CN108461368B - 一种ZnO/PdO复合表面传导电子发射膜及其制备方法 - Google Patents

一种ZnO/PdO复合表面传导电子发射膜及其制备方法 Download PDF

Info

Publication number
CN108461368B
CN108461368B CN201810069692.3A CN201810069692A CN108461368B CN 108461368 B CN108461368 B CN 108461368B CN 201810069692 A CN201810069692 A CN 201810069692A CN 108461368 B CN108461368 B CN 108461368B
Authority
CN
China
Prior art keywords
zno
electron emission
pdo
sputtering
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810069692.3A
Other languages
English (en)
Other versions
CN108461368A (zh
Inventor
李雁淮
高磊雯
李晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810069692.3A priority Critical patent/CN108461368B/zh
Publication of CN108461368A publication Critical patent/CN108461368A/zh
Application granted granted Critical
Publication of CN108461368B publication Critical patent/CN108461368B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/02Manufacture of cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2231/00Cathode ray tubes or electron beam tubes
    • H01J2231/12CRTs having luminescent screens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本发明公开了一种ZnO/PdO复合表面传导电子发射膜及其制备方法,发射膜包括PdO膜层,PdO膜层上设置有ZnO籽晶层,ZnO籽晶层上生长有方向能够调控的ZnO纳米线层,ZnO纳米线层经过电形成过程能够产生具有许多发射尖端的纳米裂缝,使纳米裂缝处的电场增强。制备方法包括以下步骤:1)通过射频反应磁控溅射法在经过抛光处理的Si基片上沉积PdO膜层;2)通过射频反应磁控溅射法在沉积有PdO膜层的Si基片上沉积ZnO籽晶层;3)通过低温水浴法在ZnO籽晶层上按照电子发射方向生长ZnO纳米线。本发明能够有效提高发射效率,提升器件的显示质量及寿命,降低功耗和成本。

