WO2016180359A1 - 一种强永磁性纳米多孔Fe-Pt合金及其制备方法 - Google Patents

一种强永磁性纳米多孔Fe-Pt合金及其制备方法 Download PDF

Info

Publication number
WO2016180359A1
WO2016180359A1 PCT/CN2016/081959 CN2016081959W WO2016180359A1 WO 2016180359 A1 WO2016180359 A1 WO 2016180359A1 CN 2016081959 W CN2016081959 W CN 2016081959W WO 2016180359 A1 WO2016180359 A1 WO 2016180359A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
nanoporous
fept
magnetic
strip
Prior art date
Application number
PCT/CN2016/081959
Other languages
English (en)
French (fr)
Inventor
张伟
王英敏
李艳辉
马殿国
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US15/572,707 priority Critical patent/US10714244B2/en
Publication of WO2016180359A1 publication Critical patent/WO2016180359A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Definitions

  • the present invention relates to a nanoporous Fe-Pt alloy having strong permanent magnetism and a preparation method thereof, and belongs to the technical field of new materials.
  • Nanoporous metal refers to a metallic material having a porous structure composed of nano-scale pores and adjacent metal ligaments. Nanoporous metal materials combine the characteristics of nanomaterials, porous materials and metal materials, with nano surface effects, high specific surface area and good electrical, thermal and thermal properties, such as physics, chemical and mechanical properties, in catalysis, separation, electronics, and optics. And biomedical and other fields have broad application prospects.
  • the de-alloying process has become a preferred method for preparing nanoporous metals because of its simple process and high preparation efficiency.
  • the method is a selective etching technique, which etches away the chemically active element or alloy phase in the alloy under chemical or electrochemical conditions, and the residual chemically weak inert element or corrosion-resistant alloy phase forms a diffusion self-structure. Nanoporous structure.
  • the composition and microstructure of the original alloy (i.e., precursor) for preparing the nanoporous metal material by the de-alloying method must be sufficiently uniform.
  • nanoporous metals are mostly concentrated in specific alloy systems containing noble metals and forming continuous solid solution single-phase alloys, such as Au-Ag, Au-Zn, Au-Cu, Pt-Cu, Pd-Co and other alloy systems. These alloying elements are relatively single in type and have limited functional properties.
  • Nanoporous Ni was prepared by electrochemical de-alloying, but its coercive force was only about 100 Oe. At present, there are no reports on the preparation of nanoporous permanent magnet alloys by de-alloying.
  • the precursor composition expression for preparing the porous alloy is ?6 ⁇ 0 ⁇ ?(1 ( ⁇ : ⁇ , where a, b, c, d, e, f, g, and h represent the atomic percentages of the corresponding elements, respectively, satisfying 30 ⁇ a ⁇ 70, 0 ⁇ b ⁇ 30, 40 ⁇ a + b ⁇ 70, 8 ⁇ c ⁇ 40, 0 ⁇ d ⁇ 5, 8 ⁇ c+d
  • the strong permanent magnet nanoporous Fe-Pt alloy provided by the present invention is composed of L1.
  • - FePt ordered hard magnetic phase composition, with double-connected porous structure, complete structure, uniform pore size, pore size and ligament thickness can be controlled according to the precursor alloy distribution ratio, precursor preparation and de-alloying process respectively at 10 ⁇ 50 nm And between 20 and 80 nm.
  • the nanoporous Fe-Pt alloy provided by the invention has strong permanent magnet characteristics: the coercive force is 13.4 ⁇ 18.5kOe, the magnetization is 40.4 ⁇ 56.3 emu/g, and the remanence is 28.3 ⁇ 37.4 under the external magnetic field of 50 kOe. Emu/g.
  • a method for preparing a strong permanent magnet nanoporous Fe-Pt alloy comprising the following steps:
  • the precursor alloy of the present invention is an Fe-Pt-B alloy system in which the standard reduction potentials of Fe and B elements relative to a standard hydrogen electrode are -0.44 V and -0.04 V, respectively (corresponding to Fe2+ and Fe3+, respectively).
  • Fe-Pt-B alloy has good amorphous forming ability, and it is easy to obtain nanometers with uniform distribution of hard magnetic LlO-FePt phase and soft magnetic Fe2B phase by melt quenching technique and subsequent heat treatment.
  • the sample of the composite phase is used to ensure the uniformity of the chemical composition and phase structure of the alloy as the precursor of the dealloying.
  • the similar elements of Fe, Pt and B are added separately.
  • Co, Pd and (C, P, Si) are intended to further improve the amorphous forming ability of the alloy. All of the above are advantageous for obtaining a high quality permanent magnet nanoporous Fe-Pt alloy containing a single LlO-FePt phase.
  • the alloy containing P or C element is prepared by high frequency induction melting in an Ar gas atmosphere, and the other alloy is prepared by using a non-consumable electric arc furnace in an Ar gas atmosphere, and the alloy is repeatedly smelted. Four times to ensure uniform composition; the master alloy ingot is made into a continuous alloy strip with a width of about 2 mm and a thickness of about 10 to 50 ⁇ in an Ar gas atmosphere using a single-roller belting device. The strip thickness is determined by the speed of the copper roller (ie, ⁇ With speed) control
  • step (5) if the obtained alloy strip mainly contains hard magnetic LlO-FePt and soft magnetic Fe2B nanocomplex structure, step (5) is directly carried out; otherwise, step (4) is carried out;
  • the strip sample, the precursor alloy, and the structure of the de-alloyed nanoporous metal are composed of X
  • the invention fills the technical blank for preparing the permanent magnet metal nanoporous material by the de-alloying method, and expands the application field of the nano-porous metal.
  • a strong permanent magnet nanoporous Fe-Pt alloy with a single LI o-FePt ordered phase was obtained by simple de-alloying.
  • the nanoporous permanent magnet has a double-connected porous structure, has a complete structure, uniform pore size and ligament thickness, and has strong permanent magnet characteristics, and can be used not only as a high-strength permanent magnet material, a magnetic filter, a magnetic adsorption material, but also as a self-strength.
  • the assembled template material is used to prepare high-performance nanocomposite permanent magnets, which has practical application value.
  • FIG. 1 is Fe 60 Pt 10 B 3 after annealing at 823 K for 900 s.
  • X-ray diffraction pattern of nanoporous Fe-Pt alloy obtained by electrochemical stripping of alloy strips.
  • FIG. 2 is Fe 60 Pt 10 B 3 after annealing at 823 K for 900 s. Scanning electron microscopy secondary electron image of nanoporous Fe-Pt alloy obtained by electrochemical stripping of alloy strip.
  • FIG. 3 is Fe 60 Pt 10 B 3 after annealing at 823 K for 900 s.
  • the EDX spectrum component analysis results of the nanoporous Fe-Pt alloy obtained by electrochemical stripping of the alloy strip.
  • FIG. 4 is Fe 60 Pt 10 B 3 after annealing at 823 K for 900 s. Alloy strips obtained by electrochemical de-alloying Hysteresis loop of rice porous Fe-Pt alloy.
  • Example 1 Precursor alloy composition Fe 60 Pt 10 B 30
  • Fe, Pt and B raw materials having a purity of more than 99% by weight are used as Fe 60 Pt 10 B 3 .
  • Nominal ingredients for weighing ingredients [0037] Step 2: Master alloy ingot smelting and quench strip sample preparation
  • the weighed metal raw materials were mixed and placed in a water-cooled copper crucible of a non-consumable arc melting furnace, and repeatedly smelted four times in an Ar atmosphere to obtain an alloy ingot having a uniform composition.
  • the master alloy ingot is crushed and placed in a quartz tube having a nozzle diameter of about 0.5 mm, and the mother alloy is heated to a molten state by induction melting in an Ar gas atmosphere, and then the alloy liquid is sprayed onto the high-speed rotating copper roller by a pressure difference. , taped at a speed of about 25 to 50 m/s to obtain a continuous alloy strip having a width of about 2 mm and a thickness of about 10 to 50 ⁇ m.
  • Step 3 Structure Detection and Thermal Performance Evaluation of Quench Alloy Strips
  • Step 4 Preparation of precursor alloy
  • the quenched alloy strip was placed in a quartz tube and evacuated to a pressure of 2 ⁇ 10 ⁇ 3 Pa or less, and then the sealed tube sample was placed in an annealing furnace and annealed at a temperature of 783-863 K for 900 s, and water quenching was taken out.
  • the annealed structure of the alloy strip was examined by XRD and HRTEM, and the magnetic properties of the alloy were tested by SQUID at a maximum applied magnetic field of 50 kOe. Based on the analysis of structure and magnetic properties, an alloy strip with hard magnetic L1O-FePt and soft magnetic Fe2B nanocomposite structure and excellent permanent magnet properties annealed at 823 K was selected as the precursor alloy.
