CN108483786A - 一种水体突发性高浓度氨氮污染的应急处理方法 - Google Patents

一种水体突发性高浓度氨氮污染的应急处理方法 Download PDF

Info

Publication number
CN108483786A
CN108483786A CN201810431483.9A CN201810431483A CN108483786A CN 108483786 A CN108483786 A CN 108483786A CN 201810431483 A CN201810431483 A CN 201810431483A CN 108483786 A CN108483786 A CN 108483786A
Authority
CN
China
Prior art keywords
water body
nitrogen
semicoke
polluted
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810431483.9A
Other languages
English (en)
Inventor
陈少同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810431483.9A priority Critical patent/CN108483786A/zh
Publication of CN108483786A publication Critical patent/CN108483786A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种水体突发性高浓度氨氮污染的应急处理方法。包括以下步骤:步骤a)按空气与NH3体积比为10~30:1,将空气通入受污染水体耦合超声波进行20~50min高浓度氨氮的吹脱操作;步骤b)将改性半焦光催化剂投入到步骤a)处理后的水体中,在紫外光的辐照下,进行30~90min光催化降解反应;步骤c)将步骤b)反应后的水体在外磁场的作用下,进行改性半焦光催化剂的回收。本发明氨氮去除率高、处理成本低廉、处理时间短、操作简单、无二次污染,具有良好的推广应用前景。