Description

一种ZnO/PdO复合表面传导电子发射膜及其制备方法
技术领域
本发明涉及表面传导电子发射领域,具体涉及一种ZnO/PdO复合表面传导电子发射膜及其制备方法,能应用于表面传导电子发射显示器,提升显示质量和寿命,降低功耗和成本。
背景技术
SED(Surface-conduction Electron-emitter Display,表面传导电子发射显示器)属于高真空器件,对经过电形成过程和激活过程制备完成的表面传导电子发射源(SCE,Surface-conduction Electron-emitter)薄膜两端施加一定的器件电压Vf,SCE薄膜的纳米缝隙表面附近形成超高电场,促使SCE薄膜的内部电子因量子遂穿效应而越过固体表面势垒,形成一定的场致发射电流,称为器件电流If。在阳极高压Va的作用下,部分遂穿电子向上运动到达阳极形成一定的有效发射电流Ie,高动能的电子轰击阳极板上的荧光粉发出可见光,从而完成场致发射和电致发光的过程。由此可见,SCE上使用的表面传导电子发射膜是SED器件的核心,提高表面传导电子发射膜的发射效率,能够有效降低SED器件的功耗和成本、提高表面传导电子发射显示器的显示质量和寿命,故而对表面传导电子发射膜的研究具有重要意义。
发明内容
本发明的目的在于针对上述现有技术中的问题,提供一种ZnO/PdO复合表面传导电子发射膜及其制备方法,能够有效提高发射效率,提升器件的显示质量及寿命,降低功耗和成本。
为了实现上述目的,本发明ZnO/PdO复合表面传导电子发射膜,包括PdO膜层,PdO膜层上设置有ZnO籽晶层,ZnO籽晶层上生长有方向能够调控的ZnO纳米线层,ZnO纳米线层经过电形成过程能够产生具有许多发射尖端的纳米裂缝,使纳米裂缝处的电场增强。
本发明ZnO/PdO复合表面传导电子发射膜的制备方法,包括以下步骤:
1)通过射频反应磁控溅射法在经过抛光处理的Si基片上沉积PdO膜层;
2)通过射频反应磁控溅射法在沉积有PdO膜层的Si基片上沉积ZnO籽晶层;
3)通过低温水浴法在ZnO籽晶层上按照电子发射方向生长ZnO纳米线。
所述的步骤1)在沉积PdO膜层时:
溅射温度为25℃,本底真空低于5×10-4Pa,将纯度均为99.99%的氩气与氧气制成混合气体与纯度为99.99%的金属Pd靶反应溅射,混合气体中的氧气所占比例为25%~75%,溅射气压为0.3Pa~0.5Pa,Pd靶的溅射功率为80~100W,沉积时间为40s~100s。
所述的步骤2)在沉积ZnO籽晶层时:
溅射温度为25℃,本底真空低于5×10-4Pa,将纯度均为99.99%的氩气与氧气制成混合气体与纯度为99.99%的金属Zn靶反应溅射,混合气体中氧气所占的比例为25%~75%,溅射气压为0.3Pa~0.5Pa,Zn靶溅射功率为120~180W,沉积时间为100s~1000s。
射频反应磁控溅射法采用的仪器为ULVAC制造的ACS-4000-C4型多功能磁控溅射仪。
将经过步骤2)得到的基片放入生长液中再进行低温水浴加热生长ZnO纳米线,所述的生长液为5mM分析纯的乙酸锌溶液与5mM分析纯的六次甲基四胺溶液组成的混合溶液。
步骤3)中的水浴温度为60℃~100℃。
步骤3)中的水浴时间为3000s~8000s。
与现有技术相比,本发明具有如下的有益效果:ZnO/PdO复合表面传导电子发射膜经过电形成过程能够产生纳米裂缝,纳米裂缝处具有许多纳米线发射尖端,继而使得纳米裂缝处的电场加强,复合表面传导电子发射膜的电子发射系数提高,应用于表面传导电子发射显示器时,能够降低器件的功耗及成本,也使得器件显示质量和工作寿命得到提升。通过高真空电子发射测试平台对使用本发明制备得到的SED器件样品进行电形成,即电子发射性能测试,得出具有ZnO纳米线层的复合表面传导电子发射膜具有高的电子发射效率。
与现有技术相比,本发明的制备方法操作简单,通过射频反应磁控溅射法完成PdO膜层与ZnO籽晶层的沉积,再通过低温水浴法在ZnO籽晶层上按照电子发射方向生长ZnO纳米线即可,射频反应磁控溅射法与低温水浴法实施过程易控,制备成品率高。
附图说明
图1应用本发明ZnO/PdO复合表面传导电子发射膜的SED测试器件结构示意图;
图2本发明ZnO/PdO复合表面传导电子发射膜纳米裂缝的发射示意图;
具体实施方式
下面结合附图对本发明做进一步的详细说明。
参见图1-2,本发明ZnO/PdO复合表面传导电子发射膜包括PdO膜层,PdO膜层上设置有ZnO籽晶层,ZnO籽晶层上生长有方向能够调控的ZnO纳米线层,ZnO纳米线层经过电形成过程能够产生具有许多发射尖端的纳米裂缝,使纳米裂缝处的电场增强。
实施例1
本发明ZnO/PdO复合表面传导电子发射膜的制备方法,包括以下步骤:
采用日本真空(ULVAC)的ACS-4000-C4型多功能磁控溅射仪沉积PdO膜层,靶材为Pd靶。溅射本底真空度为1×10-4Pa,溅射过程中的工作气体为Ar和O2的混合气体,纯度均为99.999%,通入的气体流量比为Ar:O2=4:1,工作气压为0.3Pa;Pd靶溅射功率为射频100W,预溅射时间为15min,沉积时间为60s。之后利用日本真空(ULVAC)的ACS-4000-C4型多功能磁控溅射仪沉积ZnO籽晶层,靶材为Zn靶。溅射本底真空度为1×10-4Pa,溅射过程中的工作气体为Ar和O2混合气体,纯度均为99.999%,通入的气体流量比为Ar:O2=4:1,工作气压为0.3Pa;Zn靶溅射功率为射频150W,预溅射时间为15min,沉积时间分别为60s。最后将沉积了ZnO籽晶层的基片放入装生长液(生长液为5mM的乙酸锌(Zn(CH3COO)2·2H2O)(分析纯)和5mM的六次甲基四胺(C6H12N4)(分析纯)的混合溶液)的烧杯中,然后对烧杯水浴加热,水浴温度为80℃,水浴时间为3600s,获得ZnO纳米线层。所得PdO膜层的厚度为6nm,ZnO籽晶层的厚度为9nm,所述ZnO纳米线层的厚度为81nm。本发明采用ZnO/PdO复合表面传导电子发射膜的SED测试器件包括有若干SCE单元1。SCE单元1由器件电极2(其材质为金属Ni-Cu-Ni复合薄膜)和ZnO/PdO复合表面传导电子发射膜3构成,其中,ZnO/PdO复合表面传导电子发射膜3的各层构成及厚度如上所述。电形成的流程如下:将SED器件样品放入真空度高于6*10-6的真空室内,在电极两端施加幅值渐增的三角脉冲电压,使得器件电流If逐渐减小至零,此时电子发射膜内部形成纳米裂缝。当SED器件纳米裂缝形成后,在真空测试***中进行电子发射特性的测试。
实施例2
本发明ZnO/PdO复合表面传导电子发射膜的制备方法,包括以下步骤:
采用日本真空(ULVAC)的ACS-4000-C4型多功能磁控溅射仪沉积PdO膜层,靶材为Pd靶。溅射本底真空度为9.5×10-5Pa,溅射过程中的工作气体为Ar和O2混合气体,纯度均为99.999%,通入的气体流量比为Ar:O2=4:1,工作气压为0.33Pa;Pd靶溅射功率为射频100W,预溅射时间为15min,沉积时间为60s。之后利用日本真空(ULVAC)的ACS-4000-C4型多功能磁控溅射仪沉积ZnO籽晶层,靶材为Zn靶。溅射本底真空度为1.2×10-4Pa,溅射过程中的工作气体为Ar和O2混合气体,纯度均为99.999%,通入的气体流量比为Ar:O2=4:1,工作气压为0.31Pa;Zn靶溅射功率为射频150W,预溅射时间为15min,沉积时间分别为180s。最后将沉积了ZnO籽晶层的基片放入装生长液(生长液为5mM的乙酸锌(Zn(CH3COO)2·2H2O)(分析纯)和5mM的六次甲基四胺(C6H12N4)(分析纯)的混合溶液)的烧杯中,然后对烧杯水浴加热,水浴温度为80℃,水浴时间为5400s,以此获得ZnO纳米线层。所得PdO膜层的厚度为6nm,ZnO籽晶层的厚度为27nm,ZnO纳米线层的厚度为120nm。采用ZnO/PdO复合表面传导电子发射膜的SED测试器件包括若干SCE单元1。SCE单元1由器件电极2(其材质为金属Ni-Cu-Ni复合薄膜)和ZnO/PdO复合表面传导电子发射膜3构成,其中,ZnO/PdO复合表面传导电子发射膜3的各层构成及厚度如上所述。电形成的流程如下:将SED器件样品放入真空度高于6*10-6的真空室内,在电极两端施加幅值渐增的三角脉冲电压,使得器件电流If逐渐减小至零,此时电子发射膜内部形成纳米裂缝。当SED器件纳米裂缝形成后,在真空测试***中进行电子发射特性的测试。
实施例3
本发明ZnO/PdO复合表面传导电子发射膜的制备方法,包括以下步骤:
采用日本真空(ULVAC)的ACS-4000-C4型多功能磁控溅射仪沉积PdO膜层,靶材为Pd靶。溅射本底真空度为9.8×10-5Pa,溅射过程中的工作气体为Ar和O2混合气体,纯度均为99.999%,通入的气体流量比为Ar:O2=4:1,工作气压为0.32Pa;Pd靶溅射功率为射频100W,预溅射时间为15min,沉积时间为60s。之后利用日本真空(ULVAC)的ACS-4000-C4型多功能磁控溅射仪沉积ZnO籽晶层,靶材为Zn靶。溅射本底真空度为1.1×10-4Pa,溅射过程中的工作气体为Ar和O2混合气体,纯度均为99.999%,通入的气体流量比为Ar:O2=4:1,工作气压为0.3Pa;Zn靶溅射功率为射频150W,预溅射时间为15min,沉积时间分别为600s。最后将沉积了ZnO籽晶层的基片放入装生长液(生长液为5mM的乙酸锌(Zn(CH3COO)2·2H2O)(分析纯)和5mM的六次甲基四胺(C6H12N4)(分析纯)的混合溶液)的烧杯中,然后对烧杯水浴加热,水浴温度为80℃,水浴时间为7200s,以此获得ZnO纳米线层。所得PdO膜层的厚度为6nm,ZnO籽晶层的厚度为54nm,ZnO纳米线层的厚度为170nm。采用ZnO/PdO复合表面传导电子发射膜的SED测试器件包括若干SCE单元1。SCE单元1由器件电极2(其材质为金属Ni-Cu-Ni复合薄膜)和ZnO/PdO复合表面传导电子发射膜3构成,其中,ZnO/PdO复合表面传导电子发射膜3的各层构成及厚度如上所述。电形成的流程如下:将SED器件样品放入真空度高于6*10-6的真空室内,在电极两端施加幅值渐增的三角脉冲电压,使得器件电流If逐渐减小至零,此时电子发射膜内部形成纳米裂缝。当SED器件纳米裂缝形成后,在真空测试***中进行电子发射特性的测试。
表1.不同样品的发射效率对比
样品 ZnO纳米线厚度 ZnO籽晶层厚度 发射效率 测试器件电压
对比样品 9nm 0.15 17.5V
实施例1 81nm纳米线厚度 9nm 0.35 17.5V
实施例2 120nm纳米线厚度 27nm 0.65 17.5V
实施例3 170nm纳米线厚度 54nm 1.125 17.5V
通过对生长有不同厚度ZnO纳米线层的ZnO/PdO复合表面传导电子发射膜与未生长ZnO纳米线层的发射膜测试数据比较,得知:1、随着ZnO籽晶层沉积时间增加,薄膜平均厚度和ZnO籽晶层的平均厚度均逐渐增加。2、利用高真空电子发射测试平台对ZnO/PdO复合表面传导电子发射膜制备的SED器件样品进行电形成,即电子发射性能测试,可见具有ZnO纳米线层的复合表面传导电子发射膜具有高的电子发射效率。

Claims (6)

1.一种ZnO/PdO复合表面传导电子发射膜,其特征在于:包括PdO膜层,PdO膜层上设置有ZnO籽晶层,ZnO籽晶层上生长有方向能够调控的ZnO纳米线层,ZnO纳米线层经过电形成过程能够产生具有许多发射尖端的纳米裂缝,使纳米裂缝处的电场增强;
所述纳米裂缝的形成过程为:采用ZnO/PdO复合表面传导电子发射膜的SED测试器件包括有若干SCE单元,SCE单元由器件电极和ZnO/PdO复合表面传导电子发射膜构成,器件电极材质为金属Ni-Cu-Ni复合薄膜;电形成过程如下:
将SED测试器件放入真空度高于6*10-6的真空室内,在电极两端施加幅值渐增的三角脉冲电压,使得器件电流If逐渐减小至零,此时电子发射膜内部形成纳米裂缝。
2.一种如权利要求1所述ZnO/PdO复合表面传导电子发射膜的制备方法,其特征在于,包括以下步骤:
1)通过射频反应磁控溅射法在经过抛光处理的Si基片上沉积PdO膜层;
溅射温度为25℃,本底真空低于5×10-4Pa,将纯度均为99.99%的氩气与氧气制成混合气体与纯度为99.99%的金属Pd靶反应溅射,混合气体中的氧气所占比例为25%~75%,溅射气压为0.3Pa~0.5Pa,Pd靶的溅射功率为80~100W,沉积时间为40s~100s;
2)通过射频反应磁控溅射法在沉积有PdO膜层的Si基片上沉积ZnO籽晶层;
溅射温度为25℃,本底真空低于5×10-4Pa,将纯度均为99.99%的氩气与氧气制成混合气体与纯度为99.99%的金属Zn靶反应溅射,混合气体中氧气所占的比例为25%~75%,溅射气压为0.3Pa~0.5Pa,Zn靶溅射功率为120~180W,沉积时间为100s~1000s;
3)通过低温水浴法在ZnO籽晶层上按照电子发射方向生长ZnO纳米线。
3.根据权利要求2所述的制备方法,其特征在于:射频反应磁控溅射法采用的仪器为ULVAC制造的ACS-4000-C4型多功能磁控溅射仪。
4.根据权利要求2所述的制备方法,其特征在于:将经过步骤2)得到的基片放入生长液中再进行低温水浴加热生长ZnO纳米线,所述的生长液为5mM分析纯的乙酸锌溶液与5mM分析纯的六次甲基四胺溶液组成的混合溶液。
5.根据权利要求2所述的制备方法,其特征在于:步骤3)中的水浴温度为60℃~100℃。
6.根据权利要求2所述的制备方法,其特征在于:步骤3)中的水浴时间为3000s~8000s。
CN201810069692.3A 2018-01-24 2018-01-24 一种ZnO/PdO复合表面传导电子发射膜及其制备方法 Expired - Fee Related CN108461368B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810069692.3A CN108461368B (zh) 2018-01-24 2018-01-24 一种ZnO/PdO复合表面传导电子发射膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810069692.3A CN108461368B (zh) 2018-01-24 2018-01-24 一种ZnO/PdO复合表面传导电子发射膜及其制备方法

Publications (2)

Publication Number Publication Date
CN108461368A CN108461368A (zh) 2018-08-28
CN108461368B true CN108461368B (zh) 2020-04-28

Family

ID=63238817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810069692.3A Expired - Fee Related CN108461368B (zh) 2018-01-24 2018-01-24 一种ZnO/PdO复合表面传导电子发射膜及其制备方法

Country Status (1)

Country Link
CN (1) CN108461368B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383258A (zh) * 2008-10-22 2009-03-11 西安交通大学 表面传导场发射电子源导电膜的结构
CN101872706A (zh) * 2010-07-21 2010-10-27 福州大学 Sed显示器表面传导电子发射源的制作方法
CN102243973A (zh) * 2011-05-30 2011-11-16 福州大学 一种碳纳米材料复合场致电子发射膜及其制备方法
CN104124123A (zh) * 2014-04-02 2014-10-29 西安交通大学 一种MgO/ZnO复合介质保护膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020160111A1 (en) * 2001-04-25 2002-10-31 Yi Sun Method for fabrication of field emission devices using carbon nanotube film as a cathode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383258A (zh) * 2008-10-22 2009-03-11 西安交通大学 表面传导场发射电子源导电膜的结构
CN101872706A (zh) * 2010-07-21 2010-10-27 福州大学 Sed显示器表面传导电子发射源的制作方法
CN102243973A (zh) * 2011-05-30 2011-11-16 福州大学 一种碳纳米材料复合场致电子发射膜及其制备方法
CN104124123A (zh) * 2014-04-02 2014-10-29 西安交通大学 一种MgO/ZnO复合介质保护膜及其制备方法

Also Published As

Publication number Publication date
CN108461368A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN101505035B (zh) 一种n-氧化锌/p-氧化镍异质pn结紫外激光二极管及其制备方法
CN101588021B (zh) 一种硅基氧化锌纳米棒阵列电抽运随机激光器
CN102154622A (zh) 用作太阳能电池光吸收层的铜铟镓硒薄膜的制备方法
CN104616944A (zh) 一种表面富褶皱超薄直立石墨烯场发射阴极的制备方法
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
Zhu et al. Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells
CN102709399A (zh) 一种高效纳米天线太阳能电池的制作方法
CN108461368B (zh) 一种ZnO/PdO复合表面传导电子发射膜及其制备方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
TW200913284A (en) Method for the production of a transparent conductive oxide coating
CN105200390A (zh) 一种直接沉积纳米石墨烯抑制二次电子发射的方法
CN102220562B (zh) 一种绒面结构氧化锌透明导电薄膜的制备方法
CN108039379A (zh) 一种金属箔片表面金属掺杂的氧化锌复合电极薄膜及其制备方法
CN104882347B (zh) 一种纳米碳片‑硅纳米线复合结构场发射阴极的制备方法
CN102324350A (zh) 一种定向生长的网格状高性能碳纳米管场发射阵列
CN102828152A (zh) 一种低电阻率Mo薄膜的制备方法
CN114752907A (zh) 一种氧化锌—一氧化铅复合抗菌薄膜制备方法
CN109518149A (zh) 沿<002>方向择优生长的硒化锑光电薄膜的制备方法
CN102747337B (zh) 一种制备大面积高质量非晶碳薄膜的方法
CN106024862B (zh) 一种带有电极的金刚石薄膜/GaN异质结的制备方法
CN104761154A (zh) 一种利用有机大分子材料作催化制备ito纳米线的方法
CN102476787A (zh) ZnO纳米线阵列的制备方法
CN101673786B (zh) 磁场下CdTe太阳电池的制备方法
CN108987218B (zh) 一种提升石墨烯片-硅纳米线阵列复合材料场发射性能的方法
CN108010973A (zh) 一种低缺陷密度非晶氧化钼空穴传输层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200428

CF01 Termination of patent right due to non-payment of annual fee