  • Step 5 Electrochemical performance testing and de-alloying
  • the electrochemical performance of the precursor alloy was evaluated at a scanning rate of lmV/s in a 0.11 ⁇ 1 ⁇ 8 2 80 4 solution, and the critical potential of the alloy was measured to be about -280 mV (
  • the reference electrode is Ag/AgCl), and the current density is in the range of 20 ⁇ 50mA/cm 2 ⁇ . : -180 ⁇ - 45mV.
  • the precursor alloy was de-alloyed by a -170mV potentiostatic mode to prepare a nanoporous Fe-Pt alloy.
  • Step 6 Structure, Morphology and Magnetic Properties of Nanoporous Alloys
  • the nanoporous alloy prepared by XRD detection has a single L10-FePt phase.
  • the morphology of the alloy was observed by SEM as a double-connected nanoporous structure with complete structure, uniform pore size and ligament distribution, and pore size and ligament thickness of about 20 nm.
  • EDX spectrum analysis shows that the alloy ligament contains only Fe and Pt elements, and the chemical composition is Fe 48 . 2 Pt 51 . 8 , which is consistent with XRD results.
  • the magnetic properties of the alloy were tested using a SQUID with a magnetic field of 50 kOe.
  • Figure 4 shows the hysteresis loop of the prepared nanoporous alloy, indicating that the alloy has strong permanent magnet characteristics: coercive force iHc, magnetization intensity M50 and residual magnetization Mr under magnetic field of 50 kOe are: 18.5 kOe, 52.6 emu/g and
  • Example 2 Precursor alloy composition Fe 52 Pt M B 19
  • the chemical composition of the finally obtained nanoporous FePt alloy was Fe50.1Pt49.9, and iHc, M50 and Mr were: 16.2 kOe, 51.9 emu/g and 36.2 emu/g, respectively.
  • the advantage of this embodiment is that the heat treatment process of the alloy strip can be omitted, and the alloy strip can be directly de-goldened, and the process of preparing the nanoporous FePt alloy is simpler and more efficient.
  • Example 3 Precursor alloy composition Fe 5 . Pt 2 . B 30
  • Example 4 Precursor alloy composition Fe 45 Pt 25 B 30 [0053]
  • the implementation procedure is the same as in Embodiment 1, wherein the selected acid solution has a H+ concentration of 0.2 mol/L and a constant potential corrosion voltage of -50 mV.
  • Chemical nanoporous FePt alloy composition finally obtained Fe 46. 5 Pt 53. 5 , fl c, M 5.
  • M r are: 14.7 kOe, 43.3 emu / g and 29.6 emu / g.
  • Example 5 Precursor alloy composition Fe 6 . Pt 15 B 25
  • the implementation procedure is the same as in Embodiment 1, wherein the annealing temperature is 783 K, and the precursor alloy obtained after annealing has L1. -FePt, ? 6 and a small amount of amorphous phase, the H+ concentration in the selected acid solution is 0.2 mol/L, and the constant potential corrosion voltage is -140 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy is Fe 49 . 2 Pt 5() . 8 , H C , M 5 . And are: 18.1 kOe, 50.9 emu/g and 35.3 emu/g.
  • Example 6 Precursor alloy composition Fe 6 . Pt 2 . B 20
  • Example 7 Precursor alloy composition Fe 55 Pt 25 B 20
  • the implementation procedure is the same as in Embodiment 1, wherein the selected acid solution has a H+ concentration of 0.2 mol/L and a constant potential corrosion voltage of -70 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy is Fe 52 . 5 Pt 47 . 5 , , ⁇ 5 .
  • -FePt and Fe 2 B nanocomposite phase containing a small amount of amorphous phase, without annealing process, can be directly de-alloyed as a precursor alloy, the H+ concentration in the selected acid solution is 0.5mol/L, and the constant potential corrosion voltage is -90 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy is Fe 45 . 3 Pt 54 . 7 , , ⁇ 5 .
  • M r are: 15.9 kOe, 50.8 emu / g and 35.6 emu / g.
  • Example 9 Precursor alloy composition 13 ⁇ 4 4 ( ⁇ 1 25 8 35)
  • Embodiment 1 The implementation steps are the same as those in Embodiment 1, wherein the concentration of ⁇ + in the selected acid solution is 0.2 mol/L, and the potentiostatic corrosion is performed.
  • the pressure is -140 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy was Fe 54 . 5 Pt 45 . 5 , , M 5f ) and M r were 13.4 kOe, 56.3 emu/g and 36.2 emu/g, respectively.
  • Example 11 Precursor alloy composition Fe 3 . Co 3 . Pt 2 . B 2 .
  • the implementation procedure is the same as in Embodiment 1, wherein the concentration of the selected acid solution is 0.5 mol/L, and the constant potential corrosion voltage is -70 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy is Fe 25 6 Co 24 . 8 Pt 49 . 6 , t H c , M 5 . And ⁇ ,. are: 18.4 kOe, 42.1 emu/g and 30.3 emu/g.
  • the implementation procedure is the same as in Embodiment 1, wherein the concentration of ruthenium + in the selected acid solution is 0.05 mol/L, and the constant potential corrosion voltage is 500 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy is Fe 5 8 Pt 39 . 8 Pd 9 ⁇ , , ⁇ M 50 and M ⁇ , and other: 17.0 kOe, 52.9 emu/g and 36.5 emu/g.
  • Example 13 Precursor alloy composition Fe 55 Pt 25 B 15 C 5
  • the C element is added in the form of an iron-carbon alloy, and the mother alloy ingot is obtained by high-frequency induction melting under an Ar gas atmosphere, and the remaining implementation steps are the same as in the embodiment 1, wherein, The concentration in the acid solution was 0.2 mol/L, and the constant potential corrosion voltage was -70 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy is 13 ⁇ 4 49 . 4 ? 6 , J / e , M 5 . And ⁇ ,. are: 17.3 kOe, 51.1 emu/g and 36.4 emu/g.
  • Example 14 Precursor alloy composition Fe 55 Pt 25 B 15 P 5
  • the P element is added in the form of an iron-phosphorus alloy, and the mother alloy ingot is obtained by high-frequency induction melting under an Ar gas atmosphere, and the remaining implementation steps are the same as in the embodiment 1, wherein, The concentration in the acid solution was 0.5 mol/L, and the constant potential corrosion voltage was -280 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy is Fe 46 . 3 Pt 53 . 7 , J e , M 5 . And M r are: 17.9 kOe, 50.9 emu / g and 35.8 emu / g
  • Example 15 Precursor alloy composition Fe 55 Pt 25 B 17 Si 3
  • the implementation procedure is the same as in Embodiment 1, wherein the concentration of the selected acid solution is 0.5 mol/L, and the constant potential corrosion voltage is -150 mV.
  • the chemical composition of the finally obtained nanoporous FePt alloy was Fe ⁇ Pt ⁇ , J e , 50 and M r were 15.5 kOe, 53.8 emu/g and 37.4 emu/g, respectively.
  • Examples 16 to 17 were subjected to de-alloying by a chemical method.
  • Example 16 Precursor alloy composition Fe 6 . Pt 15 B 25
  • the precursor alloy strip preparation process is the same as the first and second steps in Example 1.
  • the third step of de-alloying through chemistry Method that is, the H+ concentration is 3.0 at room temperature.
  • the nanoporous Fe-Pt alloy was prepared by soaking for 12 hours in an acid solution of mol/L. Chemical nanoporous FePt alloy composition finally obtained Fe 47. 3 Pt 52. 7 , ⁇ ⁇ alloy, ⁇ 5. And M f are: 17.3 kOe, 49.5 emu/g P34.8 emu/g.
  • Example 17 Precursor alloy composition Fe 6 . Pt 1() B 3 .
  • the implementation steps are the same as those in Embodiment 16, wherein in the third step, the H+ concentration in the acid solution is 1.0 mol/L, and the immersion time is 72 hours, and the chemical composition of the finally obtained nanoporous FePt alloy is Fe ⁇ Pt ⁇ ,, ⁇ 5 ⁇ and M r are: 18.1 kOe, 44.0 emu / g and 28.3 emu / g.
  • Comparative Example 1 (Fe 53 Pt 44C 3 ) was selected from the literature [Gopalan et al, J Magn Magn Mater,
  • the alloy is a bulk material sintered by ball-milling powder by plasma discharge, and the coercive force is ll.lkOe.
  • the alloy is a film sample obtained by sputtering with a coercive force of 6.5 kOe.
  • Comparative Example 3 (Fe 56 Pt 44) was selected from the literature [S leg et al, IEEE T Magn, 37 (2001): 1239), which is a nanoparticle obtained by chemical deposition, and has a coercive force of 9.0 kOe. .
  • the nanoporous Fe-Pt permanent magnet of the present invention exhibits higher coercivity than the above comparative example.
  • Appendix The strong permanent magnet nanoporous Fe-Pt alloy of the present invention and its precursor composition and magnetic properties. Among them, M 5 . And M f are the coercivity, magnetization and remanence of the applied magnetic field of 50 kOe, respectively. Examples 1 to 15 were subjected to electrochemical alloying, and Examples 16 to 17 were chemically dealloyed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Composite Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

一种强永磁性纳米多孔Fe-Pt合金及其制备方法,其组成为Fe wCo xPt yPd z;制备时采用电弧熔炼或感应熔炼制备母合金锭;采用单辊甩带制备合金条带;直接获得或通过退火处理获得主要含有硬磁性L1 0-FePt和软磁性Fe 2B的纳米复相前驱体;通过电化学或化学脱合金化工艺得到单一L1 0-FePt相结构的纳米多孔Fe-Pt合金。

Description

一种强永磁性纳米多孔 Fe-Pt合金及其制备方法 技术领域
[0001] 本发明涉及一种具有强永磁性的纳米多孔 Fe-Pt合金及其制备方法, 属于新材料 技术领域。
背景技术
[0002] 纳米多孔金属是指由纳米尺度的孔隙与相邻金属韧带构成的具有多孔结构的金 属材料。 纳米多孔金属材料兼具纳米材料、 多孔材料和金属材料的特性, 具有 纳米表面效应、 高比表面积和良好导电、 导热性等优异的物理、 化学和力学性 育 , 在催化、 分离、 电子、 光学和生物医疗等领域具有广阔的应用前景。
[0003] 近年来, 脱合金化法因其工艺简单、 制备高效而成为人们制备纳米多孔金属的 优选方法。 该方法是一种选择性腐蚀技术, 在化学或电化学条件下腐蚀掉合金 中化学性质较为活泼的元素或合金相, 剩余化学活性较弱的惰性元素或耐腐蚀 的合金相通过扩散自组织形成纳米多孔结构。 依据脱合金化法的工艺原理, 适 用脱合金化法制备纳米多孔金属材料的原始合金 (即前驱体) 的成分和微观组 织结构须足够均匀。 此外, 还需考虑合金元素间要存在较大的电极电位差, 并 且惰性元素在合金 /电解液界面具有足够快的扩散速度。 目前制备纳米多孔金属 大多集中在含有贵金属, 且可形成连续固溶体单相合金的特定合金体系, 如 Au- Ag、 Au-Zn、 Au-Cu、 Pt-Cu、 Pd-Co等合金系。 这些合金系元素种类相对单一, 功能特性也具有局限性。
[0004] 基于熔体快淬技术制备的非晶以及非晶 /纳米晶合金成分和微观结构均匀, 组 元种类多, 并且通过后续热处理可以控制纳米晶的尺寸。 因此, 非晶 /纳米晶合 金也是一类非常适用于制备纳米多孔金属的前驱体材料。 而且, 结合相应热处 理和脱合金化工艺不仅能实现对具有不同特性的合金相的保留或去除, 还可以 实现对形成的纳米孔孔径的控制, 从而制备出具有特定功能特性且孔径可控的 纳米多孔金属材料。 YU等人报道了利用 Ni 50Pd 3θΡ 2。非晶条带经脱合金化可成功 制备纳米多孔 Pd 【 et al, Chem Mater, 20(2010): 4548 】 ; 中国发明专利 CN102943187A公幵了一种采用 Cu-Hf-Al非晶制备纳米多孔 Cu 的制备方法; 本专利申请人与合作者以 Au 30Si 20Cu 33Ag 7Pd ,。非晶合金作为前驱 体, 通过脱合金化法成功制备了具有优异催化活性和电化学稳定性的 Au-Pd多孔 合金 【 Lang et al, J Phys Chem C, 114(2010): 2600】 。
[0005] 目前人们对纳米多孔材料的研究主要集中在表面催化、 生物医疗、 传感、 过滤 、 表面增强拉曼散射和储氢等领域, 但对纳米多孔金属的磁性研究不多。 Hakam ada等人 【 Hakamada et al, Appl Phys Lett, 94(2009): 153105】 采用电化学脱合金 化制备出纳米多孔 Ni, 但其矫顽力仅在 100 Oe左右。 目前有关采用脱合金化制备 纳米多孔永磁合金均尚未见报道。
[0006] 有序面心四方型 L1。- FePt相因其很大的单向磁晶各向异性, 显示出优异的永磁 特性, 并且具有高的室温饱和磁化强度。 结合 Fe-Pt合金良好的耐磨、 耐腐蚀和 抗氧化特性, 含有 Ll。-FePt相的 Fe-Pt永磁材料可应用于微电机械、 医疗和磁记 录等领域。 目前国内外制备的永磁性 Fe-Pt合金多为块体材料 [ Xiao et al' JAUoy Compd, 364(2004): 315;Gopalan et al, J Magn Magn Mater, 322(2010): 3423] 、 薄 膜材料 【 Chen et al, J Magn Magn Mater, 239( 2002: 471; Li et al, J Magn Magn Mater,205(1999): 】 或纳米粒子 【 Takahashi et al, J Appl Phys, 95(2004): 2690 Sun et al, IEEE T Magn, 37(2001): 1239】 , 制备永磁性纳米多孔 Fe-Pt合金尚为空 白。 专利申请者在研究 Fe-Pt-B非晶合金吋发现, 通过熔体快淬技术制备的非晶 或非晶 /纳米晶条带经适当热处理后, 可生成由硬磁性 L1 0
-FePt有序相和软磁性 Fe 2B等相均匀分布的纳米复相永磁体 【 Zhang et al, Appl Phys Lett, 85(2004): 4998; Zhang et al, J Alloy Compd, 615(2014): S252] 。 如果后 续采用适当脱合金化工艺除去合金中的 Fe 2B等软磁性相, 有望制备出含有单一 Ll。-FePt相的强永磁性纳米多孔金属材料, 并进一步提高其永磁性能, 扩展其应 用领域。
技术问题
[0007] 目前采用脱合金化法制备永磁性纳米多孔金属材料存在技术空白, 需要制备工 艺简单、 结构完整、 孔径尺寸均匀可控、 重复性好且具有永磁特性的纳米多孔 F e-Pt合金及其制备方法。 。 问题的解决方案
技术解决方案
[0008] 本发明所采用的技术方案是:
[0009] 一种具有强永磁性的纳米多孔 Fe-Pt合金, 其化学组成为?6^0!^^(1 式中 w 、 x、 y、 z分别表示各对应元素的原子百分比, 满足 30≤w≤55, 0<x<25, 45 < w+x< 55, 45 < y < 55, 0<z< 10, 45≤ y+z≤ 55且 w + x + y + z = 100; 用于 制备该多孔合金的前驱体成分表达式为?6 ^0^^?(1( ^:^^ , 式中 a、 b、 c 、 d、 e、 f、 g和 h分别表示各对应元素的原子百分比, 满足 30≤a≤70, 0<b< 30, 40≤a+b≤70, 8≤c≤40, 0≤d≤5, 8≤c+d≤40, 10<e<35, 0<f <5 , 0 < g < 5, 0 < h < 3, 10<e + f + g + h<35, 且 a + b + c + d + e + f+g + h = 100。 (以下同) 。
