CN108503362B - 一种纳米石墨基研磨材料的制备方法 - Google Patents

一种纳米石墨基研磨材料的制备方法 Download PDF

Info

Publication number
CN108503362B
CN108503362B CN201810515196.6A CN201810515196A CN108503362B CN 108503362 B CN108503362 B CN 108503362B CN 201810515196 A CN201810515196 A CN 201810515196A CN 108503362 B CN108503362 B CN 108503362B
Authority
CN
China
Prior art keywords
parts
nano graphite
nano
precursor
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810515196.6A
Other languages
English (en)
Other versions
CN108503362A (zh
Inventor
张剑
许玉
吴庆梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang Guangshengda New Materials Technology Co.,Ltd.
Original Assignee
Heilongjiang Guangshengda New Materials Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang Guangshengda New Materials Technology Co ltd filed Critical Heilongjiang Guangshengda New Materials Technology Co ltd
Priority to CN201810515196.6A priority Critical patent/CN108503362B/zh
Publication of CN108503362A publication Critical patent/CN108503362A/zh
Application granted granted Critical
Publication of CN108503362B publication Critical patent/CN108503362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开了一种纳米石墨基研磨材料的制备方法,属于无机化学材料技术领域。本发明首先将纳米石墨和无水乙醇超声分散后,再加入聚乙烯吡咯烷酮,超声分散后,恒温搅拌,制得纳米石墨分散液,再将纳米石墨分散液和氟化钠、纳米铁粉超声混合均匀,再滴加前驱体稀释液,随后滴加乙醇溶液,再经恒温搅拌反应,静置,过滤,干燥,得干燥料;将干燥料于氩气保护状态下,加热高温反应后,冷却,得坯料,再将坯料用氢氟酸洗涤后,水洗,干燥,得磨料颗粒,最后将磨料颗粒、陶瓷粘结剂和水混合后注模成型,干燥,脱模,烧结,冷却,即得纳米石墨基研磨材料。

