的氮化硅镁粉体及其制备方法
KR101084711B1 (ko) 고순도 베타상 탄화규소 미세 분말의 저온 제조 방법
AU560369B2 (en) Method of making yttrium silicon oxynitrides
CN109400176A (zh) 一种高性能氮化硅陶瓷及其制备方法和应用
JPH0324429B2 (zh)
Iwamoto et al. Si3N4–TiN–Y2O3 ceramics derived from chemically modified perhydropolysilazane
JP2907367B2 (ja) 結晶質窒化珪素粉末の製造法
CN116496091B (zh) 一种氮氧化铝透明陶瓷材料及其制备方法
JP3385059B2 (ja) 高純度窒化アルミニウム粉末の製造方法
CN107986767A (zh) 一种碳热还原氮化法合成长柱状α-Sialon细晶粒及制备方法
CN1262257A (zh) 由天然矿物原料制备镁阿隆
JP2011020889A (ja) 反応焼結基窒化ケイ素セラミックス及びその製造方法
CN107698259A (zh) 一种降低氮化铝粉体中铁和硅杂质含量的方法
EP0227324B1 (en) Method of making ultrapure silicon nitride/oxynitride powder
JPS60501851A (ja) 予め混合したケイ素及び酸素担持剤を使用する緻密化したSi↓3N↓4/オキシニトリド複合剤の製造方法
JP3350907B2 (ja) 結晶質窒化珪素粉末の製造法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230526

Address after: Room 1204, West Tower, Yuexiu Xindu, No. 238, Zhongshan 6th Road, Yuexiu District, Guangzhou, Guangdong 510000

Patentee after: GUANGZHOU TOTALL MATERIAL TECHNOLOGY Co.,Ltd.

Address before: 510006 No. 100 West Ring Road, Panyu District University, Guangdong, Guangzhou

Patentee before: GUANGDONG University OF TECHNOLOGY