[0010] 本发明提供的强永磁性纳米多孔 Fe-Pt合金由 L1。- FePt有序硬磁性相组成, 具有 双连通多孔结构, 结构完整, 孔径均匀, 其孔径大小和韧带厚度可根据前驱合 金成分配比、 前驱体制备和脱合金化工艺分别控制在 10〜50 nm和 20〜80 nm之 间。
[0011] 本发明提供的纳米多孔 Fe-Pt合金具有强永磁特性: 在外加 50 kOe磁场下矫顽力 为 13.4~18.5kOe, 磁化强度为 40.4~56.3 emu/g, 剩磁为 28.3~37.4 emu/g。
[0012] 一种强永磁性纳米多孔 Fe-Pt合金的制备方法, 包括以下步骤:
[0013] (1)采用 Ar气氛围下电弧熔炼或高频感应熔炼制备 (Fe, Co)-(Pt, Pd)-(B, C, P, Si) 母合金锭;
[0014] (2)采用单辊甩带技术制备非晶或非晶 /纳米晶合金条带, 由铜辊转速控制条带 厚度和相结构;
[0015] 3.权利要求 1或 2所述一种强永磁性纳米多孔 Fe-Pt合金的制备方法, 其特征 在于:
[0016] (1)采用 Ar气氛围下电弧熔炼或高频感应熔炼制备(Fe,Co)-(Pt,Pd)-(B,C,P,Si)母 合金锭;
[0017] (2)采用单辊甩带技术制备非晶或非晶 I纳米晶合金条带, 由铜辊转速控制条带 厚度和相结构; [0018] (3)直接获得或对条带样品进行真空退火处理获得含有硬磁性 LI o-FePt和软磁 性 ?^8的纳米复相均匀分布的前驱体;
[0019] (4)利用电化学工艺, 以前驱体作为工作电极, Ag/AgCl作为参比电极, 以 H + 浓度为 0.02- 1.0mol/L的酸溶液为电解液, 在 -0.28-1.5V恒定电压下对其进行脱 合金化, 选择性溶解掉除硬磁性 Ll o-FePt以外的软磁性 Fe 2B为主其他相, 制 备得到的含有单一 L1。- FePt相的永磁性的纳米多孔 Fe-Pt合金。
[0020] 本发明的前驱体合金为 Fe-Pt-B合金系, 此合金体系中 Fe和 B元素相对于标 准氢电极的标准还原电位分别为 -0.44V、 -0.04V(分别对应 Fe2+和 Fe3+)和 -0.73 V, 而贵金属 Pt的标准还原电位为 1.2V, 因此在脱合金化过程中, 含 Fe和 B的 Fe2B软磁相容易被首先选择性溶出, 而含有 Pt的 LlO-FePt硬磁相得以保 留; 另一方面, Fe-Pt-B合金具有较好的非晶形成能力, 容易通过熔体快淬技术 和后续热处理获得含有硬磁性 LlO-FePt相和软磁性 Fe2B相均匀分布的纳米复相 条带样品, 以保证作为脱合金化的前驱体合金化学成分和相结构的均匀性。 分 别添加 Fe、 Pt和 B的相似元素 Co、 Pd和(C、 P、 Si)目的是进一步提高合金的 非晶形成能力。 以上均有利于获得高质量的含有单一 LlO-FePt相的永磁性纳米 多孔 Fe-Pt合金。
[0021] 本发明实施上述技术方案的步骤是:
[0022] (1)采用纯度大于 99wt %的Fe、 Co、 Pt、 Pd、 B、 C、 Fe3P和 Si原料按 Fe a
Co bPt cPd dB eC fP gSi!^名义成分进行称重配料 ;
[0023] (2)含 P或 C元素的合金采用高频感应熔炼在 Ar气氛围下制备母合金锭, 其他 合金采用非自耗电弧炉在 Ar气氛围下制备母合金锭, 合金反复熔炼四次, 以保 证成分均匀; 利用单辊甩带设备在 Ar气氛围下将母合金锭制成宽度约 2mm, 厚度约 10〜 50μηι的连续合金条带, 条带厚度由铜辊转速(即甩带速度)控制
[0024] (3)检测不同甩带速度下合金条带样品的结构和热性能。 结合结构和热性能分 析, 确定合金的热处理温度; 若获得的合金条带主要含有硬磁性 LlO-FePt和软 磁性 Fe2B纳米复相结构, 则直接实施步骤(5) ; 否则实施步骤 (4) ;
[0025] (4)采用真空热处理对合金条带进行退火, 获得主要含有硬磁性 LlO-FePt和软 磁性 Fe2B纳米复相结构的条带前驱体;
[0026] (5)通过电化学工作站完成纳米晶条带样品的脱合金化, 选择性溶解掉除硬磁 性 LlO-FePt以外的软磁性 Fe2B为主的其他相, 获得含有单一 LlO-FePt相的强永 磁性纳米多孔 Fe-Pt合金;
[0027] (6)对获得的纳米多孔合金进行结构表征、 形貌观察与磁性能测试。
[0028] 条带样品、 前驱体合金及脱合金化后的纳米多孔金属的结构由 X
射线衍射仪 (XRD, Cu-Kot辐射, λ = 0.15406nm)和高分辨透射电子显微镜 (HRTEM)表征; 纳米多孔金属的形貌通过扫描电子显微镜(SEM)观察; 纳米 多孔金属韧带成分由能谱分析确定; 条带样品热性能由差示扫描量热仪 (DSC) 评价; 前驱体合金的电化学性能由电化学工作站评价; 合金条带和纳米多孔金 属的磁性能采用超导量子干涉磁强计(SQUID)测试(最大外加磁场 50kOe)。 发明的有益效果
有益效果
[0029] 本发明填补了脱合金化法制备永磁金属纳米多孔材料的技术空白, 拓展了纳米 多孔金属的应用领域。 通过简单脱合金化法获得了一种具有单一 LI o-FePt有序 相的强永磁性纳米多孔 Fe-Pt合金。 该纳米多孔永磁体具有双连通多孔结构, 结 构完整, 孔径尺寸和韧带厚度均匀可控, 具有强永磁特性, 不仅可作为高强永 磁材料、 磁过滤、 磁吸附材料使用, 而且可用作自组装的模板材料来制备高性 能纳米复相永磁体, 具有实际应用价值。
对附图的简要说明
附图说明
[0030] 图 1是经 823 K退火 900 s后的 Fe 60Pt 10B 3。合金条带电化学法脱合金化后获得的纳 米多孔 Fe-Pt合金的 X射线衍射图谱。
[0031] 图 2是经 823 K退火 900 s后的 Fe 60Pt 10B 3。合金条带电化学法脱合金化后获得的纳 米多孔 Fe-Pt合金的扫描电镜二次电子像。
[0032] 图 3是经 823 K退火 900 s后的 Fe 60Pt 10B 3。合金条带电化学法脱合金化后获得的纳 米多孔 Fe-Pt合金的 EDX能谱成分分析结果。
[0033] 图 4是经 823 K退火 900 s后的 Fe 60Pt 10B 3。合金条带电化学法脱合金化后获得的纳 米多孔 Fe-Pt合金的磁滞回线。
实施该发明的最佳实施例
本发明的最佳实施方式
[0034] 实施例 1: 前驱体合金成分 Fe 60Pt 10B 30
[0035] 步骤一、 配料
[0036] 采用纯度大于 99wt%的 Fe、 Pt和 B原料按 Fe 60Pt 10B 3。名义成分进行称重配料 [0037] 步骤二: 母合金锭熔炼和急冷条带样品制备
[0038] 将称量好的金属原料混合放入非自耗电弧熔炼炉的水冷铜坩埚中, 在 Ar气氛 围下反复熔炼 4次, 获得成分均匀的合金锭。 将母合金锭破碎后放入喷嘴直径 大约为 0.5mm的石英管中, 在 Ar气氛围下先通过感应熔炼加热母合金至熔化状 态, 而后利用压力差将合金液体喷到高速旋转的铜辊上, 以约 25〜50m/s的速 度甩带, 得到宽度约 2mm, 厚度约 10〜50μηι的连续合金条带。
[0039] 步骤三: 急冷合金条带的结构检测与热性能评价
[0040] 采用 XRD(Cu-Ka辐射, λ = 0.15406nm)和 HRTEM检测不同甩带速度下获得 的合金条带的结构均为非晶相; 采用 DSC评价条带的热性能, 并结合结构分析 , 确定条带样品的参考退火温度为 823K。
[0041] 步骤四: 前驱体合金的制备
[0042] 将急冷合金条带放入石英管中抽真空至 2xlO-3Pa以下密封, 然后将封管样品 放入退火炉中在 783-863K温度下退火 900s, 取出水淬。 通过 XRD和 HRTEM 检测合金条带退火后的结构, 采用 SQUID在最大外加 50kOe磁场下测试合金的 磁性能。 结合结构和磁性能分析, 选择在 823K下退火得到的具有硬磁性 LlO-FePt和软磁性 Fe2B纳米复相结构且永磁性能最佳的合金条带作为前驱体合 金。
[0043] 步骤五: 电化学性能测试与脱合金化
[0044] 利用电化学工作站, 在0.11^1^的8 280 4溶液中, 以 lmV/s的扫描速率对前 驱体合金进行室温电化学性能评价, 测得合金的临界电位约为 -280mV(参比电 极为 Ag/AgCl), 且电流密度处于 20〜 50mA/cm 2吋对应的工作电压范围是 : -180〜- 45mV。 选取 -170mV恒电位模式对前驱体合金进行脱合金化, 制备 出纳米多孔 Fe-Pt合金。
[0045] 步骤六: 纳米多孔合金的结构、 形貌表征与磁性能测试
[0046] 如图 1所示, 采用 XRD检测制备的纳米多孔合金具有单一 Ll o-FePt相。 如图 2所示, 采用 SEM观测该合金的形貌为双连通纳米多孔结构, 结构完整, 孔径 和韧带分布均匀, 且孔径大小和韧带厚度都约为 20nm。 如图 3, EDX能谱分析 表明, 该合金韧带只含有 Fe、 Pt两种元素, 化学组成为 Fe 48.2Pt 51.8, 与 XRD结 果一致。 采用 SQUID在外加 50kOe磁场下测试该合金的磁性能。 图 4为制备的 纳米多孔合金的磁滞回线, 表明该合金具有强永磁特性: 矫顽力 iHc、 外加 50kOe磁场下磁化强度 M50和剩磁 Mr分别为: 18.5kOe、 52.6emu/g和
34.0emu/g。
本发明的实施方式
[0047] 实施例 2 : 前驱体合金成分 Fe 52Pt MB 19
[0048] 配料、 母合金锭熔炼、 急冷条带样品制备及样品结构检测步骤同实施例 1中步 骤一〜三。 XRD和 HRTEM结果表明该合金在 20〜 37m/s甩带速度下制备的条 带具有 L1。- FePt和 Fe 2B纳米复相结构, 不需热处理即可作为前驱体合金进行脱 合金化。 电化学性能测试、 脱合金化及纳米多孔合金的结构、 形貌表征与磁性 能测试步骤同实施例 1中步骤五、 六。 最终获得的纳米多孔 FePt合金的化学组 成为 Fe50.1Pt49.9, iHc、 M50和 Mr分别为: 16.2kOe、 51.9emu/g和 36.2emu/g。
[0049] 本实施例的优点是可选择省去合金条带热处理过程, 合金条带可直接进行脱合 金化, 制备纳米多孔 FePt合金工艺更为简单和高效。
[0050] 实施例 3: 前驱体合金成分 Fe 5。Pt 2。B 30
[0051] 实施步骤同实施例 2, 在 25~35 m/s甩带速度下制备的合金条带具有 L1 Q
-FePt. Fe 2B和FeB纳米复相结构, 无需退火过程。 其中, 所选酸溶液中 H +浓度 为 0.2 mol/L, 恒电位腐蚀电压为 -100 mV。 最终获得的纳米多孔 FePt合金的化学 组成为 Fe 47.7Pt 52.3, Ά、 M5。和 分别为: 16.6 kOe、 47.8 emu/g和 32.8 emu/g。
[0052] 实施例 4: 前驱体合金成分 Fe 45Pt 25B 30 [0053] 实施步骤同实施例 1, 其中, 所选酸溶液中 H+浓度为 0.2mol/L, 恒电位腐蚀电 压为 -50mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe46.5Pt53.5, flc、 M5。 和 Mr分别为: 14.7 kOe、 43.3 emu/g和 29.6 emu/g。
[0054] 实施例 5: 前驱体合金成分 Fe 6。Pt 15B 25
[0055] 实施步骤同实施例 1, 其中, 退火温度为 783 K, 退火后获得的前驱体合金具有 Ll。-FePt、 ?6 和少量非晶相, 所选酸溶液中 H+浓度为 0.2mol/L, 恒电位腐蚀 电压为 -140 mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe 49.2Pt 5().8, 、HC、 M5。和 分别为: 18.1 kOe、 50.9 emu/g和 35.3 emu/g。
[0056] 实施例 6: 前驱体合金成分 Fe 6。Pt 2。B 20
[0057] 实施步骤同实施例 1, 其中, 所选酸溶液中 H+浓度为 0.2mol/L, 恒电位腐蚀电 压为 -100mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe52.2Pt ^、 5f 和 Mr分别为: 17.8 kOe、 53.9 emu/g和 37.2 emu/g。
[0058] 实施例 7: 前驱体合金成分 Fe 55Pt 25B 20
[0059] 实施步骤同实施例 1, 其中, 所选酸溶液中 H+浓度为 0.2mol/L, 恒电位腐蚀电 压为 -70mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe52.5Pt47.5, 、 Μ5
ΜΓ分另 'J为: 16.9 kOe、 52.4 emu/g和 33.6 emu/g。
[0060] 实施例 8: 前驱体合金成分 Fe 5。Pt 3。B 20
[0061] 实施步骤同实施例 2, 其中, 甩带速度为 35m/s, 制备的合金条带结构为 L1。
-FePt和 Fe2B纳米复相, 同时含有少量非晶相, 无需退火过程, 可直接作为前驱 体合金进行脱合金化, 所选酸溶液中 H+浓度为 0.5mol/L, 恒电位腐蚀电压为 -90 mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe45.3Pt54.7, 、 Μ5。和 Mr分 别为: 15.9 kOe、 50.8 emu/g和 35.6 emu/g。
[0062] 实施例 9: 前驱体合金成分1¾4(^125835
[0063] 实施步骤同实施例 1, 其中, 所选酸溶液中 H+浓度为 0.2mol/L, 恒电位腐蚀电 压为 -280mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe47.2Pt52.8;HC. 5( 和 Mr分别为: 14.2 kOe、 40.4 emu/g和 28.3 emu/g。
[0064] 实施例 10: 前驱体合金成分 Fe 7QPt 1()B 20
[0065] 实施步骤同实施例 1, 其中, 所选酸溶液中 Η+浓度为 0.2mol/L, 恒电位腐蚀电 压为 -140 mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe 54.5Pt 45.5, 、 M5f) 和 Mr分别为: 13.4 kOe、 56.3 emu/g和 36.2 emu/g。
[0066] 实施例 11 : 前驱体合金成分 Fe 3。Co 3。Pt 2。B 2
[0067] 实施步骤同实施例 1, 其中, 所选酸溶液中 浓度为 0.5 mol/L, 恒电位腐蚀电 压为 -70 mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe 25 6Co 24.8Pt 49.6tHc 、 M5。和 Μ,.分别为: 18.4 kOe、 42.1 emu/g和 30.3 emu/g。
[0068] 实施例 12: 前驱体合金成分 Fe 55Pt 2。Pd 5B 2
[0069] 实施步骤同实施例 1, 其中, 所选酸溶液中 Η +浓度为 0.05 mol/L, 恒电位腐蚀电 压为 500 mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe 5 8Pt 39.8Pd , ,Η^ M50和 M^、别为: 17.0 kOe、 52.9 emu/g和 36.5 emu/g。
[0070] 实施例 13: 前驱体合金成分 Fe 55Pt 25B 15C 5
[0071] 配料中除 Fe、 Pt和 B元素外, 以铁碳合金的形式加入 C元素, 采用 Ar气氛围下高 频感应熔炼得到母合金锭, 其余实施步骤同实施例 1, 其中, 所选酸溶液中 浓 度为 0.2 mol/L, 恒电位腐蚀电压为 -70 mV。 最终获得的纳米多孔 FePt合金的化学 组成为1¾ 49.4?^。.6 , J/e、 M5。和 Μ,.分别为: 17.3 kOe、 51.1 emu/g和 36.4 emu/g。
[0072] 实施例 14: 前驱体合金成分 Fe 55Pt 25B 15P 5
[0073] 配料中除 Fe、 Pt和 B元素外, 以铁磷合金的形式加入 P元素, 采用 Ar气氛围下高 频感应熔炼得到母合金锭, 其余实施步骤同实施例 1, 其中, 所选酸溶液中 浓 度为 0.5 mol/L, 恒电位腐蚀电压为 -280 mV。 最终获得的纳米多孔 FePt合金的化 学组成为 Fe 46.3Pt 53.7 , J e、 M5。和 Mr分别为: 17.9 kOe、 50.9 emu/g和 35.8 emu/g
[0074] 实施例 15: 前驱体合金成分 Fe 55Pt 25B 17Si 3
[0075] 实施步骤同实施例 1, 其中, 所选酸溶液中 浓度为 0.5 mol/L, 恒电位腐蚀电 压为 -150 mV。 最终获得的纳米多孔 FePt合金的化学组成为 Fe ^Pt ^, J e50 和 Mr分别为: 15.5 kOe、 53.8 emu/g和 37.4 emu/g。
[0076] 实施例 16~17为采用化学法进行脱合金化。
[0077] 实施例 16: 前驱体合金成分 Fe 6。Pt 15B 25
[0078] 前驱体合金条带制备过程同实施例 1中第一、 二步。 第三步脱合金化通过化学 法, 即在室温下 H+浓度为 3.0
mol/L的酸溶液中浸泡 12小吋, 制备出纳米多孔 Fe-Pt合金。 最终获得的纳米多孔 FePt合金的化学组成为 Fe47.3Pt52.7, 合金的 ^ε、 Μ5。和 Mf分别为: 17.3 kOe、 49.5 emu/g P34.8 emu/g。
[0079] 实施例 17: 前驱体合金成分 Fe 6。Pt 1()B 3
[0080] 实施步骤同实施例 16, 其中, 第三步中酸溶液中 H+浓度为 1.0mol/L, 浸泡吋间 为 72小吋, 最终获得的纳米多孔 FePt合金的化学组成为 Fe^Pt^, 、 Μ和 Mr分别为: 18.1 kOe、 44.0 emu/g和 28.3 emu/g。
工业实用性
[0081] 比较例 1 (Fe 53Pt 44C 3) 选自文献 【 Gopalan et al, J Magn Magn Mater,
322(2010):3423] , 该合金为由球磨粉末通过等离子体放电烧结而成的块体材料 , 矫顽力为 ll.lkOe。
[0082] 比较例 2 (Fe5。Pt5。) 选自文献 Chen et al, J Magn Magn Mater, 239(2002):471
】 , 该合金为溅射得到的薄膜样品, 矫顽力为 6.5kOe。
[0083] 比较例 3 (Fe56Pt 44) 选自文献 [ S腿 et al, IEEE T Magn, 37(2001 ):1239) , 该 合金为通过化学沉积得到的纳米粒子, 矫顽力为 9.0 kOe。
[0084] 与上述比较例相比, 本发明公幵的纳米多孔 Fe-Pt永磁体显示出了更高的矫顽力 序列表自由内容
[0085] 附表: 本发明公幵的强永磁性纳米多孔 Fe-Pt合金及其前驱体成分和磁性能。 其 中, 、 M5。和 Mf分别为在外加 50 kOe磁场下的矫顽力、 磁化强度和剩磁。 实 施例 1~15采用电化学法脱合金化, 实施例 16~17采用化学法脱合金化。
[XXXX [0086]

Claims

权利要求书
[权利要求 1] 一种强永磁性纳米多孔 Fe-Pt合金, 其特征在于: 所述的纳米多孔合 金由 L1。- FePt有序硬磁相构成, 其化学组成为 Fe wCo xPt yPd z, 式中 w 、 x、 y、 z分别表示各对应元素的原子百分比; 其中, 25≤w≤55, 0 < X < 25 , 45 < w+x < 55 , 45 < y < 55, 0 < z < 10, 45 < y+z < 55且 w+x + y + z= 100;
该多孔合金由前驱体合金经脱合金化工艺制备而成, 具有完整双连通 纳米多孔结构, 孔径大小 10〜50nm, 韧带厚度 20〜80 nm;
用于制备所述多孔合金的前驱体成分表达式为 Fe aCo bPt cPd dB eC fP g Sih, 式中 a、 b、 c、 d、 e、 f、 g和 h分别表示各对应元素的原子百分比 , 满足 30≤a≤70, 0≤b≤30, 40≤a+b≤70, 8≤c≤40, 0<d<5 , 8≤c+d≤40, 10<e<35, 0≤f≤5, 0<g<5, 0<h<3, 10 < e + f + g + h<35, 且 a + b + c + d + e + f + g + h = 100。
[权利要求 2] 根据权利要求 1所述的一种强永磁性纳米多孔 Fe-Pt合金, 其特征在于
: 具有强永磁特性: 在外加 50kOe磁场下矫顽力为 13.4~18.5kOe, 磁 化强度为 40.4~56.3 emu/g, 剩磁为 28.3~37.4 emu/g。
[权利要求 3] 权利要求 1或 2所述一种强永磁性纳米多孔 Fe-Pt合金的制备方法, 其 特征在于包括以下步骤:
(1)采用 Ar气氛围下电弧熔炼或高频感应熔炼制备 (Fe, Co)-(Pt, Pd)-(B, C, P, Si)母合金锭;
(2)采用单辊甩带技术制备非晶或非晶 /纳米晶合金条带, 由铜辊转速 控制条带厚度和相结构;
3.权利要求 1或 2所述一种强永磁性纳米多孔 Fe-Pt合金的制备方法 , 其特征在于:
(1)采用 Ar气氛围下电弧熔炼或高频感应熔炼制备
(Fe,Co)-(Pt,Pd)-(B,C,P,Si)母合金锭;
(2)采用单辊甩带技术制备非晶或非晶 I纳米晶合金条带, 由铜辊转 速控制条带厚度和相结构; (3)直接获得或对条带样品进行真空退火处理获得含有硬磁性 LI。
-FePt和软磁性 Fe 28的纳米复相均匀分布的前驱体;
(4)利用电化学工艺, 以前驱体作为工作电极, Ag/AgCl作为参比电 极, 以 H +浓度为 0.02- 1.Omol/L的酸溶液为电解液, 在 -0.28- 1.5V恒 定电压下对其进行脱合金化, 选择性溶解掉除硬磁性 LI o-FePt以外 的软磁性 Fe 2B为主其他相, 制备得到的含有单一 L1。- FePt相的永磁 性的纳米多孔 Fe-Pt合金。
[权利要求 4] 权利要求 1或 2所述一种强永磁性纳米多孔 Fe-Pt合金的制备方法, 其特征在于:
(1)采用纯度大于 99\¥1%的?6、 Co、 Pt、 Pd、 B、 C、 Fe 3P和 Si原料 按 Fe aCo bPt cPd dB eC fP gSi h
名义成分进行称重配料;
(2)含 P或 C元素的合金采用高频感应熔炼在 Ar气氛围下制备母合 金锭, 其他合金采用非自耗电弧炉在 Ar气氛围下制备母合金锭, 合 金反复熔炼四次, 以保证成分均匀; 利用单辊甩带设备在 Ar气氛围 下将母合金锭制成宽度约 2mm, 厚度约 10〜 50μηι的连续合金条带 样品, 条带厚度由铜辊转速控制;
(3)检测不同铜辊转速下制备的合金条带样品的结构和热性能; 结合 结构和热性能分析, 确定合金条带的热处理温度; 若合金条带含有 硬磁性 LI o-FePt和软磁性 Fe 2B纳米复相结构, 则直接实施步骤(5)
; 否则实施步骤(4) ;
(4)采用真空热处理对合金条带进行退火, 获得含有硬磁性 LI o-FePt 和软磁性 Fe 2B纳米复相结构的条带前驱体;
(5)通过电化学工作站完成纳米晶条带前驱体的脱合金化, 选择性溶 解掉除硬磁性 LI o-FePt以外的软磁性 Fe 2B为主其他相, 获得含有单 一 LI o-FePt相的永磁性纳米多孔 Fe-Pt合金;
(6)对获得的纳米多孔合金进行结构表征、 形貌观察与磁性能测试; 条带样品、 前驱体合金及脱合金化后的纳米多孔金属的结构由 X射 线衍射仪和高分辨透射电子显微镜表征; 纳米多孔金属的形貌通过 扫描电子显微镜观察; 纳米多孔金属韧带成分由能谱分析确定; 条 带样品热性能由差示扫描量热仪评价; 前驱体合金的电化学性能由 电化学工作站评价; 合金条带和纳米多孔金属的磁性能采用超导量 子干涉磁强计测试。
PCT/CN2016/081959 2015-05-14 2016-05-13 一种强永磁性纳米多孔Fe-Pt合金及其制备方法 WO2016180359A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/572,707 US10714244B2 (en) 2015-05-14 2016-05-13 Nano-porous alloys with strong permanent magnetism and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510246416.6 2015-05-14
CN201510246416.6A CN104946921B (zh) 2015-05-14 2015-05-14 一种强永磁性纳米多孔Fe-Pt合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2016180359A1 true WO2016180359A1 (zh) 2016-11-17

Family

ID=54161982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081959 WO2016180359A1 (zh) 2015-05-14 2016-05-13 一种强永磁性纳米多孔Fe-Pt合金及其制备方法

Country Status (3)

Country Link
US (1) US10714244B2 (zh)
CN (1) CN104946921B (zh)
WO (1) WO2016180359A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180857B2 (en) 2016-02-16 2021-11-23 Tohoku Techno Arch Co., Ltd. Method for producing porous member

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104946921B (zh) 2015-05-14 2017-01-04 大连理工大学 一种强永磁性纳米多孔Fe-Pt合金及其制备方法
JP6520852B2 (ja) * 2015-09-18 2019-05-29 株式会社デンソー 温度センサ
CN105296895B (zh) * 2015-11-09 2017-11-07 大连理工大学 一种高矫顽力Fe‑Pt合金的制备方法
CN105648478A (zh) * 2016-01-13 2016-06-08 大连理工大学 一种具有电氧化催化性能的磁性纳米多孔Fe-Pt合金的制备方法
CN107910193B (zh) * 2017-11-13 2020-04-28 吉科猛 纳米多孔金属/金属氧化物杂化结构材料、制备及储能应用
CN110653348B (zh) * 2018-06-29 2021-12-31 南京理工大学 一种钛基非晶纳米管及其制备方法
CN111235422B (zh) * 2020-02-27 2022-01-14 山东大学 一种多孔铂的制备方法及其应用
CN112207285B (zh) * 2020-03-12 2022-05-20 赵远云 粉体材料的制备方法及其应用
CN112071620B (zh) * 2020-09-08 2021-12-21 包头市英思特稀磁新材料股份有限公司 一种永磁体合金材料的制备工艺
CN113025912B (zh) * 2021-03-01 2022-07-19 西北工业大学重庆科创中心 一种铁镍基硬磁材料及其制备方法
CN113522312A (zh) * 2021-08-20 2021-10-22 大连理工大学 一种具有高氨硼烷水解制氢催化活性的纳米多孔Ru-Fe-Co合金的制备方法
CN114411016B (zh) * 2022-03-18 2023-02-14 吉林大学 自支撑纳米多孔Ni4Mo/Ni合金材料的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270756A1 (en) * 2000-02-29 2003-01-02 Japan Science and Technology Corporation Supermagnetostrictive alloy and method for preparation thereof
WO2004107482A1 (en) * 2003-05-27 2004-12-09 Symyx Technologies, Inc. Platinum-vanadium-iron fuel cell electrocatalyst
CN101667480A (zh) * 2009-10-12 2010-03-10 钢铁研究总院 软磁管包覆硬磁线型纳米同轴电缆及其制备方法
CN103938014A (zh) * 2014-04-28 2014-07-23 大连理工大学 一种准晶脱合金化制备的纳米多孔Pd材料及其制备工艺
CN104946921A (zh) * 2015-05-14 2015-09-30 大连理工大学 一种强永磁性纳米多孔Fe-Pt合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222903A1 (en) * 2005-03-31 2006-10-05 Canon Kabushiki Kaisha Structure and process for production thereof
US8377580B2 (en) * 2007-09-18 2013-02-19 Japan Science And Technology Agency Metallic glass, magnetic recording medium using the same, and method of manufacturing the magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270756A1 (en) * 2000-02-29 2003-01-02 Japan Science and Technology Corporation Supermagnetostrictive alloy and method for preparation thereof
WO2004107482A1 (en) * 2003-05-27 2004-12-09 Symyx Technologies, Inc. Platinum-vanadium-iron fuel cell electrocatalyst
CN101667480A (zh) * 2009-10-12 2010-03-10 钢铁研究总院 软磁管包覆硬磁线型纳米同轴电缆及其制备方法
CN103938014A (zh) * 2014-04-28 2014-07-23 大连理工大学 一种准晶脱合金化制备的纳米多孔Pd材料及其制备工艺
CN104946921A (zh) * 2015-05-14 2015-09-30 大连理工大学 一种强永磁性纳米多孔Fe-Pt合金及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180857B2 (en) 2016-02-16 2021-11-23 Tohoku Techno Arch Co., Ltd. Method for producing porous member

Also Published As

Publication number Publication date
US20180114615A1 (en) 2018-04-26
CN104946921A (zh) 2015-09-30
US10714244B2 (en) 2020-07-14
CN104946921B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016180359A1 (zh) 一种强永磁性纳米多孔Fe-Pt合金及其制备方法
Liu et al. High performance Fe-based nanocrystalline alloys with excellent thermal stability
Zhang et al. Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes
He et al. Size and shape effects on magnetic properties of Ni nanoparticles
CN111057970B (zh) 一种高磁导率的非晶纳米晶合金的制备方法
Cheng et al. Synthesis and characterization of cobalt/gold bimetallic nanoparticles
Aslam et al. Controlled large-scale synthesis and magnetic properties of single-crystal cobalt nanorods
CN106834930B (zh) 具有高磁感应强度高杂质兼容性的铁基纳米晶合金及利用工业原料制备该合金的方法
Wu et al. Evolution from amorphous to nanocrystalline and corresponding magnetic properties of Fe-Si-B-Cu-Nb alloys by melt spinning and spark plasma sintering
Luong et al. Co–Pt nanoparticles encapsulated in carbon cages prepared by sonoelectrodeposition
Kashi et al. Microstructures and magnetic properties of as-deposited and annealed FexCo1− x alloy nanowire arrays embedded in anodic alumina templates
Lim et al. Iron oxide nanotubes synthesized via template-based electrodeposition
Song et al. Growth of single-crystalline Co7Fe3 nanowires via electrochemical deposition and their magnetic properties
Xu et al. Ordered CoFe2O4 nanowire arrays with preferred crystal orientation and magnetic anisotropy
Zhang et al. Synthesis and antibacterial properties of magnetically recyclable nanoporous silver/Fe 3 O 4 nanocomposites through one-step dealloying
Zhao et al. Effects of the substitution of Si with P on the glass forming ability, crystallization behavior, and magnetic properties of FeCuNbSiBP atomized powder
Joo et al. 3D interconnected nanoporous FeCo soft magnetic materials synthesized by liquid metal dealloying
Santhi et al. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses
Lopez et al. Microstructure and soft magnetic properties of Finemet-type ribbons obtained by twin-roller melt-spinning
CN107557634A (zh) 一种钐钴稀土磁性纳米多孔合金及其制备方法
Bahmanrokh et al. High coercivity sized controlled cobalt–gold core–shell nano-crystals prepared by reverse microemulsion
Xu et al. The fabrication and characteristic properties of amorphous Co1− xZnx alloy nanowire arrays
Yang et al. Structure and permanent magnetic properties of SmFex (x= 3–8) melt spun ribbons during heat treatment
Han et al. Structure transition and magnetism of bcc-Ni nanowires
Liu et al. A novel synthesis of ultrathin CoPt3 nanowires by dealloying larger diameter Co99Pt1 nanowires and subsequent stress-induced crack propagation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792209

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15572707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792209

Country of ref document: EP

Kind code of ref document: A1