CN108597710B - 一种钐铁氮磁纳米阵列的制备方法 - Google Patents

一种钐铁氮磁纳米阵列的制备方法 Download PDF

Info

Publication number
CN108597710B
CN108597710B CN201810329637.3A CN201810329637A CN108597710B CN 108597710 B CN108597710 B CN 108597710B CN 201810329637 A CN201810329637 A CN 201810329637A CN 108597710 B CN108597710 B CN 108597710B
Authority
CN
China
Prior art keywords
array
samarium
nano
magnetic
iron nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810329637.3A
Other languages
English (en)
Other versions
CN108597710A (zh
Inventor
徐靖才
王攀峰
王新庆
洪波
金红晓
金顶峰
彭晓领
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DONGYANG DINGFENG MAGNETISM MATERIAL Co.,Ltd.
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201810329637.3A priority Critical patent/CN108597710B/zh
Publication of CN108597710A publication Critical patent/CN108597710A/zh
Application granted granted Critical
Publication of CN108597710B publication Critical patent/CN108597710B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种钐铁氮磁纳米阵列的制备方法,该发明以多孔氧化铝为模板,在磁场下采用方波脉冲电沉积法制备钐铁纳米线阵列;将钐铁纳米线阵列置于热处理炉中,以恒定的速率通入高纯氩气,在500~700℃下退火1~5h;再以恒定的速率通入含50%氢气的氩氢混合气,在300~400℃下氢化10~24h;然后以恒定的速率通入高纯氮气,在400~500℃下氮化2~20h,降至室温,取出样品即得到钐铁氮磁纳米阵列。该方法获得的钐铁氮磁纳米阵列为高度有序纳米线阵列,纳米线的直径与多孔氧化铝模板的孔径一致,纳米线的长度为1~50μm;钐铁氮磁纳米阵列具有较高的磁能积和优异的磁各向异性。