Description

一种纳米石墨基研磨材料的制备方法
技术领域
本发明公开了一种纳米石墨基研磨材料的制备方法,属于无机化学材料技术领域。
背景技术
新世纪以来,随着高科技和网络信息的飞速发展,航空航天、集成电路和国防军
工等领域所用仪器,其表面加工技术必然向超精密化方向发展。因此,超精密加工技术的发展,不仅代表了一个国家高端技术的发展水平,而且已经进入人民生活和国民经济的诸多领域,有着极其重要的研究意义。为了使应用于尖端科技领域的仪器适应科技的迅猛发展,对其表面加工质量、生产效率和成本等方向提出了严峻挑战,尤其是表面加工质量,要求达到无表面损伤和残余应力镜面级平滑。然而,对于传统多重而复杂的制造技术,如铣磨、研抛和抛光等,由于游离磨粒研磨和腐蚀导致的材料去除不确定以及亚表面损伤层的存在,难以保证仪器较高的表面精度,并增加后续抛光处理的难度,材料组成出现组分多元化的趋势,而多组分粉体的粒度控制及化学组成等因素在很大程度上影响材料的微观结构和宏观性能,现有的粉体合成方法难以满足快速、大量合成高纯均匀的多组分粉体的要求。因此,粉体合成新工艺和技术研究越来越受到广泛关注。现有的粉体合成技术主要包括固相法、气相法和液相法。其中,固相法过程简便且易于大批量生产,但是反应条件苛刻,所得粉体均匀性较差;气相法虽然所制粉体纯度较高,分散性良好,但是其一般用于制备液相法难以制备的金属、氮化物及碳化物等非氧化物超细粉体;液相法制备粉体过程中,反应条件易控制,产物均匀,但是其有机原料成本较高,不易工业化生产。超精密加工技术综合应用了计算机、微电子和自动控制等先进技术,目标是改进和完善当前的宏观制造,从而实现适应未来工业发展的微观制造。传统的纳米研磨材料存在热膨胀系数高,磨削性能难以进一步提高的缺点,从而影响使用效果。
因此,如何改善传统纳米研磨材料存在热膨胀系数高,磨削性能难以进一步提高的缺点,以获取更高综合性能,是其需研究解决的问题。
发明内容
本发明主要解决的技术问题是:针对传统纳米研磨材料存在热膨胀系数高,磨削性能难以进一步提高的缺点,提供了本发明公开了一种纳米石墨基研磨材料的制备方法。
为了解决上述技术问题,本发明所采用的技术方案是:
一种纳米石墨基研磨材料的制备方法,具体制备步骤为:
(1)将纳米石墨和无水乙醇按质量比为1:10~1:15超声分散后,再加入纳米石墨质量0.2~0.4倍的聚乙烯吡咯烷酮,超声分散后,恒温搅拌,得纳米石墨分散液;
(2)按体积比为1:5~1:7将前驱体和无水乙醇超声混合,得前驱体稀释液;
(3)按重量份数计,依次取60~80份纳米石墨分散液,80~100份前驱体稀释液,10~20份乙醇溶液,4~5份氟化钠,2~5份纳米铁粉,先将纳米石墨分散液和氟化钠、纳米铁粉超声混合均匀,再滴加前驱体稀释液,调节pH至7.6~7.8后,再滴加乙醇溶液,再经恒温搅拌反应,静置,过滤,干燥,得干燥料;
(4)将所得干燥料至于管式炉中,于氩气保护状态下,加热升温至1500~1600℃,保温反应3~5h后,随炉冷却至室温,得坯料;
(5)将所得坯料用氢氟酸洗涤后,再用去离子水洗涤,随后干燥至恒重,得磨料颗粒;
(6)按重量份数计,依次取30~60份磨料颗粒,40~80份陶瓷结合剂,8~10份羧甲基纤维素钠,10~20份水,搅拌混合均匀后,注模,干燥,脱模,烧结,冷却,即得纳米石墨基研磨材料。
步骤(2)所述前驱体为正硅酸甲酯或正硅酸乙酯中的任意一种。
步骤(6)所述陶瓷结合剂是由以下重量份数的原料复配而成:4~6份氧化硼,4~6份氧化铝,2~4份氧化锆,50~60份硅酸钠,10~20份硅酸钙。
本发明的有益效果是:
(1)本发明技术方案采用纳米石墨作为基体磨料粒子,首先,采用无水乙醇作为分散介质,采用超声处理,打开纳米石墨相互之间的软团聚,再加入聚乙烯吡咯烷酮,使其良好吸附于纳米石墨表面,避免在后续处理过程中纳米石墨重新团聚,随后将纳米石墨分散液和前驱体稀释液混合,利用前驱体水解产生的二氧化硅在纳米石墨表面吸附包裹,一方面,二氧化硅可在氟化钠和纳米铁粉的催化下,催化其与石墨中的碳发生化学反应,从而在石墨和二氧化硅界面结合处形成Si-C键,使纳米石墨和二氧化硅之间形成化学键合,两者反应形成的碳化硅的热膨胀系数和石墨的热膨胀系数较为接近,从而可有效避免后续烧结过程中以及产品在使用过程中,因热膨胀系数差异较大而引起的开裂,从而使产品使用寿命得以有效延长,同时在使用过程中,较低的热膨胀系数可保障较高的加工精度;另一方面,二氧化硅可对纳米石墨细化过程中产生的表面缺陷和微裂纹进行填充,并在后续反应过程中转变成碳化硅,由于碳化硅热膨胀系数和石墨接近,因此,填充在微裂纹中的碳化硅在使用过程中可有效避免石墨表面中的微裂纹进一步扩展,使产品的磨削性能得到有效保持的同时,使用寿命得以有效延长;
(2)本发明技术方案通过采用氢氟酸对坯料洗涤,使坯料中多余的二氧化硅得以去除,从而使坯料内部形成连通的孔隙结构,和陶瓷结合剂烧结成型后,其中的孔隙结构可有利于陶瓷结合剂在烧结过程中渗透扩散进入坯料内部,从而使两者有效粘结,避免在磨削过程中磨料颗粒剥落而引起堵塞,同时,连通的孔隙的存在有利于在磨削过程中的排屑和散热,避免堵塞和烧伤工件,提高产品的磨削效率。
具体实施方式
按质量比为1:10~1:15将纳米石墨和无水乙醇混合倒入1号烧杯中,并将1号烧杯移入超声分散仪,于超声频率为45~60kHz条件下,超声分散30~60min后,再向1号烧杯中加入纳米石墨质量0.2~0.4倍的聚乙烯吡咯烷酮,继续以55~60kHz的超声频率超声分散20~40min后,将1号烧杯移入数显测速恒温磁力搅拌器中,于温度为65~70℃,转速为300~500r/min条件下,恒温搅拌混合2~4h,得纳米石墨分散液;按体积比为1:5~1:7将前驱体和无水乙醇倒入2号烧杯中,并将2号烧杯移入超声分散仪中,于超声频率为45~50kHz条件下,超声混合30~45min,得前驱体稀释液;按重量份数计,依次取60~80份纳米石墨分散液,80~100份前驱体稀释液,10~20份质量分数为55~60%的乙醇溶液,4~5份氟化钠,2~5份纳米铁粉,先将纳米石墨分散液和氟化钠、纳米铁粉倒入三口烧瓶中,并将三口烧瓶至于超声振荡仪中,于超声频率为40~50kHz条件下,超声混合45~60min,再将三口烧瓶移入数显测速恒温磁力搅拌器中,于温度为40~45℃,转速为300~500r/min条件下,边恒温搅拌边向三口烧瓶中滴加前驱体稀释液,控制前驱体稀释液滴加速率为4~8mL/min,待前驱体稀释液滴加完毕,调节三口烧瓶中物料pH至7.6~7.8,再滴加乙醇溶液,控制乙醇溶液滴加速率为6~9nL/min,待乙醇溶液滴加完毕,继续恒温搅拌反应6~8h,再将三口烧瓶中物料倒入3号烧杯中,于室温条件下静置2~4h后,过滤,得滤饼,并用去离子水洗涤滤饼3~5次,再将洗涤后的滤饼转入烘箱中,于温度为105~110℃条件下,干燥至恒重,得干燥料;再将所得干燥料移入管式炉中,以60~80mL/min速率向炉内通入氩气,于氩气保护状态下,以8~10℃/min速率程序升温至1500~1600℃,保温反应3~5h后,随炉冷却至室温,出料,得坯料,将所得坯料用质量分数为8~10%的氢氟酸浸泡洗涤45~60min后,再用去离子水洗涤4~6次,再将去离子水清洗后的坯料转入烘箱中,于温度为105~110℃条件下干燥至恒重,得磨料颗粒;按重量份数计,依次取30~60份磨料颗粒,40~80份陶瓷结合剂,8~10份羧甲基纤维素钠,10~20份水,倒入搅拌机中,以600~800r/min转速搅拌混合2~4h后,再将搅拌机中物料注入模具中,干燥成型后,脱模,再于温度为1000~1100℃条件下,烧结8~10h,冷却,即得纳米石墨基研磨材料。所述前驱体为正硅酸甲酯或正硅酸乙酯中的任意一种。所述陶瓷结合剂是由以下重量份数的原料复配而成:4~6份氧化硼,4~6份氧化铝,2~4份氧化锆,50~60份硅酸钠,10~20份硅酸钙。
实例1
按质量比为1:15将纳米石墨和无水乙醇混合倒入1号烧杯中,并将1号烧杯移入超声分散仪,于超声频率为60kHz条件下,超声分散60min后,再向1号烧杯中加入纳米石墨质量0.4倍的聚乙烯吡咯烷酮,继续以60kHz的超声频率超声分散40min后,将1号烧杯移入数显测速恒温磁力搅拌器中,于温度为70℃,转速为500r/min条件下,恒温搅拌混合4h,得纳米石墨分散液;按体积比为1:7将前驱体和无水乙醇倒入2号烧杯中,并将2号烧杯移入超声分散仪中,于超声频率为50kHz条件下,超声混合45min,得前驱体稀释液;按重量份数计,依次取80份纳米石墨分散液,100份前驱体稀释液,20份质量分数为60%的乙醇溶液,5份氟化钠,5份纳米铁粉,先将纳米石墨分散液和氟化钠、纳米铁粉倒入三口烧瓶中,并将三口烧瓶至于超声振荡仪中,于超声频率为50kHz条件下,超声混合60min,再将三口烧瓶移入数显测速恒温磁力搅拌器中,于温度为45℃,转速为500r/min条件下,边恒温搅拌边向三口烧瓶中滴加前驱体稀释液,控制前驱体稀释液滴加速率为8mL/min,待前驱体稀释液滴加完毕,调节三口烧瓶中物料pH至7.8,再滴加乙醇溶液,控制乙醇溶液滴加速率为9nL/min,待乙醇溶液滴加完毕,继续恒温搅拌反应8h,再将三口烧瓶中物料倒入3号烧杯中,于室温条件下静置4h后,过滤,得滤饼,并用去离子水洗涤滤饼5次,再将洗涤后的滤饼转入烘箱中,于温度为110℃条件下,干燥至恒重,得干燥料;再将所得干燥料移入管式炉中,以80mL/min速率向炉内通入氩气,于氩气保护状态下,以10℃/min速率程序升温至1600℃,保温反应5h后,随炉冷却至室温,出料,得坯料,将所得坯料用质量分数为10%的氢氟酸浸泡洗涤60min后,再用去离子水洗涤6次,再将去离子水清洗后的坯料转入烘箱中,于温度为110℃条件下干燥至恒重,得磨料颗粒;按重量份数计,依次取60份磨料颗粒,80份陶瓷结合剂,10份羧甲基纤维素钠,20份水,倒入搅拌机中,以800r/min转速搅拌混合4h后,再将搅拌机中物料注入模具中,干燥成型后,脱模,再于温度为1100℃条件下,烧结10h,冷却,即得纳米石墨基研磨材料。所述前驱体为正硅酸甲酯。所述陶瓷结合剂是由以下重量份数的原料复配而成:6份氧化硼,6份氧化铝,4份氧化锆,60份硅酸钠,20份硅酸钙。
实例2
按质量比为1:15将纳米金刚石粉末和无水乙醇混合倒入1号烧杯中,并将1号烧杯移入超声分散仪,于超声频率为60kHz条件下,超声分散60min后,再向1号烧杯中加入纳米金刚石粉末质量0.4倍的聚乙烯吡咯烷酮,继续以60kHz的超声频率超声分散40min后,将1号烧杯移入数显测速恒温磁力搅拌器中,于温度为70℃,转速为500r/min条件下,恒温搅拌混合4h,得纳米金刚石粉末烯分散液;按体积比为1:7将前驱体和无水乙醇倒入2号烧杯中,并将2号烧杯移入超声分散仪中,于超声频率为50kHz条件下,超声混合45min,得前驱体稀释液;按重量份数计,依次取80份纳米金刚石粉末分散液,100份前驱体稀释液,20份质量分数为60%的乙醇溶液,5份氟化钠,5份纳米铁粉,先将纳米金刚石粉末分散液和氟化钠、纳米铁粉倒入三口烧瓶中,并将三口烧瓶至于超声振荡仪中,于超声频率为50kHz条件下,超声混合60min,再将三口烧瓶移入数显测速恒温磁力搅拌器中,于温度为45℃,转速为500r/min条件下,边恒温搅拌边向三口烧瓶中滴加前驱体稀释液,控制前驱体稀释液滴加速率为8mL/min,待前驱体稀释液滴加完毕,调节三口烧瓶中物料pH至7.8,再滴加乙醇溶液,控制乙醇溶液滴加速率为9nL/min,待乙醇溶液滴加完毕,继续恒温搅拌反应8h,再将三口烧瓶中物料倒入3号烧杯中,于室温条件下静置4h后,过滤,得滤饼,并用去离子水洗涤滤饼5次,再将洗涤后的滤饼转入烘箱中,于温度为110℃条件下,干燥至恒重,得干燥料;再将所得干燥料移入管式炉中,以80mL/min速率向炉内通入氩气,于氩气保护状态下,以10℃/min速率程序升温至1600℃,保温反应5h后,随炉冷却至室温,出料,得坯料,将所得坯料用质量分数为10%的氢氟酸浸泡洗涤60min后,再用去离子水洗涤6次,再将去离子水清洗后的坯料转入烘箱中,于温度为110℃条件下干燥至恒重,得磨料颗粒;按重量份数计,依次取60份磨料颗粒,80份陶瓷结合剂,10份羧甲基纤维素钠,20份水,倒入搅拌机中,以800r/min转速搅拌混合4h后,再将搅拌机中物料注入模具中,干燥成型后,脱模,再于温度为1100℃条件下,烧结10h,冷却,即得纳米金刚石粉末基研磨材料。所述前驱体为正硅酸甲酯。所述陶瓷结合剂是由以下重量份数的原料复配而成:6份氧化硼,6份氧化铝,4份氧化锆,60份硅酸钠,20份硅酸钙。
实例3
按质量比为1:15将纳米石墨和无水乙醇混合倒入1号烧杯中,并将1号烧杯移入超声分散仪,于超声频率为60kHz条件下,超声分散60min后,再向1号烧杯中加入纳米石墨质量0.4倍的聚乙烯吡咯烷酮,继续以60kHz的超声频率超声分散40min后,将1号烧杯移入数显测速恒温磁力搅拌器中,于温度为70℃,转速为500r/min条件下,恒温搅拌混合4h,得纳米石墨分散液;按体积比为1:7将钛酸四丁酯和无水乙醇倒入2号烧杯中,并将2号烧杯移入超声分散仪中,于超声频率为50kHz条件下,超声混合45min,得钛酸四丁酯稀释液;按重量份数计,依次取80份纳米石墨分散液,100份钛酸四丁酯稀释液,20份质量分数为60%的乙醇溶液,5份氟化钠,5份纳米铁粉,先将纳米石墨分散液和氟化钠、纳米铁粉倒入三口烧瓶中,并将三口烧瓶至于超声振荡仪中,于超声频率50kHz条件下,超声混合60min,再将三口烧瓶移入数显测速恒温磁力搅拌器中,于温度为45℃,转速为500r/min条件下,边恒温搅拌边向三口烧瓶中滴加钛酸四丁酯稀释液,控制钛酸四丁酯稀释液滴加速率为8mL/min,待钛酸四丁酯稀释液滴加完毕,调节三口烧瓶中物料pH至7.8,再滴加乙醇溶液,控制乙醇溶液滴加速率为9nL/min,待乙醇溶液滴加完毕,继续恒温搅拌反应8h,再将三口烧瓶中物料倒入3号烧杯中,于室温条件下静置4h后,过滤,得滤饼,并用去离子水洗涤滤饼5次,再将洗涤后的滤饼转入烘箱中,于温度为110℃条件下,干燥至恒重,得干燥料;再将所得干燥料移入管式炉中,以80mL/min速率向炉内通入氩气,于氩气保护状态下,以10℃/min速率程序升温至1600℃,保温反应5h后,随炉冷却至室温,出料,得坯料,将所得坯料用质量分数为10%的氢氟酸浸泡洗涤60min后,再用去离子水洗涤6次,再将去离子水清洗后的坯料转入烘箱中,于温度为110℃条件下干燥至恒重,得磨料颗粒;按重量份数计,依次取60份磨料颗粒,80份陶瓷结合剂,10份羧甲基纤维素钠,20份水,倒入搅拌机中,以800r/min转速搅拌混合4h后,再将搅拌机中物料注入模具中,干燥成型后,脱模,再于温度为1100℃条件下,烧结10h,冷却,即得纳米石墨基研磨材料。所述前驱体为正硅酸甲酯。所述陶瓷结合剂是由以下重量份数的原料复配而成:6份氧化硼,6份氧化铝,4份氧化锆,60份硅酸钠,20份硅酸钙。
实例4
按质量比为1:15将纳米石墨和无水乙醇混合倒入1号烧杯中,并将1号烧杯移入超声分散仪,于超声频率为60kHz条件下,超声分散60min后,再向1号烧杯中加入纳米石墨质量0.4倍的聚乙烯吡咯烷酮,继续以60kHz的超声频率超声分散40min后,将1号烧杯移入数显测速恒温磁力搅拌器中,于温度为70℃,转速为500r/min条件下,恒温搅拌混合4h,得纳米石墨分散液;按体积比为1:7将前驱体和无水乙醇倒入2号烧杯中,并将2号烧杯移入超声分散仪中,于超声频率为50kHz条件下,超声混合45min,得前驱体稀释液;按重量份数计,依次取80份纳米石墨分散液,100份前驱体稀释液,20份质量分数为60%的乙醇溶液,先将纳米石墨分散液倒入三口烧瓶中,并将三口烧瓶至于超声振荡仪中,于超声频率为50kHz条件下,超声混合60min,再将三口烧瓶移入数显测速恒温磁力搅拌器中,于温度为45℃,转速为500r/min条件下,边恒温搅拌边向三口烧瓶中滴加前驱体稀释液,控制前驱体稀释液滴加速率为8mL/min,待前驱体稀释液滴加完毕,调节三口烧瓶中物料pH至7.8,再滴加乙醇溶液,控制乙醇溶液滴加速率为9nL/min,待乙醇溶液滴加完毕,继续恒温搅拌反应8h,再将三口烧瓶中物料倒入3号烧杯中,于室温条件下静置4h后,过滤,得滤饼,并用去离子水洗涤滤饼5次,再将洗涤后的滤饼转入烘箱中,于温度为110℃条件下,干燥至恒重,得干燥料;再将所得干燥料移入管式炉中,以80mL/min速率向炉内通入氩气,于氩气保护状态下,以10℃/min速率程序升温至1600℃,保温反应5h后,随炉冷却至室温,出料,得坯料,将所得坯料用质量分数为10%的氢氟酸浸泡洗涤60min后,再用去离子水洗涤6次,再将去离子水清洗后的坯料转入烘箱中,于温度为110℃条件下干燥至恒重,得磨料颗粒;按重量份数计,依次取60份磨料颗粒,80份陶瓷结合剂,10份羧甲基纤维素钠,20份水,倒入搅拌机中,以800r/min转速搅拌混合4h后,再将搅拌机中物料注入模具中,干燥成型后,脱模,再于温度为1100℃条件下,烧结10h,冷却,即得纳米石墨基研磨材料。所述前驱体为正硅酸甲酯。所述陶瓷结合剂是由以下重量份数的原料复配而成:6份氧化硼,6份氧化铝,4份氧化锆,60份硅酸钠,20份硅酸钙。
实例5
按质量比为1:15将纳米石墨和无水乙醇混合倒入1号烧杯中,并将1号烧杯移入超声分散仪,于超声频率为60kHz条件下,超声分散60min后,再向1号烧杯中加入纳米石墨质量0.4倍的聚乙烯吡咯烷酮,继续以60kHz的超声频率超声分散40min后,将1号烧杯移入数显测速恒温磁力搅拌器中,于温度为70℃,转速为500r/min条件下,恒温搅拌混合4h,得纳米石墨分散液;按体积比为1:7将前驱体和无水乙醇倒入2号烧杯中,并将2号烧杯移入超声分散仪中,于超声频率为50kHz条件下,超声混合45min,得前驱体稀释液;按重量份数计,依次取80份纳米石墨分散液,100份前驱体稀释液,20份质量分数为60%的乙醇溶液,5份氟化钠,5份纳米铁粉,先将纳米石墨分散液和氟化钠、纳米铁粉倒入三口烧瓶中,并将三口烧瓶至于超声振荡仪中,于超声频率为50kHz条件下,超声混合60min,再将三口烧瓶移入数显测速恒温磁力搅拌器中,于温度为45℃,转速为500r/min条件下,边恒温搅拌边向三口烧瓶中滴加前驱体稀释液,控制前驱体稀释液滴加速率为8mL/min,待前驱体稀释液滴加完毕,调节三口烧瓶中物料pH至7.8,再滴加乙醇溶液,控制乙醇溶液滴加速率为9nL/min,待乙醇溶液滴加完毕,继续恒温搅拌反应8h,再将三口烧瓶中物料倒入3号烧杯中,于室温条件下静置4h后,过滤,得滤饼,并用去离子水洗涤滤饼5次,再将洗涤后的滤饼转入烘箱中,于温度为110℃条件下,干燥至恒重,得干燥料;再将所得干燥料移入管式炉中,以80mL/min速率向炉内通入氩气,于氩气保护状态下,以10℃/min速率程序升温至1600℃,保温反应5h后,随炉冷却至室温,出料,得坯料,将所得坯料用质量分数为10%的盐酸浸泡洗涤60min后,再用去离子水洗涤6次,再将去离子水清洗后的坯料转入烘箱中,于温度为110℃条件下干燥至恒重,得磨料颗粒;按重量份数计,依次取60份磨料颗粒,80份陶瓷结合剂,10份羧甲基纤维素钠,20份水,倒入搅拌机中,以800r/min转速搅拌混合4h后,再将搅拌机中物料注入模具中,干燥成型后,脱模,再于温度为1100℃条件下,烧结10h,冷却,即得纳米石墨基研磨材料。所述前驱体为正硅酸甲酯。所述陶瓷结合剂是由以下重量份数的原料复配而成:6份氧化硼,6份氧化铝,4份氧化锆,60份硅酸钠,20份硅酸钙。
实例6
按质量比为1:15将纳米石墨和无水乙醇混合倒入1号烧杯中,并将1号烧杯移入超声分散仪,于超声频率为60kHz条件下,超声分散60min后,再向1号烧杯中加入纳米石墨质量0.4倍的聚乙烯吡咯烷酮,继续以60kHz的超声频率超声分散40min后,将1号烧杯移入数显测速恒温磁力搅拌器中,于温度为70℃,转速为500r/min条件下,恒温搅拌混合4h,得纳米石墨分散液;按体积比为1:7将前驱体和无水乙醇倒入2号烧杯中,并将2号烧杯移入超声分散仪中,于超声频率为50kHz条件下,超声混合45min,得前驱体稀释液;按重量份数计,依次取80份纳米石墨分散液,100份前驱体稀释液,20份质量分数为60%的乙醇溶液,5份氟化钠,5份纳米铁粉,先将纳米石墨分散液和氟化钠、纳米铁粉倒入三口烧瓶中,并将三口烧瓶至于超声振荡仪中,于超声频率为50kHz条件下,超声混合60min,再将三口烧瓶移入数显测速恒温磁力搅拌器中,于温度为45℃,转速为500r/min条件下,边恒温搅拌边向三口烧瓶中滴加前驱体稀释液,控制前驱体稀释液滴加速率为8mL/min,待前驱体稀释液滴加完毕,调节三口烧瓶中物料pH至7.8,再滴加乙醇溶液,控制乙醇溶液滴加速率为9nL/min,待乙醇溶液滴加完毕,继续恒温搅拌反应8h,再将三口烧瓶中物料倒入3号烧杯中,于室温条件下静置4h后,过滤,得滤饼,并用去离子水洗涤滤饼5次,再将洗涤后的滤饼转入烘箱中,于温度为110℃条件下,干燥至恒重,得干燥料;再将所得干燥料移入管式炉中,以80mL/min速率向炉内通入氩气,于氩气保护状态下,以10℃/min速率程序升温至1600℃,保温反应5h后,随炉冷却至室温,出料,得坯料,将所得坯料用质量分数为10%的氢氟酸浸泡洗涤60min后,再用去离子水洗涤6次,再将去离子水清洗后的坯料转入烘箱中,于温度为110℃条件下干燥至恒重,得磨料颗粒;按重量份数计,依次取60份磨料颗粒,80份陶瓷结合剂,10份羧甲基纤维素钠,20份水,倒入搅拌机中,以800r/min转速搅拌混合4h后,再将搅拌机中物料注入模具中,干燥成型后,脱模,再于温度为1100℃条件下,烧结10h,冷却,即得纳米石墨基研磨材料。所述前驱体为正硅酸甲酯。所述陶瓷结合剂是由以下重量份数的原料复配而成:6份氧化硼,4份氧化锆,60份硅酸钠,20份硅酸钙。
对比例:
将实例1至实例6所得的纳米石墨基研磨材料及对比例产品进行性能检测,具体检测方法如下:
热膨胀系数:采用德国Netzsch公司的DIL402C热膨胀分析仪对剂试样条的热膨胀系数进行测试。测试条件:空气气氛;升温速率为5°C/min;测试温度范围为30~520°C。
抗折强度:通过材料表面与界面性能试验机对试条进行抗折强度测定,跨距L
为16mm,载荷加载速率为0.5mm/min,每个配方试样测试十次,最终结果取平均值。
显气孔率测:采用DXR型显气孔率容重测试仪,原理同阿基米德排水法,每个试样至少测试三次,结果取其平均值。待测试的试样条表面要求整洁、无划痕裂
纹,并在马弗炉中烘干处理,其体积不小于10cm3,真空度不低于0.09MPa。
具体检测结果如表1所示:
表1纳米石墨基研磨材料具体检测结果
Figure DEST_PATH_IMAGE002
由表1检测结果可知,本发明技术方案制备的纳米石墨基研磨材料具有热膨胀系数低,磨削性能佳的特点,在无机化学材料行业的发展中具有广阔的前景。

Claims (2)

1.一种纳米石墨基研磨材料的制备方法,其特征在于具体制备步骤为:
(1)将纳米石墨和无水乙醇按质量比为1:10~1:15超声分散后,再加入纳米石墨质量0.2~0.4倍的聚乙烯吡咯烷酮,超声分散后,恒温搅拌,得纳米石墨分散液;
(2)按体积比为1:5~1:7将前驱体和无水乙醇超声混合,得前驱体稀释液;所述前驱体为正硅酸甲酯或正硅酸乙酯中的任意一种;
(3)按重量份数计,依次取60~80份纳米石墨分散液,80~100份前驱体稀释液,10~20份乙醇溶液,4~5份氟化钠,2~5份纳米铁粉,先将纳米石墨分散液和氟化钠、纳米铁粉超声混合均匀,再滴加前驱体稀释液,调节pH至7.6~7.8后,再滴加乙醇溶液,再经恒温搅拌反应,静置,过滤,干燥,得干燥料;
(4)将所得干燥料至于管式炉中,于氩气保护状态下,加热升温至1500~1600℃,保温反应3~5h后,随炉冷却至室温,得坯料;
(5)将所得坯料用氢氟酸洗涤后,再用去离子水洗涤,随后干燥至恒重,得磨料颗粒;
(6)按重量份数计,依次取30~60份磨料颗粒,40~80份陶瓷结合剂,8~10份羧甲基纤维素钠,10~20份水,搅拌混合均匀后,注模,干燥,脱模,烧结,冷却,即得纳米石墨基研磨材料。
2.根据权利要求1所述的一种纳米石墨基研磨材料的制备方法,其特征在于,步骤(6)所述陶瓷结合剂是由以下重量份数的原料复配而成:4~6份氧化硼,4~6份氧化铝,2~4份氧化锆,50~60份硅酸钠,10~20份硅酸钙。
CN201810515196.6A 2018-05-25 2018-05-25 一种纳米石墨基研磨材料的制备方法 Active CN108503362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810515196.6A CN108503362B (zh) 2018-05-25 2018-05-25 一种纳米石墨基研磨材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810515196.6A CN108503362B (zh) 2018-05-25 2018-05-25 一种纳米石墨基研磨材料的制备方法

Publications (2)

Publication Number Publication Date
CN108503362A CN108503362A (zh) 2018-09-07
CN108503362B true CN108503362B (zh) 2020-10-13

Family

ID=63401618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810515196.6A Active CN108503362B (zh) 2018-05-25 2018-05-25 一种纳米石墨基研磨材料的制备方法

Country Status (1)

Country Link
CN (1) CN108503362B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116144270A (zh) * 2023-02-20 2023-05-23 湖南三安半导体有限责任公司 一种抛光液及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047218A (en) * 1934-06-21 1936-07-14 Du Pont Compositions comprising deacetylated chitin
GB580537A (en) * 1942-09-28 1946-09-11 Norton Grinding Wheel Co Ltd Method for improving water-resistant characteristics of resins and resinous articles, and resinous products resulting therefrom
US3406704A (en) * 1966-01-21 1968-10-22 Wheelabrator Corp Flow regulating valve for magnetic particles
JPS4950008A (zh) * 1972-09-14 1974-05-15
CN105324211A (zh) * 2013-06-24 2016-02-10 3M创新有限公司 磨料颗粒、制备磨料颗粒的方法以及磨料制品
CN106007721A (zh) * 2016-05-18 2016-10-12 淄博和润研磨材料科技有限公司 碳化硅陶瓷研磨球的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4810368B1 (zh) * 1968-11-19 1973-04-03
GB1426416A (en) * 1974-01-16 1976-02-25 Goodyear Tire & Rubber Low wear disc brake assembly
EA003437B1 (ru) * 1997-09-05 2003-04-24 Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Материалов" Способ изготовления композиционного материала алмаз-карбид кремния-кремний и композиционный материал, изготовленный этим способом
KR100638228B1 (ko) * 1998-09-28 2006-10-25 스켈레톤 테크놀로지스 에이지 다이아몬드 복합체 제조방법 및 이 방법에 의해 제조된복합체
CN101724379A (zh) * 2009-11-30 2010-06-09 大连大学 制动石墨-Cu-Fe-Al基高温自润滑复合摩擦材料及制备方法
CN102275141A (zh) * 2011-09-01 2011-12-14 南京航空航天大学 含石墨的固结磨料研磨抛光垫
CN102618216A (zh) * 2012-02-27 2012-08-01 西北工业大学 类陶瓷摩擦材料及其制备方法
CN105086936B (zh) * 2015-07-14 2017-06-20 东莞环球经典新型材料有限公司 一种人造石英石板材打磨用磨料及其制备方法
CN106348758A (zh) * 2016-08-30 2017-01-25 上海道邦磨料磨具有限公司 一种微型低温陶瓷金刚石研磨器
CN106673656A (zh) * 2017-01-19 2017-05-17 北京科技大学 一种石墨为碳源制备金刚石/碳化硅复合材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2047218A (en) * 1934-06-21 1936-07-14 Du Pont Compositions comprising deacetylated chitin
GB580537A (en) * 1942-09-28 1946-09-11 Norton Grinding Wheel Co Ltd Method for improving water-resistant characteristics of resins and resinous articles, and resinous products resulting therefrom
US3406704A (en) * 1966-01-21 1968-10-22 Wheelabrator Corp Flow regulating valve for magnetic particles
JPS4950008A (zh) * 1972-09-14 1974-05-15
CN105324211A (zh) * 2013-06-24 2016-02-10 3M创新有限公司 磨料颗粒、制备磨料颗粒的方法以及磨料制品
CN106007721A (zh) * 2016-05-18 2016-10-12 淄博和润研磨材料科技有限公司 碳化硅陶瓷研磨球的制备方法

Also Published As

Publication number Publication date
CN108503362A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
CN106747541B (zh) 一种原位合成莫来石晶须自增韧的莫来石陶瓷的方法
WO2022127429A1 (zh) 雾化芯用纳米多孔陶瓷及其制备方法
CN112939459B (zh) 一种耐磨耐腐蚀陶瓷釉料及其制备方法和应用
CN112500143B (zh) 一种硅基陶瓷型芯浆料及其应用
CN105565837A (zh) 一种碳陶复合材料的制备方法及其应用
CN105294138A (zh) 一种双峰氧化铝微粉及其制备方法
BRPI1014351B1 (pt) Semi-liquid paste, production process, casting mold and process for production
CN108503362B (zh) 一种纳米石墨基研磨材料的制备方法
CN112062587A (zh) 原位自生莫来石晶须增强的硅基陶瓷型芯制备方法
CN109354511A (zh) 一种石墨模具抗氧化浸渍液及其制备方法与应用
CN106064936B (zh) 一种高纯莫来石陶瓷材料的制备方法
CN112811933A (zh) 一种纳米线增强氮化硅泡沫陶瓷复合二氧化硅气凝胶的制备方法及其产品
CN113582699B (zh) 一种低粘度、高固含量的陶瓷浆料及其制备方法
CN111375731B (zh) 一种大型骨架类高温钛合金铸件的整体制备工艺
CN100424375C (zh) 飞机刹车盘用c/c复合材料的防氧化保护涂层制备的方法
CN101817675B (zh) 氮化硼纳米管增强的二氧化硅陶瓷的制备方法
CN107793138B (zh) 一种氧化铝陶瓷
KR101325509B1 (ko) 고가소성과 고강도를 나타내는 도자기의 제조방법
CN109721381B (zh) 氮化硅壳体强化氮化硅泡沫陶瓷的制备方法
CN106187249B (zh) 一种高热稳定性的电热陶瓷及其制备工艺
CN114180944B (zh) 一种大尺寸工业陶瓷热压制作方法
CN110483025A (zh) 防水用熔融石英砂陶瓷的制备方法
KR20150123470A (ko) 세라믹 코어 및 이의 제조방법
CN114853481B (zh) 硬度改善型耐氧化材料及其制备方法和应用
CN115745635B (zh) 一种组合式陶瓷拉丝坩埚的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200907

Address after: Group 20, Tuanjie Committee, Mashan District, Jixi City, Heilongjiang Province, 158100

Applicant after: Heilongjiang Guangshengda New Materials Technology Co.,Ltd.

Address before: 213000 88 New Gate Village, new Yao Town, new gate town, Zhong Lou District, Changzhou, Jiangsu

Applicant before: Zhang Jian

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant