CN108558401A - 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法 - Google Patents

一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法 Download PDF

Info

Publication number
CN108558401A
CN108558401A CN201810472207.7A CN201810472207A CN108558401A CN 108558401 A CN108558401 A CN 108558401A CN 201810472207 A CN201810472207 A CN 201810472207A CN 108558401 A CN108558401 A CN 108558401A
Authority
CN
China
Prior art keywords
solution
citric acid
ceramic powder
sol
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810472207.7A
Other languages
English (en)
Other versions
CN108558401B (zh
Inventor
刘洋
曾杰城
张储君
黎载波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoguan University
Original Assignee
Shaoguan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoguan University filed Critical Shaoguan University
Priority to CN201810472207.7A priority Critical patent/CN108558401B/zh
Publication of CN108558401A publication Critical patent/CN108558401A/zh
Application granted granted Critical
Publication of CN108558401B publication Critical patent/CN108558401B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明涉及一种溶胶凝胶法制备Bi2/ 3Cu2Ta2Ti2O12陶瓷粉体的方法,主要包括以下步骤:称量无水碳酸钾和五氧化二钽,装入圆柱形坩埚中熔融,得到乳白色熔块;再将乳白色熔块溶解于去离子水中,并向溶液中逐渐滴入硝酸生成水合Ta2O5白色沉淀;再抽滤分离、洗涤水合Ta2O5白色沉淀备用,将水合Ta2O5加入到柠檬酸水溶液,滴加过氧化氢溶液,形成澄清钽的柠檬酸水溶液;称取Bi(NO3)3·5H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,将Cu(NO3)2·3H2O完全溶解于钽的柠檬酸水溶液中形成溶液1;称取乙二醇溶液,向其缓慢滴加Ti(C4H9O)4,再加入Bi(NO3)3·5H2O,形成溶液2;将溶液1滴加到溶液2中滴加氨水形成凝胶;经煅烧、研磨制得Bi2/3Cu2Ta2Ti2O12陶瓷粉体。具有粉体颗粒粒径细小均匀、合成温度低、烧结结晶性能好、烧结特性佳等特点。