Description

一种钐铁氮磁纳米阵列的制备方法
技术领域
本发明涉及一种钐铁氮磁纳米阵列的制备方法,属于材料制备领域。
背景技术
永磁材料是具有较大剩磁、矫顽力、磁能积和一经磁化即能保持恒定磁性的材料。永磁材料经历了碳钢-铝镍钴-铁氧体-SmCo5-Sm2Co17-Nd2Fe14B几个主要的发展阶段。其中稀土永磁材料是20世纪60年代发展起来的新型永磁材料,包括第一代稀土永磁1:5型SmCo合金,第二代稀土永磁2:17型SmCo合金;第一代和第二代稀土永磁材料都含有稀土元素Co,而Co是战略物资、价格昂贵,这在很大程度上限制了它们的广泛使用,于是人们开发了第三代Nd-Fe-B稀土永磁材料。与第一、二代稀土永磁材料相比,Nd-Fe-B的磁性能优异,迅速稀土永磁体市场,有着“磁王”的美誉。但Nd-Fe-B本身并不完美,缺点同样明显,如稀土含量高、耐腐蚀性差和高温时居里温度低等。因此人们积极探寻新一代稀土永磁材料。Sm-Fe-N不管从磁性能方面来说,还是从生产成本上来说,都很有可能取代Nd-Fe-B,成为人们期待的***稀土永磁材料。
目前,Sm-Fe-N的制备方法主要有熔体快淬法(RQ)、机械合金化法(MA)、粉末冶金法(PM)、氢化-歧化-脱氢-再化合法(HDDR)。但随着现代人类社会高科技的发展,电子器件微型化、功能兼容一体化的要求越来越高。当前工艺制备得到的Sm-Fe-N磁体难以满足高端需要,所以急需开发具有高磁能积和优异的磁各向异性的Sm-Fe-N磁性纳米材料。
发明内容
本发明的目的在于提供一种钐铁氮磁纳米阵列的制备方法,该制备方法得到的钐铁氮磁纳米阵列为高度有序纳米线阵列,纳米线的直径与多孔氧化铝模板的孔径一致,纳米线的长度为1~50μm;钐铁氮磁纳米阵列具有高磁能积和优异的磁各向异性。
为了实现上述发明目的,本发明的具体步骤为:
1)、多孔氧化铝模板准备:选取孔径为100nm双通的氧化铝模板,在其背面磁控溅射一层厚度为5μm的铜膜,依次经过三甲基氰硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米线阵列的制备:在磁场下采用方波脉冲电沉积法制备钐铁纳米线阵列:以第一步准备好氧化铝模板作为工作电极,汞电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在30~50℃温度下进行方波脉冲电沉积,沉积完成用2mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米线生长方向平行,磁场的大小为1~5T;
所述的沉积液的溶质为:SmCl3·6H2O、FeCl2·4H2O、Na3C6H5O7·2H2O、H2C2O4、NaCl、H3BO3和抗坏血酸,溶剂为1:1的水和乙二醇溶液;
所述的方波脉冲电沉积的条件为:在0V持续60s,然后瞬间加-1.3V的电位持续30s的方波脉冲电沉积一定时间;
3)、退火:将钐铁纳米线阵列置于热处理炉中,以恒定的速率通入高纯氩气,在500~700℃下退火1~5h;
4)、氢化:以恒定的速率通入含50%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在400~500℃下氮化2~20h,降至室温,取出样品即得到钐铁氮磁纳米阵列。
技术效果:本发明利用磁场、水和乙二醇混合溶剂和方波脉冲电沉积的工艺条件,使SmFe能够共沉积在多孔氧化铝孔道中;本发明纳米尺寸的钐铁纳米线,通过退火氢化,为氮化提供有利条件,得到含氮量较高的钐铁氮磁纳米阵列。
具体实施方式
下面是结合实施例对本发明进行详细描述,以便更好地理解本发明的目的、特点和优点。虽然本发明是结合该具体实施例进行描述,但并不意味着本发明局限于所描述具体实施例。相反,对可以包括在本发明权利要求内所限定的保护范围内的实施方式进行替代、改进和等同的实施方式,都属于本发明的保护范围。对于未特别标注的工艺参数可按常规技术进行。
本发明的具体步骤为:
1)、多孔氧化铝模板准备:选取孔径为100nm双通的氧化铝模板,在其背面磁控溅射一层厚度为5μm的铜膜,依次经过三甲基氰硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米线阵列的制备:在磁场下采用方波脉冲电沉积法制备钐铁纳米线阵列:以第一步准备好氧化铝模板作为工作电极,汞电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在30~50℃温度下进行方波脉冲电沉积,沉积完成用2mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米线生长方向平行,磁场的大小为1~5T;
所述的沉积液的溶质为:SmCl3·6H2O、FeCl2·4H2O、Na3C6H5O7·2H2O、H2C2O4、NaCl、H3BO3和抗坏血酸,溶剂为1:1的水和乙二醇溶液;
所述的方波脉冲电沉积的条件为:在0V持续60s,然后瞬间加-1.3V的电位持续30s的方波脉冲电沉积一定时间;
3)、退火:将钐铁纳米线阵列置于热处理炉中,以恒定的速率通入高纯氩气,在500~700℃下退火1~5h;
4)、氢化:以恒定的速率通入含50%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在400~500℃下氮化2~20h,降至室温,取出样品即得到钐铁氮磁纳米阵列。
实施例1:
步骤为:
1)、多孔氧化铝模板准备:选取孔径为100nm双通的氧化铝模板,在其背面磁控溅射一层厚度为5μm的铜膜,依次经过三甲基氰硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米线阵列的制备:准备沉积液,其配方为:0.05mol/L FeCl2·4H2O、0.3mol/L SmCl3·6H2O、0.5mol/L Na3C6H5O7·2H2O、0.5mol/L H2C2O4、0.03mol/L NaCl、0.3mol/L H3BO3和0.3mol/L抗坏血酸溶于1:1的水和乙二醇溶液,在1T的磁场下,以第一步准备好氧化铝模板作为工作电极,汞电极为对电极,Ag/AgCl电极为辅助电极,加入温度为30℃沉积液后在方波为0V持续60s,-1.3V持续30s下进行脉冲电沉积50个循环,沉积完成用2mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
3)、退火:将钐铁纳米线阵列置于热处理炉中,以恒定的速率通入高纯氩气,在500℃下退火5h;
4)、氢化:以恒定的速率通入含50%氢气的氩氢混合气,在300℃下氢化24h;
5)、氮化:以恒定的速率通入高纯氮气,在400℃下氮化20h,降至室温,取出样品即得到钐铁氮磁纳米阵列。
对实施例1所制备的样品进行XRD和TEM表征,检测到了钐铁氮物相,钐铁氮的形貌为有序纳米线阵列结构;对钐铁氮磁纳米线阵列进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例2:
步骤为:
1)、多孔氧化铝模板准备:选取孔径为100nm双通的氧化铝模板,在其背面磁控溅射一层厚度为5μm的铜膜,依次经过三甲基氰硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米线阵列的制备:准备沉积液,其配方为:0.1mol/L FeCl2·4H2O、0.6mol/L SmCl3·6H2O、0.1mol/L Na3C6H5O7·2H2O、0.1mol/L H2C2O4、0.06mol/L NaCl、0.6mol/L H3BO3和0.6mol/L抗坏血酸溶于1:1的水和乙二醇溶液,在5T的磁场下,以第一步准备好氧化铝模板作为工作电极,汞电极为对电极,Ag/AgCl电极为辅助电极,加入温度为30℃沉积液后在方波为0V持续60s,-1.3V持续30s下进行脉冲电沉积100个循环,沉积完成用2mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
3)、退火:将钐铁纳米线阵列置于热处理炉中,以恒定的速率通入高纯氩气,在700℃下退火7h;
4)、氢化:以恒定的速率通入含50%氢气的氩氢混合气,在400℃下氢化10h;
5)、氮化:以恒定的速率通入高纯氮气,在500℃下氮化2h,降至室温,取出样品即得到钐铁氮磁纳米阵列。
对实施例2所制备的样品进行XRD和TEM表征,检测到了钐铁氮物相,钐铁氮的形貌为有序纳米线阵列结构;对钐铁氮磁纳米线阵列进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例3:
步骤为:
1)、多孔氧化铝模板准备:选取孔径为100nm双通的氧化铝模板,在其背面磁控溅射一层厚度为5μm的铜膜,依次经过三甲基氰硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米线阵列的制备:准备沉积液,其配方为:0.1mol/L FeCl2·4H2O、0.6mol/L SmCl3·6H2O、0.1mol/L Na3C6H5O7·2H2O、0.1mol/L H2C2O4、0.06mol/L NaCl、0.6mol/L H3BO3和0.6mol/L抗坏血酸溶于1:1的水和乙二醇溶液,在2T的磁场下,以第一步准备好氧化铝模板作为工作电极,汞电极为对电极,Ag/AgCl电极为辅助电极,加入温度为50℃沉积液后在方波为0V持续60s,-1.3V持续30s下进行脉冲电沉积200个循环,沉积完成用2mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
3)、退火:将钐铁纳米线阵列置于热处理炉中,以恒定的速率通入高纯氩气,在600℃下退火3h;
4)、氢化:以恒定的速率通入含50%氢气的氩氢混合气,在350℃下氢化18h;
5)、氮化:以恒定的速率通入高纯氮气,在450℃下氮化10h,降至室温,取出样品即得到钐铁氮磁纳米阵列。
对实施例3所制备的样品进行XRD和TEM表征,检测到了钐铁氮物相,钐铁氮的形貌为有序纳米线阵列结构;对钐铁氮磁纳米线阵列进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。
实施例4:
步骤为:
1)、多孔氧化铝模板准备:选取孔径为100nm双通的氧化铝模板,在其背面磁控溅射一层厚度为5μm的铜膜,依次经过三甲基氰硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米线阵列的制备:准备沉积液,其配方为:0.05mol/L FeCl2·4H2O、0.3mol/L SmCl3·6H2O、0.5mol/L Na3C6H5O7·2H2O、0.5mol/L H2C2O4、0.0 3mol/L NaCl、0.3mol/LH3BO3和0.3mol/L抗坏血酸溶于1:1的水和乙二醇溶液,在3T的磁场下,以第一步准备好氧化铝模板作为工作电极,汞电极为对电极,Ag/AgCl电极为辅助电极,加入温度为40℃沉积液后在方波为0V持续60s,-1.3V持续30s下进行脉冲电沉积200个循环,沉积完成用2mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
3)、退火:将钐铁纳米线阵列置于热处理炉中,以恒定的速率通入高纯氩气,在650℃下退火2h;
4)、氢化:以恒定的速率通入含50%氢气的氩氢混合气,在400℃下氢化20h;
5)、氮化:以恒定的速率通入高纯氮气,在450℃下氮化17h,降至室温,取出样品即得到钐铁氮磁纳米阵列。
对实施例4所制备的样品进行XRD和TEM表征,检测到了钐铁氮物相,钐铁氮的形貌为有序纳米线阵列结构;对钐铁氮磁纳米线阵列进行VSM测试,发现其具有较高的磁能积和优异的磁各向异性。

Claims (2)

1.一种钐铁氮磁纳米阵列的制备方法,其特征在于,由以下步骤组成:
1)、多孔氧化铝模板准备:选取孔径为100nm双通的氧化铝模板,在其背面磁控溅射一层厚度为5μm的铜膜,依次经过三甲基氰硅烷、乙醇、蒸馏水超声清洗后烘干以备用;
2)、钐铁纳米线阵列的制备:在磁场下采用方波脉冲电沉积法制备钐铁纳米线阵列:以第一步准备好氧化铝模板作为工作电极,汞电极为对电极,Ag/AgCl电极为辅助电极,加入沉积液后在30~50℃温度下进行方波脉冲电沉积,沉积完成用2mol/L的NaOH溶液将多孔氧化铝模板溶解,然后用乙醇和蒸馏水清洗至中性;
所述的磁场的方向与纳米线生长方向平行,磁场的大小为1~5T;
所述的沉积液的溶质为:SmCl3·6H2O、FeCl2·4H2O、Na3C6H5O7·2H2O、H2C2O4、NaCl、H3BO3和抗坏血酸,溶剂为1:1的水和乙二醇溶液;
所述的方波脉冲电沉积的条件为:在0V持续60s,然后瞬间加-1.3V的电位持续30s的方波脉冲电沉积一定时间;
3)、退火:将钐铁纳米线阵列置于热处理炉中,以恒定的速率通入高纯氩气,在500~700℃下退火1~5h;
4)、氢化:以恒定的速率通入含50%氢气的氩氢混合气,在300~400℃下氢化10~24h;
5)、氮化:以恒定的速率通入高纯氮气,在400~500℃下氮化2~20h,降至室温,取出样品即得到钐铁氮磁纳米阵列。
2.如权利要求1所述的一种钐铁氮磁纳米阵列的制备方法,其特征在于,钐铁氮磁纳米阵列为高度有序纳米线阵列,纳米线的直径与多孔氧化铝模板的孔径一致,纳米线的长度为1~50μm;钐铁氮磁纳米阵列具有优异的磁性能和磁各向异性。
CN201810329637.3A 2018-04-13 2018-04-13 一种钐铁氮磁纳米阵列的制备方法 Active CN108597710B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810329637.3A CN108597710B (zh) 2018-04-13 2018-04-13 一种钐铁氮磁纳米阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810329637.3A CN108597710B (zh) 2018-04-13 2018-04-13 一种钐铁氮磁纳米阵列的制备方法

Publications (2)

Publication Number Publication Date
CN108597710A CN108597710A (zh) 2018-09-28
CN108597710B true CN108597710B (zh) 2019-08-30

Family

ID=63622197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810329637.3A Active CN108597710B (zh) 2018-04-13 2018-04-13 一种钐铁氮磁纳米阵列的制备方法

Country Status (1)

Country Link
CN (1) CN108597710B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2770919C1 (ru) * 2021-06-07 2022-04-25 Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" Способ получения слоевых нанопроволок из ферромагнитных металлов с программируемой структурой и устройство для его осуществления
RU2774669C1 (ru) * 2021-12-17 2022-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения многослойных нанопроволок, состоящих из чередующихся слоев меди и сплава никель-медь

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277211B (zh) * 2019-07-17 2020-09-15 中国计量大学 一种钐铁氮磁纳米管的制备方法
CN110246685A (zh) * 2019-07-17 2019-09-17 徐靖才 一种钐铁氮薄膜的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082611A (ja) * 1998-06-15 2000-03-21 Maguekkusu:Kk サマリウム−鉄−窒素系の磁性粒子を用いた押出し成形磁石体
GB2338602B (en) * 1998-06-15 2002-08-28 Magx Co Ltd Extrusion-molded magnetic body using samarium-iron-nitrogen system magnetic particles
CN1391237A (zh) * 2002-07-17 2003-01-15 浙江大学 利用氧化铝模板生长锗纳米线的方法
CN1529330A (zh) * 2003-09-29 2004-09-15 �Ϻ���ͨ��ѧ 铁-钴合金纳米线阵列永磁薄膜材料及制备
CN102044319A (zh) * 2009-10-23 2011-05-04 中国科学院物理研究所 复合吸波材料及其制备方法
CN102050419A (zh) * 2010-12-02 2011-05-11 台州学院 磁性双纳米结构阵列材料及其制备方法
CN103628106A (zh) * 2013-11-01 2014-03-12 大连理工大学 一种制备铟/碲多孔纳米线阵列的方法
CN103708414A (zh) * 2013-12-24 2014-04-09 河南省科学院应用物理研究所有限公司 一种磁性纳米阵列的制备及转移方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040059300A (ko) * 2002-12-28 2004-07-05 학교법인 포항공과대학교 자성체/나노소재 이종접합 나노구조체 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082611A (ja) * 1998-06-15 2000-03-21 Maguekkusu:Kk サマリウム−鉄−窒素系の磁性粒子を用いた押出し成形磁石体
GB2338602B (en) * 1998-06-15 2002-08-28 Magx Co Ltd Extrusion-molded magnetic body using samarium-iron-nitrogen system magnetic particles
CN1391237A (zh) * 2002-07-17 2003-01-15 浙江大学 利用氧化铝模板生长锗纳米线的方法
CN1529330A (zh) * 2003-09-29 2004-09-15 �Ϻ���ͨ��ѧ 铁-钴合金纳米线阵列永磁薄膜材料及制备
CN102044319A (zh) * 2009-10-23 2011-05-04 中国科学院物理研究所 复合吸波材料及其制备方法
CN102050419A (zh) * 2010-12-02 2011-05-11 台州学院 磁性双纳米结构阵列材料及其制备方法
CN103628106A (zh) * 2013-11-01 2014-03-12 大连理工大学 一种制备铟/碲多孔纳米线阵列的方法
CN103708414A (zh) * 2013-12-24 2014-04-09 河南省科学院应用物理研究所有限公司 一种磁性纳米阵列的制备及转移方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of High-purity carbon nanotubes bundles from ccvd method;徐靖才;《Rare Metal Materials and Engineering》;20120903;全文

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2770919C1 (ru) * 2021-06-07 2022-04-25 Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" Способ получения слоевых нанопроволок из ферромагнитных металлов с программируемой структурой и устройство для его осуществления
RU2774669C1 (ru) * 2021-12-17 2022-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) Способ получения многослойных нанопроволок, состоящих из чередующихся слоев меди и сплава никель-медь

Also Published As

Publication number Publication date
CN108597710A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
CN108597710B (zh) 一种钐铁氮磁纳米阵列的制备方法
WO2017067251A1 (zh) 电沉积方法、电沉积液和电沉积制备稀土永磁材料的方法
Hua et al. CoFe2O4 nanowire arrays prepared by template-electrodeposition method and further oxidization
WO2016180359A1 (zh) 一种强永磁性纳米多孔Fe-Pt合金及其制备方法
CN106222584A (zh) 一种纳米多孔Fe基非晶合金及制备方法和在析氧催化电极上的应用
CN101692364A (zh) 硬磁管包覆软磁线型一维纳米永磁材料及其制备方法
CN102400191B (zh) 强磁场下制备Sm-Fe合金磁性薄膜的方法
CN112382498B (zh) 一种高矫顽力高磁能积扩散钐铁氮磁体的制备方法
Liu et al. Electrochemical synthesis of Sm-Co metal magnetic materials by Co-reduction of Sm (III) and Co (II) in LiCl-KCl-SmCl3-CoCl2 melt
CN104087976A (zh) Sm-Co合金非晶磁性纳米线阵列的制备方法
CN110246685A (zh) 一种钐铁氮薄膜的制备方法
KR20130111036A (ko) 무전해 또는 전해 증착법을 이용한 나노복합 자석의 제조방법
Yuan et al. Self-assembly synthesis and magnetic studies of Co–P alloy nanowire arrays
Song et al. Growth of single-crystalline Co7Fe3 nanowires via electrochemical deposition and their magnetic properties
CN101667480B (zh) 软磁管包覆硬磁线型纳米同轴电缆及其制备方法
Carlier et al. Preparation and Magnetic Properties of Fe3 O 4 Nanostructures Grown by Electrodeposition
Sivasubramanian et al. Boric acid assisted electrosynthesis of hierarchical three-dimensional cobalt dendrites and microspheres
Yang et al. Electrochemical fabrication and magnetic properties of Fe 7 Co 3 alloy nanowire array
CN104103415A (zh) 一种氢化镝纳米粉末掺杂制备各向异性NdFeB稀土永磁体的方法
CN108914174B (zh) Tb-Dy-Fe-Co合金磁性纳米管阵列的制备方法
CN1286126C (zh) 铁-钴合金纳米线阵列永磁薄膜材料
CN105858625B (zh) 一种氮化铁纳米线及其制备方法
CN110277211B (zh) 一种钐铁氮磁纳米管的制备方法
CN113077954B (zh) 一种硬磁性液态金属膏体复合材料及其制备方法
Ji et al. Synthesis of crystalline CoFex nanowire arrays through high voltage pulsed electrochemical deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190805

Address after: 310018 China Metrology University, 258 Xiasha Xueyuan Street, Qiantang New District, Hangzhou City, Zhejiang Province

Applicant after: CHINA JILIANG UNIVERSITY

Address before: Hangzhou City, Zhejiang Province, Jianggan District Xiasha 310018 source Street No. 258

Applicant before: Xu Jingcai

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211022

Address after: 322100 Jinhua City, Zhejiang Province, Dongyang City, Lake Creek Industrial Area

Patentee after: DONGYANG DINGFENG MAGNETISM MATERIAL Co.,Ltd.

Address before: 310018 China University of metrology, 258 xiashaxueyuan street, Qiantang new area, Hangzhou, Zhejiang

Patentee before: China Jiliang University

TR01 Transfer of patent right