Description

一种水体突发性高浓度氨氮污染的应急处理方法
技术领域
本发明涉及污水处理技术领域,尤其涉及一种水体突发性高浓度氨氮污染的应急处理方法。
背景技术
氨氮是指水中以游离氨(NH3)和铵离子(NH4 +)形式存在的氮。水中的氨氮可以在一定条件下转化成亚硝酸盐,如果长期饮用,水中的亚硝酸盐将和蛋白质结合形成亚硝胺,这是一种强致癌物质,对人体健康极为不利。氨氮是水体中的营养素,可导致水体富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。氨氮对水生物起危害作用的主要是游离氨,其毒性比铵盐大几十倍,并随碱性的增强而增大。每年全国许多江河、湖泊、水库等水源地都会发生氨氮污染物排放的突发性事故,这种突发性排放的氨氮污染物往往浓度较高,给水体的生态环境造成严重的破坏。
现有氨氮处理方法主要分为生物脱氮法和物理化学法。生物脱氮法工艺成熟稳定,但是存在运行周期长,设备占地面积大,处理成本高等缺陷,无法满足水体中氨氮污染因子突发性污染的应急处理需求。物理化学法包括吹脱法、膜分离法、MAP沉淀法、化学氧化法和光催化氧化法等。吹脱法操作简单,无二次污染,但是处理效果差,处理后的氨氮无法达标排放;膜分离法利用膜的选择透过性进行氨氮脱除,操作方便,氨氮回收率高,无二次污染,但是膜组件易于堵塞,投资运行成本高;MAP沉淀法处理工艺简单,成本低廉,但是沉淀污泥难以进行后续处理,容易造成水体的二次污染;化学氧化法通常采用次氯酸钠和臭氧等化学物质作为强氧化剂与水体中的氨氮污染物进行氧化还原反应,最终以氮气排出,处理效果好,但是大量次氯酸钠的投加容易使水体中氯离子的浓度增加,造成水体二次污染的问题;光催化氧化法具有化学氧化法的优点,同时无二次污染问题,但是现有的催化剂成本高,难以大规模推广应用;上述现有技术单独实施难以满足突发性高浓度氨氮污染水体的应急处理。
发明内容
为了克服上述技术的不足之处,本发明提供一种突发性高浓度氨氮污染的应急处理方法,具有氨氮去除率高、处理成本低廉、处理时间短、操作简单、无二次污染等优点,满足水体污染的应急处理要求,具备良好的推广应用前景。
本发明是通过以下技术方案予以实现的:
一种水体突发性高浓度氨氮污染的应急处理方法,包括以下步骤:
步骤a)按空气与NH3体积比为10~30:1,将空气通入受污染水体耦合超声波进行20~50min高浓度氨氮的吹脱操作;
步骤b)将改性半焦光催化剂投入到步骤a)处理后的水体中,在紫外光的辐照下,进行30~90min光催化降解反应;
步骤c)将步骤b)反应后的水体在外磁场的作用下,进行改性半焦光催化剂的回收;
所述改性半焦光催化剂的制备方法为:将半焦颗粒浮选除去其中的挥发分物质,然后超细破碎后得到超纯半焦微粒;在500~700℃的温度下通入10~30wt%的水蒸气进行高温活化3~8h;活化处理后的超纯半焦微粒浸渍在由纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水组成的混合溶液中,浸渍12~24h;经过去离子水洗至中性,真空干燥、惰性气氛保护下程序升温至300~500℃进行煅烧8~12h,得到改性半焦光催化剂。
优选的,所述超纯半焦微粒粒径为5~15um。
优选的,所述纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水的重量比为1:5~15:3~8:50~100。
优选的,所述超纯半焦微粒与混合溶液的重量比为2~5:10。
优选的,所述超声波的功率为200~1000W。
优选的,所述紫外光的辐照强度为2500~2800uw/cm2
优选的,所述外磁场的磁场强度为0.002~0.003T。
优选的,所述惰性气氛为氮气或氩气。
本发明的有益效果如下:
通过吹脱和光催化技术的协同作用,有效提高了高浓度氨氮的脱除效率,处理时间短;同时,采用活化半焦作为光催化剂的载体,纳米四氧化三铁、纳米二氧化钛和纳米二氧化铈作为活性组分,进一步增强了氨氮在紫外光的作用下进行光催化降解反应,不仅大幅度降低了处理成本,而且由于磁性四氧化三铁的作用使得催化剂易于回收循环利用,无二次污染问题。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
某水库突发性地排入大量高浓度氨氮污染的废水,总氨氮含量为540mg/L,采用以下步骤进行应急处理:
步骤a)按空气与NH3体积比为10:1,将空气通入受污染水体耦合功率为600W的超声波进行50min高浓度氨氮的吹脱操作;
步骤b)将改性半焦光催化剂投入到步骤a)处理后的水体中,在辐照强度为2500uw/cm2紫外光的作用下,进行90min光催化降解反应;
步骤c)将步骤b)反应后的水体在磁场强度为0.002T的外磁场作用下,进行改性半焦光催化剂的回收;
所述改性半焦光催化剂的制备方法为:将半焦颗粒浮选除去其中的挥发分物质,然后超细破碎后得到超纯半焦微粒,其粒径为5~15um;在500℃的温度下通入10wt%的水蒸气进行高温活化8h;活化处理后的超纯半焦微粒浸渍在由纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水组成的混合溶液中,浸渍12h,所述纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水的重量比为1:5:3:50,所述超纯半焦微粒与混合溶液的重量比为1:5;经过去离子水洗至中性,真空干燥、氮气气氛保护下程序升温至300℃进行煅烧12h,得到改性半焦光催化剂。
经过上述步骤处理后的受污染水体,其氨氮脱除率为92.5%,改性半焦光催化剂的回收率为99.1%。
实施例2
某河道突发性地排入大量高浓度氨氮污染的废水,总氨氮含量为720mg/L,采用以下步骤进行应急处理:
步骤a)按空气与NH3体积比为20:1,将空气通入受污染水体耦合功率为800W的超声波进行40min高浓度氨氮的吹脱操作;
步骤b)将改性半焦光催化剂投入到步骤a)处理后的水体中,在辐照强度为2600uw/cm2紫外光的作用下,进行40min光催化降解反应;
步骤c)将步骤b)反应后的水体在磁场强度为0.003T的外磁场作用下,进行改性半焦光催化剂的回收;
所述改性半焦光催化剂的制备方法为:将半焦颗粒浮选除去其中的挥发分物质,然后超细破碎后得到超纯半焦微粒,其粒径为5~15um;在600℃的温度下通入20wt%的水蒸气进行高温活化5h;活化处理后的超纯半焦微粒浸渍在由纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水组成的混合溶液中,浸渍18h,所述纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水的重量比为1:10:6:70,所述超纯半焦微粒与混合溶液的重量比为2:5;经过去离子水洗至中性,真空干燥、氮气气氛保护下程序升温至400℃进行煅烧10h,得到改性半焦光催化剂。
经过上述步骤处理后的受污染水体,其氨氮脱除率为93.1%,改性半焦光催化剂的回收率为98.2%。
实施例3
某江面突发性地排入大量高浓度氨氮污染的废水,总氨氮含量为970mg/L,采用以下步骤进行应急处理:
步骤a)按空气与NH3体积比为30:1,将空气通入受污染水体耦合功率为1000W的超声波进行30min高浓度氨氮的吹脱操作;
步骤b)将改性半焦光催化剂投入到步骤a)处理后的水体中,在辐照强度为2800uw/cm2紫外光的作用下,进行90min光催化降解反应;
步骤c)将步骤b)反应后的水体在磁场强度为0.003T的外磁场作用下,进行改性半焦光催化剂的回收;
所述改性半焦光催化剂的制备方法为:将半焦颗粒浮选除去其中的挥发分物质,然后超细破碎后得到超纯半焦微粒,其粒径为5~15um;在700℃的温度下通入30wt%的水蒸气进行高温活化3h;活化处理后的超纯半焦微粒浸渍在由纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水组成的混合溶液中,浸渍18h,所述纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水的重量比为1:15:8:100,所述超纯半焦微粒与混合溶液的重量比为1:2;经过去离子水洗至中性,真空干燥、氩气气氛保护下程序升温至500℃进行煅烧8h,得到改性半焦光催化剂。
经过上述步骤处理后的受污染水体,其氨氮脱除率为91.8%,改性半焦光催化剂的回收率为98.3%。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种水体突发性高浓度氨氮污染的应急处理方法,其特征在于,包括以下步骤:
步骤a)按空气与NH3体积比为10~30:1,将空气通入受污染水体耦合超声波进行20~50min高浓度氨氮的吹脱操作;
步骤b)将改性半焦光催化剂投入到步骤a)处理后的水体中,在紫外光的辐照下,进行30~90min光催化降解反应;
步骤c)将步骤b)反应后的水体在外磁场的作用下,进行改性半焦光催化剂的回收;
所述改性半焦光催化剂的制备方法为:将半焦颗粒浮选除去其中的挥发分物质,然后超细破碎后得到超纯半焦微粒;在500~700℃的温度下通入10~30wt%的水蒸气进行高温活化3~8h;活化处理后的超纯半焦微粒浸渍在由纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水组成的混合溶液中,浸渍12~24h;经过去离子水洗至中性,真空干燥、惰性气氛保护下程序升温至300~500℃进行煅烧8~12h,得到改性半焦光催化剂。
2.根据权利要求1所述的水体突发性高浓度氨氮污染的应急处理方法,其特征在于,所述超纯半焦微粒粒径为5~15um。
3.根据权利要求1所述的水体突发性高浓度氨氮污染的应急处理方法,其特征在于,所述纳米四氧化三铁、纳米二氧化钛、纳米二氧化铈和去离子水的重量比为1:5~15:3~8:50~100。
4.根据权利要求1所述的水体突发性高浓度氨氮污染的应急处理方法,其特征在于,所述超纯半焦微粒与混合溶液的重量比为2~5:10。
5.根据权利要求1所述的水体突发性高浓度氨氮污染的应急处理方法,其特征在于,所述超声波的功率为200~1000W。
6.根据权利要求1所述的水体突发性高浓度氨氮污染的应急处理方法,其特征在于,所述紫外光的辐照强度为2500~2800uw/cm2
7.根据权利要求1所述的水体突发性高浓度氨氮污染的应急处理方法,其特征在于,所述外磁场的磁场强度为0.002~0.003T。
8.根据权利要求1所述的水体突发性高浓度氨氮污染的应急处理方法,其特征在于,所述惰性气氛为氮气或氩气。
CN201810431483.9A 2018-05-08 2018-05-08 一种水体突发性高浓度氨氮污染的应急处理方法 Pending CN108483786A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810431483.9A CN108483786A (zh) 2018-05-08 2018-05-08 一种水体突发性高浓度氨氮污染的应急处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810431483.9A CN108483786A (zh) 2018-05-08 2018-05-08 一种水体突发性高浓度氨氮污染的应急处理方法

Publications (1)

Publication Number Publication Date
CN108483786A true CN108483786A (zh) 2018-09-04

Family

ID=63353064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810431483.9A Pending CN108483786A (zh) 2018-05-08 2018-05-08 一种水体突发性高浓度氨氮污染的应急处理方法

Country Status (1)

Country Link
CN (1) CN108483786A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113304781A (zh) * 2021-04-29 2021-08-27 万华化学集团股份有限公司 多相催化氧化催化剂、制备方法和用于处理含酚废水的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200959A (zh) * 1998-04-10 1998-12-09 中国科学院感光化学研究所 可磁分离的光催化剂及其制法
JP2005021743A (ja) * 2003-06-30 2005-01-27 Fuji Photo Film Co Ltd 写真廃液の処理方法
CN102107977A (zh) * 2011-01-18 2011-06-29 南京大学 一种含高浓度氨氮废水的资源化方法
CN201990565U (zh) * 2011-01-21 2011-09-28 樊利华 一种垃圾渗透液超声波组合废水处理装置
CN103521270A (zh) * 2013-10-22 2014-01-22 天津大学 磺化煤负载二氧化钛光催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200959A (zh) * 1998-04-10 1998-12-09 中国科学院感光化学研究所 可磁分离的光催化剂及其制法
JP2005021743A (ja) * 2003-06-30 2005-01-27 Fuji Photo Film Co Ltd 写真廃液の処理方法
CN102107977A (zh) * 2011-01-18 2011-06-29 南京大学 一种含高浓度氨氮废水的资源化方法
CN201990565U (zh) * 2011-01-21 2011-09-28 樊利华 一种垃圾渗透液超声波组合废水处理装置
CN103521270A (zh) * 2013-10-22 2014-01-22 天津大学 磺化煤负载二氧化钛光催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙圣楠: "金属与非金属改性TiO_2/ASC光催化剂的制备与NO氧化表面光电子行为研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113304781A (zh) * 2021-04-29 2021-08-27 万华化学集团股份有限公司 多相催化氧化催化剂、制备方法和用于处理含酚废水的方法
CN113304781B (zh) * 2021-04-29 2022-08-05 万华化学集团股份有限公司 多相催化氧化催化剂、制备方法和用于处理含酚废水的方法

Similar Documents

Publication Publication Date Title
Khan et al. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters
Eren Ultrasound as a basic and auxiliary process for dye remediation: a review
Jain et al. Photocatalytic and adsorption studies on the removal of dye Congo red from wastewater
CN102078807B (zh) 负载Er3+:YAlO3/TiO2的光催化剂及其制备方法
CN103663860A (zh) 一种高浓度废水的处理方法
WO2016115790A1 (zh) 一种臭氧光催化反应器及水处理方法
Adishkumar et al. Treatment of phenolic wastewaters in single baffle reactor by Solar/TiO2/H2O2 process
Jyothi et al. Contaminant salts as enhancers of sonocatalytic degradation of organic water pollutants: Effect of concentration, reaction time and adsorption on the efficiency of enhancement and the fate of concurrently formed H2O2
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
CN105344379B (zh) 一种水滑石负载酞菁铁可见光‑芬顿催化剂及其制备方法和应用
Song et al. Hydrothermal synthesis of graphene and titanium dioxide nanotubes by a one-step method for the photocatalytic degradation of amoxicillin
Arifin et al. Recent advances in advanced oxidation processes (AOPs) for the treatment of nitro-and alkyl-phenolic compounds
CN101891274A (zh) 一种室外自然光-过氧化氢协同处理结晶紫污染污水的方法
CN109293100B (zh) 一种重金属污水的处理方法
Khan et al. Adsorption of cobalt onto activated charcoal and its utilization for decolorization of bromocresol green dye
CN108772038B (zh) 一种脱除水中铅离子的吸附剂及其制备方法和应用
CN108640248B (zh) 一种利用基于碳基磁性铁钴双金属材料激活过一硫酸盐去除水中***的方法
CN108483786A (zh) 一种水体突发性高浓度氨氮污染的应急处理方法
Valappil et al. Decolorization of Reactive Blue 220 aqueous solution using fungal synthesized Co3O4 nanoparticles
CN102847519B (zh) 一种去除水中氯酸根的复合吸附材料及其制备方法
CN113135594B (zh) 一种过硫酸盐的活化方法及其应用
Mohammed et al. The decolorization of reactive yellow dye by advanced oxidation using continuous reactors
CN109908890B (zh) 一种可见光纳米复合催化剂及其制备和应用
CN112604669A (zh) 一种复合树脂气凝胶及其在污水处理中的应用
CN117228783B (zh) 磁性生态絮凝材料及其微污染水处理装置、微污染水处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180904