Description

一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法
技术领域
本发明属于陶瓷粉体制备工艺技术领域,涉及一种溶胶凝胶法制备Bi2/ 3Cu2Ta2Ti2O12陶瓷粉体的方法。
背景技术
陶瓷电介质材料发展迅猛,应用前景广阔。高介电陶瓷材料具有高能量密度、介电性能温度稳定性好等特点,是电子工业中的关键材料,备受关注。以其为基材制备的高性能陶瓷电容器是近几年来研究颇广的新一代电子元器件,被广泛运用于国防、探测、通信等领域:多层片式陶瓷电容器(MLCC)制备成电阻器、PTC和NTC热敏电阻,需求日益增长;微波电介质陶瓷制备成谐振器、介质导波回路被广泛应用在手机移动通讯、***等,科研和工程应用都有较大发展空间。
目前,在陶瓷电容器材料的研究开发过程中,类钙钛矿结构的陶瓷材料引人注目。此类材料烧结温度低,在宽频率范围内获得了较高的介电常数和较小的介质损耗,而且在不同温度下介电特性都能够保持稳定,没有发生铁电相变引起晶格畸变导致性能恶化。同时,类钙钛矿结构材料也有很多不足:如在室温条件下,电阻随电压的非线性变化、烧结时晶粒生长速度过快、击穿电压偏小等。因此,针对上述问题,改变制备工艺,深入研究此类材料高介电响应产生的根源,有效降低介电损耗和介电非线性,提高热稳定性和抗电击穿特性,为研发新型类钙钛矿陶瓷电容器材料,推广其在微电子领域的广泛应用具有重要意义。
发明内容
为了克服现有技术的上述缺点,本发明提供一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,具有粉体颗粒粒径细小均匀、合成温度低、烧结结晶性能好、烧结特性佳等特点,同时制备原料来源广泛,易于操作,无杂质。
本发明解决其技术问题所采用的技术方案是:一种溶胶凝胶法制备Bi2/ 3Cu2Ta2Ti2O12陶瓷粉体的方法,主要包括以下步骤:
(1)按照4.5~7:1的摩尔比,准确称量无水碳酸钾和五氧化二钽,混合均匀,装入圆柱形坩埚中,置于马弗炉850~950℃熔融3~8小时,得到乳白色熔块;
(2)将步骤(1)的乳白色熔块溶解于500mL去离子水中,静置6~12小时,用吸管取出上层澄清溶液,并向溶液中逐渐滴入硝酸,调整其pH值为2~3,确保全部生成水合Ta2O5白色沉淀;
(3)抽滤分离、洗涤步骤(2)的水合Ta2O5白色沉淀备用,按照柠檬酸与总金属阳离子摩尔比为1~4:1准确配置柠檬酸水溶液,然后将水合Ta2O5加入到柠檬酸水溶液,滴加适量过氧化氢溶液,并于水浴加热、搅拌,使水合Ta2O5完全溶解,形成澄清钽的柠檬酸水溶液;
(4)根据通式Bi2/3Cu2Ta2Ti2O12的化学计量分别称取Bi(NO3)3·5H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,将Cu(NO3)2·3H2O完全溶解于钽的柠檬酸水溶液中,水浴加热、搅拌至澄清,形成溶液1;
(5)按照乙二醇与柠檬酸摩尔比为1~3:1称取乙二醇溶液,向其缓慢滴加Ti(C4H9O)4,不断搅拌混合30分钟,再加入Bi(NO3)3·5H2O,继续搅拌混合1小时,形成溶液2;
(6)将溶液1缓慢滴加到溶液2中,充分搅拌混合20~30分钟,然后滴加氨水,调节pH值至6~7,并于水浴加热、搅拌反应6~10小时,形成凝胶;
(7)将所得凝胶进行干燥,经煅烧、研磨制得Bi2/3Cu2Ta2Ti2O12陶瓷粉体。
步骤(3)水合Ta2O5白色沉淀洗涤6~8次,经抽滤后的液体pH为7~8。
步骤(3)所述过氧化氢溶液与柠檬酸摩尔比为2~3:1。
步骤(3)(4)(6)水浴加热温度为65~85℃。
步骤(7)干燥温度为90~150℃,干燥时间为4~30小时;煅烧制度为:将干燥的样品自室温起,以2~4℃/min速率升温至500~800℃,保温4~10小时,随炉冷却。
本发明的积极效果是:以无水K2CO3、Ta2O5、Bi(NO3)3·5H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4、柠檬酸为原料,选用乙二醇作为溶剂,利用溶胶凝胶法制备了粒度均匀、结晶性能好的Bi2/3Cu2Ta2Ti2O12陶瓷粉体,通过XRD衍射仪及扫描电镜测试分析,该方法合成的粉体颗粒细小均匀,平均粒径约0.5-2μm,结晶性能好,烧结特性佳,同时制备原料来源广泛,易于操作,无杂质。
附图说明
图1是本发明制备的干凝胶DSC-TG图。
图2是本发明制备的干凝胶经500-800℃煅烧后陶瓷粉体的XRD图。
图3是本发明制备的干凝胶经800℃煅烧后陶瓷粉体的SEM图。
具体实施方式
下面结合附图及实施例对本发明进一步说明。
实施例1
一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,包括以下步骤:
(1)按照5:1的摩尔比,准确称量无水碳酸钾和五氧化二钽,混合均匀,装入圆柱形坩埚中,置于马弗炉900℃熔融4小时,得到乳白色熔块。
(2)将步骤(1)的乳白色熔块溶解于500mL去离子水中,静置8小时,用吸管取出上层澄清溶液,并向溶液中逐渐滴入硝酸,调整其pH值为2,确保全部生成水合Ta2O5白色沉淀。
(3)抽滤分离、洗涤(2)的水合Ta2O5白色沉淀6次备用,经抽滤后的液体pH为7,按照柠檬酸与总金属阳离子摩尔比为1.5:1准确配置柠檬酸水溶液,然后将水合Ta2O5加入到柠檬酸水溶液,滴加过氧化氢溶液,过氧化氢溶液与柠檬酸摩尔比为2:1,并于75℃水浴加热、搅拌,使水合Ta2O5完全溶解,形成澄清钽的柠檬酸水溶液。
