CN108514877A - 一种钌/碳双壳层电解水催化剂及其制备方法 - Google Patents

一种钌/碳双壳层电解水催化剂及其制备方法 Download PDF

Info

Publication number
CN108514877A
CN108514877A CN201810322271.7A CN201810322271A CN108514877A CN 108514877 A CN108514877 A CN 108514877A CN 201810322271 A CN201810322271 A CN 201810322271A CN 108514877 A CN108514877 A CN 108514877A
Authority
CN
China
Prior art keywords
sio
carbon
ruo
nanosphere
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810322271.7A
Other languages
English (en)
Other versions
CN108514877B (zh
Inventor
刘仲毅
汪海洋
彭智昆
李保军
张硕
吴记闯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Zhengda Catalytic Technology Research Institute Co ltd
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201810322271.7A priority Critical patent/CN108514877B/zh
Publication of CN108514877A publication Critical patent/CN108514877A/zh
Application granted granted Critical
Publication of CN108514877B publication Critical patent/CN108514877B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • B01J35/33
    • B01J35/51
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明属于电解水催化剂制备技术领域,公开一种钌/碳双壳层电解水催化剂及其制备方法。所述催化剂为空心球结构,该空心球的壳层为钌/碳双壳层,且外壳层为碳,内壳层为Ru。采用Stöber法制备SiO2纳米球,用硅烷偶联剂对SiO2纳米球进行修饰;以质量比计,SiO2纳米球∶RuCl3=1~5∶2,将修饰后的SiO2纳米球、RuCl3水热反应制得SiO2@RuO2 L;在SiO2@RuO2 L外面包覆酚醛树脂,制得SiO2@RuO2 L@酚醛树脂;焙烧、HF溶液刻蚀,得到钌/碳双壳层催化剂。本发明方法所制备出的钌/碳双壳层催化剂,析氢反应(HER)催化活性高,稳定性好,同时成本低、易于产业化。

Description

一种钌/碳双壳层电解水催化剂及其制备方法
技术领域
本发明属于电解水催化剂制备技术领域,具体涉及一种钌/碳双壳层电解水催化剂及其制备方法。
背景技术
随着传统能源储备日益枯竭,人类一直致力于新能源的开发。由于氢气能量密度高,绿色无污染,可以作为优秀的能源载体。在各种制氢方法中,析氢反应(HER)是最经济有效的方法。迄今为止,Pt基材料被认为是最有效的HER催化剂,其催化活性已成为判断其他替代催化剂的试金石。但高成本和低动力学限制了它们的大规模生产和大规模商业应用。许多研究尝试开发基于过渡金属(包括Ni,Mo,Co基催化剂及其衍生物如-N,-C和-S)催化剂。不幸的是,没有Pt的促进作用,上述具有固有腐蚀和氧化敏感性的催化剂不能从根本上解决对HER的低性能的问题。
近年来,由于多孔碳基材料具有高比表面、优异的导电性和良好的物理化学稳定性等特性,在电催化和能量转化方面吸引了研究者的重视。即使如此,碳纳米材料的催化活性仍然不足以与金属基材料相媲美。因此,具有活性组分或金属相调节和活化的碳基材料是改善催化活性的有吸引力的策略。例如,传统的掺杂杂原子(N,P,S和B)方法可以调节碳骨架的电子和电化学性质,但对HER的增强效率仍然非常有限。虽然N掺杂碳与非贵金属结合也进行了研究,但其内在活性(TOF)和/或质量比活性也远低于Pt催化剂。因此,非常迫切需要采用更有效和适中的成本方法来调节和激活碳,以开发适用于HER的新型催化剂。
发明内容
为克服现有技术存在的不足之处,本发明的目的在于提供一种钌/碳双壳层电解水催化剂及其制备方法。
为实现上述目的,本发明采取的技术方案如下:
一种电解水催化剂,所述催化剂为空心球结构,该空心球的壳层为钌/碳双壳层,且外壳层为碳,内壳层为Ru。
制备方法,步骤如下:
(a)、采用Stöber法制备SiO2纳米球;
(b)、在无水条件下,以甲苯为溶剂,用硅烷偶联剂对SiO2纳米球进行修饰;
(c)、将修饰后的SiO2纳米球、RuCl3溶于混合溶剂I中,然后在100 ~ 200 ℃水热反应10 ~ 24 h,分离,干燥,制得中间体I,标记为SiO2@RuO2 L;其中,以质量比计,SiO2纳米球∶RuCl3=1~5∶2;混合溶剂I由无水乙醇与水按体积比1∶1~5组成,每100 mg RuCl3,混合溶剂I的用量为35~45 mL;
(d)、将制得的SiO2@RuO2 L加入混合溶剂II中,依次加入正硅酸乙酯、酚类化合物和十六烷基三甲基溴化铵,在搅拌下加入醛类化合物的水溶液,然后搅拌,分离,干燥,制得中间体II,标记为SiO2@RuO2 L@酚醛树脂;其中,混合溶剂II由无水乙醇与氨水按体积比30 ~ 60∶1组成,所述氨水的质量浓度为25~28 %;
(e)、将制得的SiO2@RuO2 L@酚醛树脂在惰性气氛下焙烧,制得中间体III,标记为SiO2@Ru L@C;
(f)、将制得的SiO2@RuL@C分散在HF溶液中刻蚀,得到钌/碳双壳层催化剂,标记为HCRL。
较好地,步骤(d)中,所述酚类化合物为间苯二酚,所述醛类化合物的水溶液为质量浓度35~40%的甲醛水溶液。
较好地,步骤(d)中,以质量体积比计,SiO2@RuO2 L∶混合溶剂II∶正硅酸乙酯∶间苯二酚∶十六烷基三甲基溴化铵∶甲醛水溶液=200~500 mg∶50~70 mL∶0.2~0.4 mL∶0.25~ 0.3g∶0.3~0.4 g∶0.6~0.8 mL;加入甲醛水溶液后搅拌15 ~ 24 h。
较好地,步骤(e)中,在氩气氛下进行焙烧处理,升温速率为2 ~ 10 ℃/min,焙烧温度为650 ~ 850 ℃,焙烧时间为2 ~ 6 h。
较好地,步骤(f)中,HF溶液的质量浓度为5~10 %,刻蚀的时间为1 ~ 6 h。
有益效果:本发明方法所制备出的钌/碳双壳层催化剂,析氢反应(HER)催化活性高,稳定性好,同时成本低、易于产业化。
附图说明
图1:本发明实施例1制备的SiO2纳米球、SiO2@RuO2 L、SiO2@RuO2 L@酚醛树脂、SiO2@Ru L@C和HCRL样品的XRD光谱;
图2:本发明实施例1制备的SiO2@RuO2 L的TEM图;
图3:本发明实施例1制备的HCRL样品的HAADF-STEM图和能谱图;
图4:本发明实施例1制备的HCRL样品的HRTEM图;
图5:本发明实施例1制备的HCRL样品的N2吸附-脱附曲线及孔径分布图;
图6:本发明实施例1~12制备的HCRL样品及对比样品Pt/C、Ru的析氢极化曲线;
图7:本发明实施例1制备的HCRL样品及对比样品Pt/C、Ru的塔菲尔斜率曲线;
图8:本发明实施例1制备的HCRL样品及对比样品Pt/C、Ru循环10000圈前后的析氢极化曲线。
具体实施方式
为使本发明更加清楚、明确,以下对本发明的技术方案进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种钌/碳双壳层电解水催化剂的制备方法,步骤如下:
(a)、采用Stöber 法制备SiO2纳米球:10 mL质量浓度28 %的浓氨水、40 mL 无水乙醇、50mL水,置于500 mL三口烧瓶中,磁力搅拌1000 rpm,然后量取9 mL正硅酸乙酯和91 mL无水乙醇置于250 mL烧杯中,倒入三口烧瓶中,1000 rpm搅拌1 min后,将转速调为260 rpm,搅拌22 h,最后离心洗涤(转速为8000 rpm,5 min),60 ℃真空干燥6 h,制得SiO2纳米球;
(b)、SiO2纳米球的修饰:称取1.5 g SiO2纳米球置于100 mL三口烧瓶中,加入50 mL无水甲苯,超声分散30 min,加入4.5 mL硅烷偶联剂(KH550),油浴135 ℃下回流22 h,最后离心洗涤(转速为8000 rpm,5 min),60 ℃真空干燥6 h;
(c)、SiO2@RuO2 L的制备:称取修饰的SiO2纳米球50 mg,100 mg RuCl3分散在40 mL混合溶剂I中(无水乙醇∶水=1∶1,体积比),然后转移到50 mL聚四氟乙烯反应釜中,150 ℃水热16 h,冷却至室温后,离心洗涤(转速为7000 rpm,5 min),60 ℃真空干燥6 h,制得中间体I,标记为SiO2@RuO2 L;
(d)、SiO2@RuO2 L@酚醛树脂的制备:称取500 mg SiO2@RuO2 L加入到62mL混合溶剂II中(无水乙醇∶质量浓度28 %的浓氨水=30∶1,体积比),再依次加入0.3 mL正硅酸乙酯、0.27 g间二苯酚和0.33 g十六烷基三甲基溴化铵,超声30 min后转移到250 mL三口烧瓶中,在机械搅拌下加入0.75 mL质量浓度40%的甲醛水溶液,在室温、转速500 rpm下搅拌22 h,离心洗涤(转速为7000 rpm,3 min),60 ℃真空干燥6 h,制得中间体II,标记为SiO2@RuO2 L@酚醛树脂;
(e)、SiO2@Ru L@C的制备:将制得的SiO2@RuO2 L@酚醛树脂在氩气氛下焙烧,升温速率为3 ℃/min,焙烧温度为850 ℃,焙烧时间为2 h,制得中间体III,标记为SiO2@Ru L@C;
(f)、将制得的SiO2@Ru L@C分散在10 mL质量浓度5 %的HF溶液中刻蚀,得到所述的钌/碳双壳层催化剂,标记为HCRL。
实施例2
与实施例1的不同之处在于:步骤(c)中,修饰的SiO2纳米球的用量改为150 mg,即修饰的SiO2纳米球和RuCl3的质量比改为3∶2,其它均同实施例1。
实施例3
与实施例1的不同之处在于:步骤(c)中,无水乙醇和水的体积比改为1∶3,其它均同实施例1。
实施例4
与实施例1的不同之处在于:步骤(c)中,水热温度改为100 ℃,其它均同实施例1。
实施例5
与实施例1的不同之处在于:步骤(c)中,水热温度改为200 ℃,其它均同实施例1。
实施例6
与实施例1的不同之处在于:步骤(c)中,水热时间改为10 h,其它均同实施例1。
实施例7
与实施例1的不同之处在于:步骤(c)中,水热时间改为20 h,其它均同实施例1。
实施例8
与实施例1的不同之处在于:步骤(d)中,无水乙醇和氨水的体积比改为60∶1,其它均同实施例1。
实施例9
与实施例1的不同之处在于:步骤(d)中,搅拌的时间改为24 h,其它均同实施例1。
实施例10
与实施例1的不同之处在于:步骤(e)中,焙烧的时间改为6 h,其它均同实施例1。
实施例11
与实施例1的不同之处在于:步骤(e)中,焙烧的温度改为750 ℃,其它均同实施例1。
实施例12
与实施例1的不同之处在于:步骤(e)中,焙烧的温度改为650 ℃,其它均同实施例1。
催化剂结构表征
图1是本发明实施例1所制备的SiO2纳米球、SiO2@RuO2 L、SiO2@RuO2 L@酚醛树脂、SiO2@Ru L@C和HCRL 的XRD图。图1可以证明:非晶型碳和单质Ru的存在;另外可以看出最后所得HCRL中,SiO2被腐蚀完全。
图2是本发明实施例1制备的SiO2@RuO2 L的透射电镜图。从图2可以看出:利用水热法制备SiO2@RuO2 L时,SiO2纳米球表面可以均匀地负载一层RuO2
图3是本发明实施例1所制备的HCRL的HAADF-STEM图(a-c)和能谱图(d-f)。从图3a可以看出,SiO2刻蚀后形成了单分散空心碳基球,直径约为205 ~ 230 nm,碳层的厚度约为5 ~ 20 nm;从图3(e)和(f)可以看出:Ru和碳形成双壳层结构。
图4是本发明实施例1所制备的HCRL的HRTEM图。从图4可以看出:Ru层的厚度约为2~ 8 nm。
图5是本发明实施例1所制备的HCRL的N2吸附-脱附曲线及孔径分布图。可知:HCRL的比表面积为316 m2 g-1,孔体积为0.23 cm3 g−1
催化剂性能测试
电解水析氢反应催化性能评价方法:采用圆盘电极三电极体系进行循环伏安测试,三电极体系分为工作电极、参比电极和对电极,其中饱和甘汞电极为参比电极,铂丝电极作为对电极,电解液为1 M KOH溶液,圆盘电极转速为1600 rpm/min。
按照以下制备方法制备工作电极:催化剂样品测试前,先60 ℃真空干燥10 h,然后称取3 mg催化剂样品加入500 mL无水乙醇中,加入50 μL 5 wt % Nafion,超声30 min,用移液枪量取15 μL悬浊液滴在直径5 mm的玻碳电极上,室温下干燥。
同时,以商业化的20 wt%的Pt/C催化剂及金属单质Ru作为对比催化剂,按照上述方法制备对照工作电极。
测试条件:测试温度:室温(25 ~ 28 ℃);线性扫描速率:2 mv/s;CV循环10000圈电压范围:‒0.08 ~ 0.12 V(相对于可逆氢电极);CV循环10000圈扫描速率:50 mv/s。
图6是本发明所有实施例制备的HCRL及对比样品Pt/C、Ru的析氢极化曲线;从图6可以看出:各个样品对应的过电位见表1。可知:电流密度为10 mA/cm2时,实施例1所制备的HCRL具有最优的氢析出催化活性,过电位为18 mV。
图7是本发明实施例1所制备的HCRL及对比样品Pt/C、Ru的塔菲尔斜率曲线;HCRL的塔菲尔斜率是47 mV/dec,Pt/C的塔菲尔斜率是55 mV/dec,Ru的塔菲尔斜率是57 mV/dec。
图8为实施例1所制备的HCRL及对比样品Pt/C、Ru的循环10000圈前后的析氢极化曲线。从图8可以看出,HCRL循环10000圈以后,过电位增加了8 mV,和Pt/C (6 mV)相近,优于对比催化剂Ru,展现了良好的稳定性。

Claims (6)

1.一种电解水催化剂,其特征在于:所述催化剂为空心球结构,该空心球的壳层为钌/碳双壳层,且外壳层为碳,内壳层为Ru。
2.一种制备如权利要求1所述电解水催化剂的方法,其特征在于,步骤如下:
(a)、采用Stöber法制备SiO2纳米球;
(b)、在无水条件下,以甲苯为溶剂,用硅烷偶联剂对SiO2纳米球进行修饰;
(c)、将修饰后的SiO2纳米球、RuCl3溶于混合溶剂I中,然后在100 ~ 200 ℃水热反应10~ 24 h,分离,干燥,制得中间体I,标记为SiO2@RuO2 L;其中,以质量比计,SiO2纳米球∶RuCl3=1~5∶2;混合溶剂I由无水乙醇与水按体积比1∶1~5组成,每100 mg RuCl3,混合溶剂I的用量为35~45 mL;
(d)、将制得的SiO2@RuO2 L加入混合溶剂II中,依次加入正硅酸乙酯、酚类化合物和十六烷基三甲基溴化铵,在搅拌下加入醛类化合物的水溶液,然后搅拌,分离,干燥,制得中间体II,标记为SiO2@RuO2 L@酚醛树脂;其中,混合溶剂II由无水乙醇与氨水按体积比30 ~ 60∶1组成,所述氨水的质量浓度为25~28 %;
(e)、将制得的SiO2@RuO2 L@酚醛树脂在惰性气氛下焙烧,制得中间体III,标记为SiO2@Ru L@C;
(f)、将制得的SiO2@RuL@C分散在HF溶液中刻蚀,得到钌/碳双壳层催化剂,标记为HCRL。
3.如权利要求2所述的制备方法,其特征在于:步骤(d)中,所述酚类化合物为间苯二酚,所述醛类化合物的水溶液为质量浓度35~40%的甲醛水溶液。
4.如权利要求3所述的制备方法,其特征在于:步骤(d)中,以质量体积比计,SiO2@RuO2 L∶混合溶剂II∶正硅酸乙酯∶间苯二酚∶十六烷基三甲基溴化铵∶甲醛水溶液=200~500 mg∶50~70 mL∶0.2~0.4 mL∶0.25~ 0.3 g∶0.3~0.4 g∶0.6~0.8 mL;加入甲醛水溶液后搅拌15 ~24 h。
5.如权利要求2所述的制备方法,其特征在于:步骤(e)中,在氩气氛下进行焙烧处理,升温速率为2 ~ 10 ℃/min,焙烧温度为650 ~ 850 ℃,焙烧时间为2 ~ 6 h。
6.如权利要求2所述的制备方法,其特征在于:步骤(f)中,HF溶液的质量浓度为5~10%,刻蚀的时间为1 ~ 6 h。
CN201810322271.7A 2018-04-11 2018-04-11 一种钌/碳双壳层电解水催化剂及其制备方法 Expired - Fee Related CN108514877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810322271.7A CN108514877B (zh) 2018-04-11 2018-04-11 一种钌/碳双壳层电解水催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810322271.7A CN108514877B (zh) 2018-04-11 2018-04-11 一种钌/碳双壳层电解水催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN108514877A true CN108514877A (zh) 2018-09-11
CN108514877B CN108514877B (zh) 2020-02-21

Family

ID=63431031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810322271.7A Expired - Fee Related CN108514877B (zh) 2018-04-11 2018-04-11 一种钌/碳双壳层电解水催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108514877B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152712A (zh) * 2019-06-06 2019-08-23 郑州大学 一种Ru基析氢催化剂及其制备方法和应用
CN111495416A (zh) * 2020-06-12 2020-08-07 郑州大学 一种电解水产氢用中空笼状双壳层碳/Ru复合微球及其制备方法
CN112023940A (zh) * 2020-09-04 2020-12-04 中国科学技术大学先进技术研究院 电催化剂的制备方法及其应用、以及电极
CN112310422A (zh) * 2020-11-06 2021-02-02 五邑大学 一种铁氮掺杂的中空多孔碳材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217601A (zh) * 2015-11-05 2016-01-06 北京工业大学 一种具有高比表面积的多孔空心碳球的制备方法
CN105502342A (zh) * 2016-01-07 2016-04-20 上海工程技术大学 一种以多巴胺为碳源制备纳米空心碳球的方法
CN107442111A (zh) * 2016-05-30 2017-12-08 中国科学院长春应用化学研究所 碳包覆金属纳米立方体材料及其制备方法
CN107867726A (zh) * 2016-09-27 2018-04-03 北京化工大学 一种纳米氧化钌的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217601A (zh) * 2015-11-05 2016-01-06 北京工业大学 一种具有高比表面积的多孔空心碳球的制备方法
CN105502342A (zh) * 2016-01-07 2016-04-20 上海工程技术大学 一种以多巴胺为碳源制备纳米空心碳球的方法
CN107442111A (zh) * 2016-05-30 2017-12-08 中国科学院长春应用化学研究所 碳包覆金属纳米立方体材料及其制备方法
CN107867726A (zh) * 2016-09-27 2018-04-03 北京化工大学 一种纳米氧化钌的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TUMELO N.PHAAHLAMOHLAKA等: "Effects of Co and Ru Intimacy in Fischer-Tropsch Catalysts Using Hollow Carbon Sphere Supports: Assessment of the Hydrogen Spillover Processes", 《ACS CATAL》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152712A (zh) * 2019-06-06 2019-08-23 郑州大学 一种Ru基析氢催化剂及其制备方法和应用
CN110152712B (zh) * 2019-06-06 2021-09-24 郑州大学 一种Ru基析氢催化剂及其制备方法和应用
CN111495416A (zh) * 2020-06-12 2020-08-07 郑州大学 一种电解水产氢用中空笼状双壳层碳/Ru复合微球及其制备方法
CN111495416B (zh) * 2020-06-12 2022-11-11 郑州大学 一种电解水产氢用中空笼状双壳层碳/Ru复合微球及其制备方法
CN112023940A (zh) * 2020-09-04 2020-12-04 中国科学技术大学先进技术研究院 电催化剂的制备方法及其应用、以及电极
CN112310422A (zh) * 2020-11-06 2021-02-02 五邑大学 一种铁氮掺杂的中空多孔碳材料及其制备方法

Also Published As

Publication number Publication date
CN108514877B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN108514877A (zh) 一种钌/碳双壳层电解水催化剂及其制备方法
CN104857976B (zh) 一种三维二硫化钼纳米花‑石墨烯复合材料及其应用
CN101740785B (zh) 一种钯/石墨烯纳米电催化剂及其制备方法
CN102513139B (zh) 一种Pt-WC/石墨烯复合电催化剂及其制备方法
CN109873175B (zh) 一种低温燃料电池用氮化三维载体担载铂钴铱合金结构催化剂的制备方法
CN106669763A (zh) 一种氮掺杂碳包覆纳米花状MoSe2复合材料及制备与应用
CN108080015A (zh) 基于希夫碱-mof的功能化碳材料的制备及作为电催化剂的应用
CN110767914B (zh) 一种Co-N掺杂多孔碳包覆碳纳米管核壳结构催化剂及其制备方法与应用
Zhang et al. High‐Efficiency Encapsulation of Pt Nanoparticles into the Channel of Carbon Nanotubes as an Enhanced Electrocatalyst for Methanol Oxidation
CN106345501B (zh) 一种基于磁性离子液体修饰碳纳米管复合材料制备磷化铁的方法及其产品和应用
CN107486233A (zh) 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
CN107507984A (zh) 一种燃料电池阳极催化剂的制备方法
CN110534754B (zh) 一种包裹Fe3C纳米晶的碳纳米管及其制备方法和应用
CN109304464B (zh) 一种电解水产氢用中空笼状碳/Ru复合微球及其制备方法
CN111659394A (zh) 一种铜基催化剂及其制备方法和应用
CN108101111A (zh) 一种碳化钼/二氧化钼复合纳米线及其制备方法与应用
Li et al. CoP-anchored high N-doped carbon@ graphene sheet as bifunctional electrocatalyst for efficient overall water splitting
CN108315758A (zh) 一种电解水产氢催化剂及其制备方法
CN107394215A (zh) 一种杂原子掺杂的功能化碳材料的制备及应用
CN111229310A (zh) 一种离子液体修饰的氮硫共掺杂氧化石墨烯复合材料的制备方法和应用
CN110690425B (zh) 硼掺杂还原碳纳米管负载氧化铁复合材料及其制备方法
JP5728364B2 (ja) 金属担持触媒の製造法および燃料電池の触媒層
CN108531932A (zh) 一种空心碳球封装Ru纳米颗粒电解水催化剂及其制备方法
Zheng et al. Space‐Confined Anchoring of Fe− Nx on Concave N‐Doped Carbon Cubes for Catalyzing Oxygen Reduction
CN111129510A (zh) 一种碳材料修饰石墨相氮化碳纳米片负载铂纳米电催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200117

Address after: Room 209, building 2, Chuangye block, Zhengzhou University Science Park, No. 100, Cuizhu street, high tech Industrial Development Zone, Zhengzhou City, Henan Province 450001

Applicant after: Henan Zhengda Catalytic Technology Research Institute Co.,Ltd.

Address before: 450001 No. 100, science Avenue, hi tech Industrial Development Zone, Henan, Zhengzhou

Applicant before: Zhengzhou University

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200221