(4)根据通式Bi2/3Cu2Ta2Ti2O12的化学计量分别称取Bi(NO3)3·5H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,将Cu(NO3)2·3H2O完全溶解于钽的柠檬酸水溶液中,80℃水浴加热、搅拌至澄清,形成溶液1。
(5)按照乙二醇与柠檬酸摩尔比为1.5:1称取乙二醇溶液,向其缓慢滴加Ti(C4H9O)4,不断搅拌混合30分钟,再加入Bi(NO3)3·5H2O,继续搅拌混合1小时,形成溶液2。
(6)将溶液1缓慢滴加到溶液2中,充分搅拌混合20分钟,然后滴加氨水,调节pH值至6,并于80℃水浴加热、搅拌反应6小时,形成凝胶。
(7)将所得凝胶于110℃干燥6小时,然后将干燥的样品进行煅烧,以2℃/min速率升温至500℃,600℃,700℃以及800℃,保温8小时,随炉冷却,研磨制得Bi2/3Cu2Ta2Ti2O12陶瓷粉体。
对制备的Bi2/3Cu2Ta2Ti2O12陶瓷粉体进行测试,具体测试情况如下:
采用综合热分析仪(DSC-TG)对干凝胶进行热分析,由图1可知,化学反应和重量损失均在500℃之前完成;采用XRD衍射对干凝胶经500-800℃煅烧后陶瓷粉体进行物相分析,由图2可看到,制得粉体主要物相为Cu3Ta2Ti2O12(JCPDS#70-0610),还包含如TiO2、铋钛氧化物等少量杂相,结晶性能好;采用扫描电子显微镜(SEM)对制备干凝胶经800℃煅烧后陶瓷粉体的形貌进行观察,由图3可以看出Bi2/3Cu2Ta2Ti2O12陶瓷粉体颗粒细小均匀,平均粒径约0.5-2μm,且无明显团聚现象。
实施例2
一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,包括以下步骤:
(1)按照6:1的摩尔比,准确称量无水碳酸钾和五氧化二钽,混合均匀,装入圆柱形坩埚中,置于马弗炉920℃熔融6小时,得到乳白色熔块。
(2)将步骤(1)的乳白色熔块溶解于500mL去离子水中,静置10小时,用吸管取出上层澄清溶液,并向溶液中逐渐滴入硝酸,调整其pH值为2,确保全部生成水合Ta2O5白色沉淀。
(3)抽滤分离、洗涤(2)的水合Ta2O5白色沉淀8次备用,经抽滤后的液体pH为7,按照柠檬酸与总金属阳离子摩尔比为2:1准确配置柠檬酸水溶液,然后将水合Ta2O5加入到柠檬酸水溶液,滴加过氧化氢溶液,过氧化氢溶液与柠檬酸摩尔比为2.5:1,并于80℃水浴加热、搅拌,使水合Ta2O5完全溶解,形成澄清钽的柠檬酸水溶液。
(4)根据通式Bi2/3Cu2Ta2Ti2O12的化学计量分别称取Bi(NO3)3·5H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,将Cu(NO3)2·3H2O完全溶解于钽的柠檬酸水溶液中,85℃水浴加热、搅拌至澄清,形成溶液1。
(5)按照乙二醇与柠檬酸摩尔比为2:1称取乙二醇溶液,向其缓慢滴加Ti(C4H9O)4,不断搅拌混合30分钟,再加入Bi(NO3)3·5H2O,继续搅拌混合1小时,形成溶液2。
(6)将溶液1缓慢滴加到溶液2中,充分搅拌混合25分钟,然后滴加氨水,调节pH值至7,并于80℃水浴加热、搅拌反应8小时,形成凝胶。
(7)将所得凝胶于130℃干燥8小时,然后将干燥的样品进行煅烧,以3℃/min速率升温至750℃,保温8小时,随炉冷却,研磨制得Bi2/3Cu2Ta2Ti2O12陶瓷粉体。
实施例3
一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,包括以下步骤:
(1)按照7:1的摩尔比,准确称量无水碳酸钾和五氧化二钽,混合均匀,装入圆柱形坩埚中,置于马弗炉950℃熔融8小时,得到乳白色熔块。
(2)将步骤(1)的乳白色熔块溶解于500mL去离子水中,静置12小时,用吸管取出上层澄清溶液,并向溶液中逐渐滴入硝酸,调整其pH值为3,确保全部生成水合Ta2O5白色沉淀。
(3)抽滤分离、洗涤(2)的水合Ta2O5白色沉淀8次备用,经抽滤后的液体pH为8,按照柠檬酸与总金属阳离子摩尔比为4:1准确配置柠檬酸水溶液,然后将水合Ta2O5加入到柠檬酸水溶液,滴加过氧化氢溶液,过氧化氢溶液与柠檬酸摩尔比为3:1,并于85℃水浴加热、搅拌,使水合Ta2O5完全溶解,形成澄清钽的柠檬酸水溶液。
(4)根据通式Bi2/3Cu2Ta2Ti2O12的化学计量分别称取Bi(NO3)3·5H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,将Cu(NO3)2·3H2O完全溶解于钽的柠檬酸水溶液中,80℃水浴加热、搅拌至澄清,形成溶液1。
(5)按照乙二醇与柠檬酸摩尔比为3:1称取乙二醇溶液,向其缓慢滴加Ti(C4H9O)4,不断搅拌混合30分钟,再加入Bi(NO3)3·5H2O,继续搅拌混合1小时,形成溶液2。
(6)将溶液1缓慢滴加到溶液2中,充分搅拌混合30分钟,然后滴加氨水,调节pH值至7,并于80℃水浴加热、搅拌反应10小时,形成凝胶。
(7)将所得凝胶于150℃干燥12小时,然后将干燥的样品进行煅烧,以4℃/min速率升温至650℃,保温10小时,随炉冷却,研磨制得Bi2/3Cu2Ta2Ti2O12陶瓷粉体。

Claims (5)

1.一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,其特征在于主要包括以下步骤:
(1)按照4.5~7:1的摩尔比,准确称量无水碳酸钾和五氧化二钽,混合均匀,装入圆柱形坩埚中,置于马弗炉850~950℃熔融3~8小时,得到乳白色熔块;
(2)将步骤(1)的乳白色熔块溶解于500mL去离子水中,静置6~12小时,用吸管取出上层澄清溶液,并向溶液中逐渐滴入硝酸,调整其pH值为2~3,确保全部生成水合Ta2O5白色沉淀;
(3)抽滤分离、洗涤步骤(2)的水合Ta2O5白色沉淀备用,按照柠檬酸与总金属阳离子摩尔比为1~4:1准确配置柠檬酸水溶液,然后将水合Ta2O5加入到柠檬酸水溶液,滴加适量过氧化氢溶液,并于水浴加热、搅拌,使水合Ta2O5完全溶解,形成澄清钽的柠檬酸水溶液;
(4)根据通式Bi2/3Cu2Ta2Ti2O12的化学计量分别称取Bi(NO3)3·5H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,将Cu(NO3)2·3H2O完全溶解于钽的柠檬酸水溶液中,水浴加热、搅拌至澄清,形成溶液1;
(5)按照乙二醇与柠檬酸摩尔比为1~3:1称取乙二醇溶液,向其缓慢滴加Ti(C4H9O)4,不断搅拌混合30分钟,再加入Bi(NO3)3·5H2O,继续搅拌混合1小时,形成溶液2;
(6)将溶液1缓慢滴加到溶液2中,充分搅拌混合20~30分钟,然后滴加氨水,调节pH值至6~7,并于水浴加热、搅拌反应6~10小时,形成凝胶;
(7)将所得凝胶进行干燥,经煅烧、研磨制得Bi2/3Cu2Ta2Ti2O12陶瓷粉体。
2.如权利要求1所述溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,其特征在于:步骤(3)水合Ta2O5白色沉淀洗涤6~8次,经抽滤后的液体pH为7~8。
3.如权利要求1所述溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,其特征在于:步骤(3)所述过氧化氢溶液与柠檬酸摩尔比为2~3:1。
4.如权利要求1所述溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,其特征在于:步骤(3)(4)(6)水浴加热温度为65~85℃。
5.如权利要求1所述溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法,其特征在于:步骤(7)干燥温度为90~150℃,干燥时间为4~30小时;煅烧制度为:将干燥的样品自室温起,以2~4℃/min速率升温至500~800℃,保温4~10小时,随炉冷却。
CN201810472207.7A 2018-05-17 2018-05-17 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法 Active CN108558401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810472207.7A CN108558401B (zh) 2018-05-17 2018-05-17 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810472207.7A CN108558401B (zh) 2018-05-17 2018-05-17 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法

Publications (2)

Publication Number Publication Date
CN108558401A true CN108558401A (zh) 2018-09-21
CN108558401B CN108558401B (zh) 2021-08-17

Family

ID=63538999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810472207.7A Active CN108558401B (zh) 2018-05-17 2018-05-17 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法

Country Status (1)

Country Link
CN (1) CN108558401B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085080A (zh) * 2021-10-09 2022-02-25 韶关学院 一种稀土掺杂钽钛酸盐粉体及其制备方法
CN116477947A (zh) * 2023-05-18 2023-07-25 韶关学院 一种提高钽酸铜陶瓷材料介电性能的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127344A1 (en) * 2002-09-24 2004-07-01 Noritake Co., Limited Lead-free piezoelectric ceramic composition wherein Cu is contained in (KxA1-x)y(Nb1-zBz)O3 perovskite compound, and process of preparing the same
CN101100381A (zh) * 2007-06-21 2008-01-09 山东大学 一种低温制备Bi3TiNbO9微纳米压电铁电粉体的方法
CN101531528A (zh) * 2009-04-13 2009-09-16 天津大学 溶胶凝胶技术制备铌酸镁微波陶瓷粉体
CN101774812A (zh) * 2010-02-02 2010-07-14 天津大学 溶胶凝胶技术制备钽酸镁微波陶瓷粉体的方法
CN101921112A (zh) * 2010-07-06 2010-12-22 齐齐哈尔大学 制备铌酸钠钾纳米粉体的溶胶-凝胶方法
CN102167594A (zh) * 2011-01-21 2011-08-31 天津大学 一种微波介质陶瓷纳米粉体的制备方法
CN103708834A (zh) * 2013-05-24 2014-04-09 济南大学 利用化学工艺精细制备锰钽矿结构MgTiNb2O8微波介质陶瓷新方法
CN104609861A (zh) * 2015-01-25 2015-05-13 济南唯博新材料有限公司 利用水溶性溶胶凝胶工艺精细合成Ba(Zn1/3Nb2/3)O3介质陶瓷纳米粉体
CN104609466A (zh) * 2015-01-25 2015-05-13 济南唯博新材料有限公司 一种利用水溶性溶胶凝胶工艺精细合成钛铁矿结构ZnTiO3纳米粉体的方法
CN104609860A (zh) * 2015-01-25 2015-05-13 济南唯博新材料有限公司 溶胶凝胶技术制备铌酸镁微波陶瓷粉体
CN105110660A (zh) * 2015-08-19 2015-12-02 韶关学院 一种还原气氛下熔融钢渣还原调质处理方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127344A1 (en) * 2002-09-24 2004-07-01 Noritake Co., Limited Lead-free piezoelectric ceramic composition wherein Cu is contained in (KxA1-x)y(Nb1-zBz)O3 perovskite compound, and process of preparing the same
CN101100381A (zh) * 2007-06-21 2008-01-09 山东大学 一种低温制备Bi3TiNbO9微纳米压电铁电粉体的方法
CN101531528A (zh) * 2009-04-13 2009-09-16 天津大学 溶胶凝胶技术制备铌酸镁微波陶瓷粉体
CN101774812A (zh) * 2010-02-02 2010-07-14 天津大学 溶胶凝胶技术制备钽酸镁微波陶瓷粉体的方法
CN101921112A (zh) * 2010-07-06 2010-12-22 齐齐哈尔大学 制备铌酸钠钾纳米粉体的溶胶-凝胶方法
CN102167594A (zh) * 2011-01-21 2011-08-31 天津大学 一种微波介质陶瓷纳米粉体的制备方法
CN103708834A (zh) * 2013-05-24 2014-04-09 济南大学 利用化学工艺精细制备锰钽矿结构MgTiNb2O8微波介质陶瓷新方法
CN104609861A (zh) * 2015-01-25 2015-05-13 济南唯博新材料有限公司 利用水溶性溶胶凝胶工艺精细合成Ba(Zn1/3Nb2/3)O3介质陶瓷纳米粉体
CN104609466A (zh) * 2015-01-25 2015-05-13 济南唯博新材料有限公司 一种利用水溶性溶胶凝胶工艺精细合成钛铁矿结构ZnTiO3纳米粉体的方法
CN104609860A (zh) * 2015-01-25 2015-05-13 济南唯博新材料有限公司 溶胶凝胶技术制备铌酸镁微波陶瓷粉体
CN105110660A (zh) * 2015-08-19 2015-12-02 韶关学院 一种还原气氛下熔融钢渣还原调质处理方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
PENGFEI LIANG等: "Improved dielectric properties and grain boundary response in neodymium-doped Y2/3Cu3Ti4O12 ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
RAJNI JAIN等: "Sintering characteristics and properties of sol gel derived Sr0.8Bi2.4Ta2.0O9 ceramics", 《MATERIALS SCIENCE AND ENGINEERING: B》 *
刘洋等: "高介电陶瓷NaCu3Ti3NbO12预烧粉体球磨制度的优化", 《中国粉体技术》 *
杨保祥等: "《钛基材料制造》", 31 January 2015, 冶金工业出版社 *
杨召: "溶胶-凝胶法制备钛酸铜铋基陶瓷及其性能调控", 《中国优秀硕士学位论文全文数据库-工程科技I辑》 *
樊慧庆: "《电子信息材料》", 30 September 2012, 国防工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085080A (zh) * 2021-10-09 2022-02-25 韶关学院 一种稀土掺杂钽钛酸盐粉体及其制备方法
CN116477947A (zh) * 2023-05-18 2023-07-25 韶关学院 一种提高钽酸铜陶瓷材料介电性能的方法

Also Published As

Publication number Publication date
CN108558401B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Sardar et al. Direct hydrothermal synthesis and physical properties of rare-earth and yttrium orthochromite perovskites
CN110282968A (zh) 一种微波介质陶瓷材料及其制备方法
CN108558401A (zh) 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法
CN106554033A (zh) 采用熔盐法制备铝酸镧粉体的方法
JPH09309728A (ja) チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池
CN101428856B (zh) 钽铌酸银纳米粉体的制备方法
CN1486958A (zh) 掺杂铁氧体磁性材料的制备方法
CN109574663A (zh) 一种Ni-Ti-Ta基微波介质陶瓷材料及其制备方法
Huang et al. Structural characteristics and microwave dielectric performances of ZnZrNb2-xVx/2O8-1.25 x-based ceramics for LTCC applications
Ji et al. Molten-salt synthesis of Ba5− xSrxNb4O15 solid solutions and their enhanced humidity sensing properties
Li et al. Effect of Ga-Bi co-doped on structural and ionic conductivity of Li 7 La 3 Zr 2 O 12 solid electrolytes derived from sol–gel method
CN106517319B (zh) 一种钛酸钙微米颗粒的制备方法
CN103864425B (zh) 一种微波介质陶瓷材料的制备方法
Kelele et al. Microstructural, morphological and dielectric properties of Mo, Se co-doped Ba0. 6Sr0. 4TiO3 perovskites
CN111943691A (zh) 一种钡钴锌铌体系微波介质陶瓷烧结退火工艺
CN103664168B (zh) 一种BCTZ-xLa体系多功能电子陶瓷的制备方法
CN114085080B (zh) 一种稀土掺杂钽钛酸盐粉体及其制备方法
CN106892450B (zh) 一种通过La离子掺杂合成PbTiO3圆片的方法
CN109467433A (zh) 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
CN106554035A (zh) 采用熔盐法制备钛酸锶粉体的方法
CN113428898B (zh) 液态盐合成铌酸钠钾纳米管及其制备方法
Li et al. Low-Temperature Sintering Behavior and Dielectric Properties of Li 2 O-Nb 2 O 5-TiO 2 Ceramics with Li-B-Si-O Glass
CN103466692B (zh) 一种溶胶凝胶法制备锂铌钛复合介质陶瓷粉体的方法
Zeng et al. Effect of BaCu (B2O5) additives on the sintering behavior and microwave dielectric properties of LiNb0. 6Ti0. 5O3 ceramics for LTCC application
CN104609861A (zh) 利用水溶性溶胶凝胶工艺精细合成Ba(Zn1/3Nb2/3)O3介质陶瓷纳米粉体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant