CN108380207A - 用于减少来自富燃废气的氨排放的催化剂 - Google Patents

用于减少来自富燃废气的氨排放的催化剂 Download PDF

Info

Publication number
CN108380207A
CN108380207A CN201810181205.2A CN201810181205A CN108380207A CN 108380207 A CN108380207 A CN 108380207A CN 201810181205 A CN201810181205 A CN 201810181205A CN 108380207 A CN108380207 A CN 108380207A
Authority
CN
China
Prior art keywords
catalyst
molecular sieve
transition metal
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810181205.2A
Other languages
English (en)
Inventor
J·M·菲杰耶科
H-Y·陈
A·J·赖宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of CN108380207A publication Critical patent/CN108380207A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

减少氨(NH3)排放的***包括(a)包含含有三效催化剂的第一基底的第一组件,其中第一组件位于包含含有氨氧化催化剂的第二基底的第二组件上游,其中所述氨氧化催化剂包含负载至少一种过渡金属的小孔分子筛;和(b)位于这些组件之间的含氧气体入口。例如,可以使用CHA骨架型小孔分子筛。减少NH3排放的方法包括将含氧气体引入气流中以产生充氧气流;和使该充氧气流暴露在NH3氧化催化剂下以将至少一部分NH3选择性氧化成N2。该方法可进一步包括使富燃废气暴露在三效催化剂下以产生包含NH3的气流的步骤。

Description

用于减少来自富燃废气的氨排放的催化剂
本申请是原始中国专利申请号201280024430.6,申请日2012年1月23日,发明名称“用于减少来自富燃废气的氨排放的催化剂”的分案申请。
发明领域
本发明涉及小孔分子筛负载的过渡金属催化剂。本发明还涉及使用小孔分子筛负载的过渡金属催化剂减少来自富燃废气的氨(NH3)的***。
发明背景
典型发动机废气是含有气体排放物如一氧化碳(CO)、未燃或部分燃烧的烃或其氧化物(HC)和氮氧化物(NOx)等成分的不均匀混合物。通常,在发动机排气***中提供催化剂组合物和该组合物所处的基底以将某些或所有这些废气组分转化成无害组分。例如,已知在固定式富燃发动机中合适地使用三效(TWC)催化剂以减少氮氧化物(NOx)、烃(HC)和一氧化碳(CO)的排放。由于这些发动机在富燃条件(其中空燃比具有大于化学计量的燃料量(即空燃比低于化学计量比)条件)下运行,相当大部分的发动机输出的NOx在三效催化剂上转化成氨(NH3)并因此作为二次排放排出。对于配有TWC催化剂的典型富燃发动机,尾管NH3可以为大约400ppm。
适用于在稀燃废气条件下的固定源的确证NOx减除技术是选择性催化还原(SCR)。在这种方法中,在通常由贱金属构成的催化剂上用还原剂如氨(NH3)将NOx还原成氮气(N2)。SCR提供NOx的有效转化,只要废气温度在该催化剂的活性温度范围内。使用NH3将NOx物类还原成N2有助于达到稀燃发动机中的NOx排放目标。使用NH3作为还原剂的后果在于,在不完全转化或废气温度上升的条件下,NH3会从车辆废气中逃逸。为避免NH3逃逸,可以将亚化学计算量的NH3注射到废气流中,但NOx转化率降低。或者,可以将NH3超剂量送入该***以提高NOx转化率,但废气随后需要进一步处理以除去过量或逸出的NH3。即使在NH3的亚化学计量的剂量下,废气温度的提高也可能释放储存在NOx减除催化剂上的氨,以致NH3逃逸。传统的贵金属基氧化催化剂如负载在氧化铝上的铂在225℃以上对除氨非常有效,但它们产生相当多的N2O和NOx作为不想要的副产物而非所需N2产物。通常,柴油机催化剂用于汽油机、固定式柴油或天然气发动机会导致生成NH3排放,因为该催化剂非常活泼。
使用分级NOx处理-NH3处理构造的两级***是工业中已知的。但是,这些***所用的催化剂在400℃以上无法实现NH3转化成N2的高选择性,其中NH3过度氧化成NOx会导致该***超出NOx法规。另外,现有技术的***通常涉及在化学计量比以上运行的稀燃发动机。在这种稀燃条件下,大多数现有技术的***使用用于NOx的选择性催化还原(SCR)的催化剂。已经为许多稀燃用途开发出用含氮化合物如氨或脲进行NOx的SCR,包括用于处理工业固定式用途、热电厂、燃气轮机、火力发电厂、化学加工工业中的工厂和炼油厂加热炉和锅炉、熔炉、炼焦炉、市政垃圾处理厂和焚化炉,和许多车载(移动)用途,例如用于处理柴油机废气。但是,类似于已知的两级***,已知的SCR催化剂和***在400℃以上无法实现NH3转化成N2的高选择性,其中NH3过度氧化成NOx会导致该***超出NOx法规。
目前,对燃烧***废气的NH3排放没有调控,因为没有用于减少此类***中的NH3排放、同时还符合对NOx、HC和CO的严格排放法规的商业上可得的技术。因此找出可以在使NOx、HC和CO排放低于现有法规的同时将NH3排放减至最低(例如低于10ppm)的催化剂和使用该催化剂的方法是有用的。因此,减少在高温下运行的富燃发动机废气的氮氧化物(NOx)、烃(HC)和一氧化碳(CO)排放并提供NH3氧化功能以减少流出物中的NH3量的催化剂和***仍然非常合意。
发明概述
根据本发明的一个实施方案,使用小孔分子筛催化剂作为用于在高温下运行的富燃发动机用途的氨氧化催化剂(AOC)。我们已经发现,在这样的用途中使用包含负载至少一种过渡金属的小孔分子筛的催化剂以将NH3以极高选择性氧化成N2。此前在用NH3选择性催化还原(SCR)NOx的稀燃用途中已使用类似的催化剂。但是,使用这样的催化剂作为氧化催化剂以将NH3氧化形成N2和H2O是不典型的。但是,本发明人的发明人已经发现,可有利地使用包括负载至少一种过渡金属的小孔分子筛的NH3氧化催化剂(AOC),包括在高温下运行的富燃发动机中或用于处理容易逸出不合意的NH3量的其它废气。在本文中提供使用此类催化剂的新型***和方法。
根据本发明的一个实施方案,减少氨(NH3)排放的***包含:(a)包含第一基底和位于其上的三效催化剂的第一组件,其中第一组件位于包含第二基底和位于其上的氨氧化催化剂的第二组件上游并与其流体连通,其中所述氨氧化催化剂包含负载至少一种过渡金属的小孔分子筛;和(b)位于所述第一和第二组件之间的含氧气体入口。
在本发明的另一实施方案中,该***另外包括:(c)包含来自富燃燃烧过程的废气的第一气体进料流,其中所述进料流在第一组件上游并与其流体连通;和(d)位于第一和第二组件之间并与它们流体连通并且与所述含氧气体入口流体连通的导管。在至少一个实施方案中,用于NH3氧化的小孔分子筛是载铜的CHA骨架型小孔分子筛,如载铜的SAPO-34。
在本发明的再一实施方案中,该AOC催化剂包括第一催化剂层形式的负载过渡金属的小孔分子筛。在另一实施方案中,该AOC催化剂可包括包含铂族金属的第二催化剂层,其中第一催化剂层与第二催化剂层的相对位置使得废气在接触第二催化剂层之前接触第一催化剂层。铂族金属可以是例如钌(Ru)、铑(Rh)、钯(Pd)、铼(Re)、铱(Ir)和铂(Pt)及其混合物。在本发明的至少一个实施方案中,第一催化剂层中的负载过渡金属的小孔分子筛是载铜的CHA骨架型小孔分子筛,如载铜的SAPO-34,且第二催化剂层中的铂族金属是Pt。当第二基底具有入口端、出口端、在入口端与出口端之间延伸的长度、沿长度延伸的壁元件和由壁元件划定的多个通道例如流通型整料时,该AOC催化剂层可位于例如壁元件上。
在本发明的另一实施方案中,减少氨(NH3)排放的方法包括:将含氧气体引入具有NH3和<1的λ的废气中以提供充氧气流;和使该充氧气流暴露在包含至少一种负载至少一种过渡金属的小孔分子筛的NH3氧化催化剂下以将至少一部分NH3选择性氧化成N2。在该方法的再一实施方案中,该方法在引入含氧气体的步骤上游进一步包括步骤:使富燃废气暴露在用于转化氮氧化物(NOx)、烃(HC)和一氧化碳(CO)的三效催化剂下以产生具有NH3和<1的λ的气流。可以引入该含氧气体以产生具有至少大约1:1,优选大约2:1至大约1:1的O2:NH3比的充氧气流。在至少一个实施方案中,该含氧气体包含至少0.1%氧,如环境空气。该暴露步骤优选在富燃废气处于至少大约350摄氏度,优选大约400-650摄氏度的温度下时进行。
在本发明的再一实施方案中,催化剂制品包含:(a)催化剂组合物,其包含:(i)包含划定出孔隙并具有原子位点的骨架的小孔分子筛;和(ii)以原子形式位于至少一个所述原子位点和以氧化物形式自由存在于至少一个所述孔隙中的至少一种过渡金属;和(b)基底,所述催化剂位于其上,其中所述催化剂制品适合氧化富燃废气的催化转化生成的氨。在至少一个实施方案中,该小孔分子筛是具有占催化剂总重量的大约0.1至大约20.0重量%铜的载铜(Cu)小孔分子筛。在另一实施方案中,游离铜以足以防止该催化剂的氮氧化物转化的水热劣化的量存在。在至少一个实施方案中,该小孔分子筛是载铜的CHA骨架型小孔分子筛,如载铜的SAPO-34。
附图简述
为了更充分理解本发明,仅作为示例参考下列附图,其中
图1是根据本发明的一个实施方案的***构造;
图2是显示在550℃和600℃下来自三效催化剂(TWC)***、根据本发明的一个实施方案的三效催化剂和NH3氧化催化剂(TWC-AOC)***和根据本发明的另一实施方案的含有氨逃逸催化剂的三效催化剂和多层NH3氧化催化剂***(TWC-ASC)的氨(NH3)排放的柱形图。
图3是显示在550℃和600℃下来自图2的描述中提到的三种***的氮氧化物(NOx)排放的柱形图;
图4是显示在550℃和600℃下来自TWC***、根据本发明的一个实施方案具有2.5%的铜载量的TWC-AOC***和根据本发明的另一实施方案的具有4.2%的铜载量的TWC-AOC***的氨(NH3)排放的柱形图;
图5是显示在550℃和600℃下来自图4的描述中提到的三种***的氮氧化物(NOx)排放的柱形图;
图6是显示在450℃、500℃、550℃和600℃下来自TWC***和根据本发明的另一实施方案的使用铜载量为4.2%的Cu/SAPO-34作为AOC催化剂的TWC-AOC***的氨(NH3)排放的柱形图;
图7是显示在450℃、500℃、550℃和600℃下来自图6的描述中提到的三种***的氮氧化物(NOx)排放的柱形图。
发明详述
已经确认,小孔分子筛负载的过渡金属催化剂可用于将NH3选择性氧化成N2。这些催化剂暴露在富燃过程(如在汽油机中和在燃气轮机、火力发电厂等的高功率运转中遇到的那些富燃过程)的废气中存在的还原气氛下后保持良好的活性、优异的热稳定性和耐久性。但是,可能由于过渡金属迁移、烧结和/或降低的过渡金属分散的效应,中孔和大孔分子筛暴露在还原气氛下时不保持它们的稳定性和活性。本发明的方法被发现特别有效地减少高温下的富燃废气或具有NH3和过量净还原物类(例如λ<1)的其它废气的NH3排放。在某些实施方案中,转化的富燃废气的温度为至少大约350摄氏度,优选大约400-650摄氏度。
可通过使富燃废气经过三效(TWC)催化剂而生成NH3。本文所用的TWC催化剂能够同时减少发动机废气中存在的氮氧化物(NOx)、烃(HC)和一氧化碳(CO)的排放水平,例如将至少一部分这样的气体转化成N2、O2、H2O和CO2。TWC是指涂布整料或挤出形式的由负载在载体材料上的单层或多层活性催化剂材料(即铂族金属(PGM)或非PGM)构成的催化剂,其可以具有或没有附加添加剂以增强特定的催化剂活性(例如H2S抑制、NOx存储、HC存储)。在富燃条件(即其中燃烧前的空燃比具有大于化学计量的燃料量(即空燃比低于化学计量比)下运行的燃烧过程中,相当大部分的排出NOx在三效催化剂上转化成氨(NH3),其通常作为二次排放排出。本发明涉及NH3氧化催化剂,尤其是小孔分子筛负载的过渡金属催化剂用于将NH3选择性氧化成N2并由此降低NH3排放水平的用途。在使用NH3作为还原剂还原NOx的稀燃废气处理中已使用类似的催化剂。这些催化剂现在已被发现作为在高温下运行的富燃发动机的废气中的NH3氧化催化剂具有惊人的结果。在该综合***中,AOC催化剂选择性氧化漏过TWC催化剂或由TWC催化剂在正常富燃运行条件过程中生成的一些或所有NH3
与稀燃条件相比,富燃条件对催化剂组分提出额外的要求。也就是说,除具有良好活性和优异的热稳定性外,该AOC催化剂需要在暴露在高温还原气氛中后仍耐用。
空燃比(AFR)是燃烧过程中存在的空气与燃料的质量比。如果提供刚好足以完全燃烧所有燃料的空气,该比率被称作化学计量比。Lambda(λ)是表示AFR的另一方式。对汽油燃料(理想地是纯辛烷)而言,化学计量空燃比为大约14.7(即空气的近似质量是燃料质量的14.7倍)。小于14.7:1的这种燃料的任何混合物被认为是富混合物,而大于14.7:1的任何混合物被认为是稀混合物。最实用的AFR装置实际测量废气中的残留氧(对稀混合物而言)或未燃烃(对富混合物而言)的量。Lambda(λ)是给定混合物的实际AFR与化学计量的比率并且衡量气体的净氧化物类与净还原物类的比率。1.0的λ处于化学计量,富混合物具有小于1.0的λ,稀混合物具有大于1.0的λ。
本文所用的还原气氛是净还原,例如λ值小于1的废气(例如由小于化学计量的空燃比得出)。与此相比,非还原气氛是净氧化,例如具有大于1的λ值(例如由大于化学计量的空燃比得出)。
在至少一个实施方案中,本发明的方法包括例如通过注射将含氧气体引入含有NH3的气流中以产生充氧NH3气流的步骤。该含氧气体优选以足以提供用于将NH3选择性氧化成N2以将NH3的量减少至所需水平的至少最低量的氧的速率引入。在至少一个实施方案中,引入含氧气体以产生具有至少大约1:1,优选大约2:1至大约1:1的O2:NH3比的充氧气流。在至少一个实施方案中,该含氧气体包含至少0.1%氧,优选至少0.5%氧。尽管该含氧气体可能含有在0.5%氧以上的任何量的氧,氧量可以为0.5%氧至21%氧(即环境空气)以致不必用额外的氧含量补充该含氧气体。可以使用其它含氧气体,如在惰性气体如氩气中的氧气。如本领域普通技术人员所理解,注氧可以将含有NH3的气流的λ值调节至例如稀燃(即大于1的λ值)。
该AOC催化剂包含负载至少一种过渡金属的小孔分子筛。分子筛通常如下通过几元环定义:大孔环是12元环或更大;中孔环是10元环;小孔环是8元环或更小。本发明的小孔分子筛优选具有8个四面体原子的最大环尺寸。本文所用的“分子筛”被理解为是指含有尺寸精确和一致的微小孔隙的亚稳材料。分子筛骨架可以如International Zeol iteAssociation骨架类型码(在http://www.iza-online.org/)公认的那样定义。下面更详细描述这些分子筛。
根据本发明的另一实施方案,减少来自富燃废气的NH3排放的***包含:包含用于转化来自发动机废气的氮氧化物(NOx)、烃(HC)和一氧化碳(CO)的三效催化剂(TWC)的第一基底;用于引入含氧气体的装置如注射器,其中在第一基底下游引入该气体;和在注射器下游的包含NH3氧化催化剂(AOC)的第二基底,其中NH3氧化催化剂包含至少一种含有负载至少一种过渡金属的小孔分子筛的催化剂。如本领域普通技术人员所理解,术语“注入”和“注射器”无意将本发明限于引入含氧气体的特定装置或方法。根据本发明可以使用用于引入含氧气体的任何已知装置或手段。
图1显示根据本发明的这一实施方案的***构造。图1中所示的***构造包括含有用于转化例如来自发动机10的废气中的NOx、HC和CO的TWC催化剂的第一基底12。设置注射器14以使其在TWC催化剂下游和含有AOC催化剂的第二基底18上游的点16引入含氧气体。注射器14将含氧气体如空气注入来自TWC催化剂的NH3气流中以产生充氧NH3气流。如本领域普通技术人员所理解,如果废气的状况不要求减少特定污染物如NOx、HC和CO的排放,含有TWC催化剂的第一基底12可能不是必要的。因此,在另一实施方案中,该***可能包含用于将含氧气体如空气注入含有NH3的气流中的注射器,其中该注射器位于含有AOC催化剂的第二基底上游。优选地,引入该***中的含氧气体不含或基本不含氨或其任何前体如脲。
在来自特定类型发动机的某些废气条件中,AOC催化剂可以仅由负载至少一种过渡金属的小孔分子筛构成。这种催化剂可用在例如TWC催化剂或固定式柴油机后的汽油机减排***构造中。在这一实施方案中,负载至少一种过渡金属的小孔分子筛可以是第一催化剂层形式。在来自其它类型发动机的其它废气条件中,AOC催化剂可进一步包括另一类型的催化剂。例如,在至少一个实施方案中,AOC催化剂可进一步包括包含铂族金属(PGM)的第二催化剂层,以使第一催化剂层相对于经过或穿过催化剂的废气流位于第二催化剂层上。在这种构造中,废气在接触第二催化剂层之前接触第一催化剂层。例如,这两种催化剂可以沿整料的长度延伸,第二催化剂层位于第一催化剂层下方。或者,这两种催化剂可以连续布置,第一催化剂层在第二催化剂层上游。在另一实施方案中,第一和第二催化剂层可重叠至少一层的长度的例如大约25%,大约50%或大约75%。
这种多层AOC催化剂可用在例如燃天然气的固定式发动机中。燃天然气的固定式发动机已知在富燃条件下运行,包含PGM的第二催化剂层可用于一氧化碳(CO)氧化而不将NH3氧化成NOx。这种多层催化剂常被称作氨逃逸催化剂(ASC),因为其具有PGM催化剂底层和用于选择性NH3氧化的催化剂作为顶层。在这种构造中,使用足量的顶层催化剂以将NH3选择性氧化成N2,以使容许量的NH3或没有NH3到达PGM催化剂底层以致过氧化形成NOx。在本发明的至少一个实施方案中,顶层催化剂与底层催化剂的比率为大约0.5:1至大约10:1,更优选大约2:1至大约7:1。
如本领域普通技术人员所理解,这种多层催化剂可具有其它构造并可以以许多方式使用。例如,当含有AOC催化剂的第二基底具有入口端、出口端、在入口端与出口端之间延伸的长度、沿长度延伸的壁元件和由壁元件划定的多个通道,该多层AOC催化剂可位于例如壁元件上。基底的实例包括流通型蜂窝整料和壁流蜂窝整料。铂族金属可以是例如钌(Ru)、铑(Rh)、钯(Pd)、铼(Re)、铱(Ir)和铂(Pt)及其混合物。可以使用典型的载体,例如氧化铝、氧化锆、二氧化铈等。
根据本发明的另一实施方案,减少氨(NH3)排放的方法包括:将含氧气体引入具有NH3和<1的λ的废气中以提供充氧气流;和使该充氧气流暴露在包含至少一种负载至少一种过渡金属的小孔分子筛的NH3氧化催化剂下以将至少一部分NH3选择性氧化成N2。在该方法的再一实施方案中,该方法在引入含氧气体的步骤上游进一步包括步骤:使富燃废气暴露在用于转化氮氧化物(NOx)、烃(HC)和一氧化碳(CO)的三效催化剂下以产生具有NH3和<1的λ的气流。可以引入该含氧气体以产生具有至少大约1:1,优选大约2:1至大约1:1的O2:NH3比的充氧气流。在至少一个实施方案中,该含氧气体包含至少0.1%氧,如环境空气。该暴露步骤优选在富燃废气处于至少大约350摄氏度,优选大约400-650摄氏度的温度下时进行。以足以提供用于将NH3选择性氧化成N2以将NH3的量减少至所需水平的至少最低量的氧的速率注入该含氧气体。因此,引入的氧量优选产生具有至少大约1:1,优选大约2:1至大约1:1的O2:NH3比和大于1的λ值的充氧气流。
要认识到,通过借助它们的骨架类型编码(FTC)定义分子筛,我们意在包括通过该FTC规定的“类型材料(Type Material)”和任何和所有同型骨架材料。(“类型材料”是最初用于确立该骨架类型的物类)。参考表1,其列举用于本发明的一系列示例性分子筛材料。为避免疑问,除非另行指明,在本文中通过名称,例如“菱沸石”提到分子筛是指该分子筛材料本身(在此实例中是天然存在的类型材料菱沸石)而非指各分子筛所属的骨架类型编码所指的任何其它材料,例如另一些同型骨架材料。
分子筛类型材料,如天然存在的(即矿物)菱沸石与相同骨架类型编码内的同种型之间的区别不是仅仅随意的,而是反映了材料之间的性质差别,这又可能造成在本发明的方法中的活性差别。例如从下表1中会认识到,通过“MeAPSO”和“MeAlPO”,我们是指被一种或多种金属取代的沸石类型(zeotypes)。合适的取代金属包括但不限于As、B、Be、Co、Fe、Ga、Ge、Li、Mg、Mn、Zn、Cu、Ti、Sn、In和Zr中的一种或多种。
在一个具体实施方案中,用于本发明的小孔分子筛催化剂可选自硅铝酸盐分子筛、金属取代的硅铝酸盐分子筛和铝磷酸盐分子筛。可用于本发明的铝磷酸盐分子筛包括铝磷酸盐(AlPO)分子筛、金属取代的(MeAlPO)分子筛、硅-铝磷酸盐(SAPO)分子筛和金属取代的硅-铝磷酸盐(MeAPSO)分子筛。
在一个实施方案中,该小孔分子筛选自下列骨架类型:ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATT、CDO、CHA、DDR、DFT、EAB、EDI、EPI、ERI、GIS、GOO、IHW、ITE、ITW、LEV、KFI、MER、MON、NSI、OWE、PAU、PHI、RHO、RTH、SAT、SAV、SIV、THO、TSC、UEI、UFI、VNI、YUG和ZON及其混合物和/或共生物。在另一实施方案中,含有8个四面体原子的最大环尺寸的小孔分子筛选自骨架类型CHA、LEV、ERI、AEI、UFI和DDR及其混合物和/或共生物。在再一实施方案中,该小孔分子筛包含CHA骨架类型。如下论述,在至少一个实施方案中,本发明的小孔分子筛负载至少一种过渡金属,如铜。用于本发明的优选的含铜三维小孔分子筛/铝磷酸盐分子筛由Cu/CHA,如Cu/SAPO-34构成。在如上所述的多层AOC催化剂中,优选的AOC催化剂包括载铜的CHA骨架类型小孔分子筛,如SAPO-34作为第一催化剂顶层中的负载至少一种过渡金属的小孔分子筛和包括Pt作为第二催化剂底层中的铂族金属。
用于本发明的分子筛可包括经过为改进水热稳定性而进行的处理的那些。改进水热稳定性的示例性方法包括:
(i)通过下述脱铝:蒸汽处理和使用酸或络合剂,例如(EDTA-乙二胺四乙酸)的酸萃取;用酸和/或络合剂处理;用SiCl4气流处理(用Si替代分子筛骨架中的Al);
(i i)阳离子交换-使用多价阳离子,如La;和
(i i i)使用含磷化合物(参见例如美国专利No.5,958,818)。
合适的小孔分子筛的示例性实例列在表1中。
表1:小孔分子筛
特别适用于NH3氧化的小孔分子筛列在表2中。
表2:优选的小孔分子筛
用于本申请的分子筛包括天然和合成分子筛,优选合成分子筛,因为该分子筛具有更均匀的硅铝比(SAR)、微晶尺寸、微晶形态并且不存在杂质(例如碱土金属)。小孔硅铝酸盐分子筛可具有2至300,任选4至200,优选8至150的硅铝比(SAR)。要认识到,可以选择任何SAR比以改进热稳定性,但这可能不利地影响过渡金属交换。
用于本发明的小孔分子筛可具有三维维数,即在所有三个结晶维度中互连的孔隙结构,或二维维数。在一个实施方案中,用于本发明的小孔分子筛由具有三维维数的分子筛构成。在另一实施方案中,用于本发明的小孔分子筛由具有二维维数的分子筛构成。
在某些实施方案中,该小孔分子筛包含、基本上由或由选自ABC-6、AEI/CHA、AEI/SAV、AEN/UEI、AFS/BPH、BEC/ISV、beta、fuajasite、ITE/RTH、KFI/SAV、lovdarite、蒙特索马石、MTT/TON、pentasils、SBS/SBT、SSF/STF、SSZ-33和ZSM-48的无序骨架构成。在一个优选实施方案中,一种或多种小孔分子筛可包含选自SAPO-34、AlPO-34、SAPO-47、ZYT-6、CAL-1、SAPO-40、SSZ-62或SSZ-13的CHA骨架类型和/或选自AlPO-18、SAPO-18、SIZ-8或SSZ-39的AEI骨架类型。在一个实施方案中,该混合相组合物是AEI/CHA-混合相组合物。该分子筛中各骨架类型的比率不受特别限制。例如,AEI/CHA比可以为大约5/95至大约95/5,优选大约60/40至40/60。在一个示例性实施方案中,AEI/CHA比可以为大约5/95至大约40/60。
在本发明的至少一个实施方案中,小孔分子筛是一种或多种过渡金属的载体。本文所述的所述至少一种过渡金属意在包括铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、铈(Ce)、镍(Ni)、铜(Cu)、锌(Zn)、镓(Ga)、钼(Mo)、银(Ag)、铟(In)、钌(Ru)、铑(Rh)、钯(Pd)、铼(Re)、铱(Ir)、铂(Pt)和锡(Sn)及其混合物中的一种或多种。所述一种或多种过渡金属优选是铬(Cr)、铈(Ce)、锰(Mn)、铁(Fe)、钴(Co),、镍(Ni)、和铜(Cu)及其混合物,最优选铜。如本领域普通技术人员已知,过渡金属如铜可以与小孔分子筛骨架内的氧化铝交换以制造小孔分子筛负载的过渡金属催化剂。
过渡金属载量已被发现改进根据本发明的实施方案的催化剂的性能。如本领域普通技术人员所理解,载体催化剂如分子筛可以以许多方式加载过渡金属。过渡金属可以例如与分子筛结构中的原子交换位点处的原子成分交换。另外或或者,该过渡金属可以作为盐形式的未交换的过渡金属存在于分子筛中,例如存在于分子筛的孔隙内。在煅烧时,未交换的过渡金属盐分解形成过渡金属氧化物,其可以被称作“游离金属”。当过渡金属载量超过原子交换位点的饱和限(即所有交换位点已交换)时,在分子筛中可能存在未交换的过渡金属。尽管在本发明的NH3氧化用途中可能使用这样高的过渡金属载量,但这样的载量不同于标准SCR用途,因为过渡金属的氧化效应会与还原反应竞争。例如,当使用铜作为过渡金属时,氧化铜可能作为“游离铜”存在于分子筛的孔隙中。这种游离铜活金属是活性和选择性的,并且现在也被发现在经受高温热老化的催化剂中提供更高稳定性。
如本领域普通技术人员所理解,分子筛中可包括的过渡金属的总量取决于许多因素,包括例如所用分子筛的类型和酸度。分子筛中可包括的过渡金属的总量最多为每个酸位点1个金属原子,通过本领域中已知的典型NH3吸收方法测得的优选的金属/酸位点比为大约0.02:1至大约1:1。过渡金属的量还取决于例如使用AOC作为单层催化剂还是作为多层催化剂,如当使用小孔分子筛负载的过渡金属催化剂作为铂族金属催化剂底层上的顶层时。可通过任何可行的方法在分子筛中加入铜。例如,其可以在合成分子筛后例如通过初湿含浸或交换法加入;或可以在分子筛合成过程中加入。
在本发明的再一实施方案中,催化剂制品包含:(a)催化剂组合物,其包含:(i)包含划定出孔隙并具有原子位点的骨架的小孔分子筛;和(i i)以原子形式位于至少一个所述原子位点和以氧化物形式自由存在于至少一个所述孔隙中的至少一种过渡金属;和(b)基底,所述催化剂位于其上,其中所述催化剂制品适合氧化富燃废气的催化转化生成的氨。在另一实施方案中,游离过渡金属如游离铜以足以防止该催化剂的氮氧化物转化的水热劣化的量存在。不受制于任何理论,据信,过渡金属在低载量(即低于某一饱和限)下与骨架中的原子位点交换。当添加在这一饱和限以上的量的过渡金属时,剩余过渡金属以游离过渡金属(即过渡金属氧化物)的形式存在于该催化剂中。
在本发明的至少一个实施方案中,该小孔分子筛是CHA骨架类型的小孔分子筛负载的铜催化剂。用于本发明的优选的含铜三维小孔分子筛/铝磷酸盐分子筛由Cu/CHA,如Cu/SAPO-34构成。当使用Cu/SAPO-34作为单层催化剂中的小孔分子筛负载的过渡金属催化剂时,铜金属的总量可以为催化剂总重量的0.01至20重量%,优选2至8重量%,最优选2.5至6重量%。当使用Cu/SAPO-34作为多层催化剂中的小孔分子筛负载的过渡金属催化剂时,铜的总量可以为催化剂总重量的0.01至20重量%,优选0.2至4重量%,最优选0.5至3重量%。在另一实施方案中,游离铜以足以防止该催化剂的氮氧化物转化的水热劣化的量存在。但是,如本领域普通技术人员所理解和如上所述,分子筛中可包括的过渡金属的总量取决于许多因素,包括例如所用分子筛的类型和酸度和催化剂层数。
用于本发明的催化剂(包括分子筛催化剂和PGM催化剂)可以涂布在合适的基底整料上或可作为挤出型催化剂成形。在一个实施方案中,在流通型整料基底(即具有轴向经过整个部件的许多小的平行通道的蜂窝整料催化剂载体)或壁流过滤器,如壁流过滤器上涂布该催化剂。用于本发明的催化剂可例如作为活性涂层(washcoat)组分涂布在合适的整料基底,如金属或陶瓷流通型整料基底或过滤基底,如壁流过滤器或烧结金属或部分过滤器上(如WO 01/80978或EP 1057519中所公开,后一文献描述了包含至少减慢碳烟经过其中的曲折流径的基底)。或者,用于本发明的催化剂可以直接合成到基底上。或者,本发明的催化剂可以成形成挤出型流通催化剂。这种挤出型催化剂可成形为催化剂筒。挤出的AOC催化剂筒可独自或与TWC催化剂筒结合成形为单层或多层AOC催化剂筒。其它形式,如丸粒、珠粒或其它成型催化剂是可行的。
用于涂布到基底上的含有本发明的小孔分子筛负载的过渡金属催化剂的活性涂层组合物可包含本领域普通技术人员已知的其它成分。例如,这样的活性涂层组合物可另外包含选自氧化铝、二氧化硅、(非分子筛)二氧化硅-氧化铝、天然存在的粘土、TiO2、ZrO2、CeO2,和SnO2及其混合物和组合的粘合剂。该催化剂组合物可首先作为浆料制备并作为活性涂层浆料组合物使用任何已知方法施加到基底上。
本发明的方法可以在来自燃烧过程,如来自内燃机(无论是移动还是固定的)、燃气轮机和燃煤、燃油或燃天然气的工厂或发动机的气体上进行。该方法也可用于处理来自工业工艺,如精炼、来自炼油厂加热炉和锅炉、熔炉、化学加工工业、炼焦炉、市政垃圾处理厂和焚化炉、咖啡烘焙工厂等的气体。在一个具体实施方案中,该方法用于处理来自在富燃条件下的车辆内燃机,如汽油机,或来自以液体石油气或天然气为动力的固定式发动机的废气。
本文中引用的任何和所有专利和参考资料的整个内容经此引用并入本文。
实施例
下列实施例例示而非限制本发明。
实施例1.
进行试验以测量来自对比***和本发明的***的氨(NH3)排放和氮氧化物(NOx)排放。将含有三效催化剂(TWC)的对比***与根据本发明的一个实施方案的包括三效催化剂和NH3氧化催化剂的***(TWC-AOC***)和根据本发明的另一实施方案的包括三效催化剂和含有氨逃逸催化剂的多层NH3氧化催化剂***的***(TWC-ASC)进行比较。该多层NH3氧化催化剂***包括小孔分子筛负载的过渡金属催化剂的第一层(即顶层)和铂族金属催化剂的第二层(底层)。具体而言,使用Cu/SAPO-34作为多层NH3氧化催化剂的顶层和使用铂作为底层。特别地,沿流通型基底的壁涂布催化剂层,首先在基底上涂布第二层并在第二层上涂布第一层。
气流的空间速度为在TWC催化剂处100,000hr-1和在NH3氧化催化剂处50,000hr-1。TWC催化剂入口处的废气如下构成:1410ppm C3H8作为C1,0.45%CO,0.15%H2,2700ppm NO,0.25%O2,10%CO2,10%H2O,余量包含N2。TWC催化剂处的废气的λ值经计算为0.9905,而在注入含氧气体后,NH3氧化催化剂处的气体的λ值经计算为大约1.022。作为含氧气体的一部分加入0.5%氧。使用载铂的涂布整料基底。
图2显示在550℃和600℃下来自三个***的NH3排放。类似地,图3显示在550℃和600°下来自三个***的NOx排放。如图2和3中所示,TWC-AOC***和TWC-ASC***都能将出口NH3显著降至30ppm以下,但只有TWC-AOC***的NH3氧化催化剂(即单层小孔分子筛负载的过渡金属催化剂)减少或保持出口NOx浓度。TWC-ASC***的多层NH3氧化催化剂(即顶层小孔分子筛负载的过渡金属催化剂和铂族金属催化剂底层)导致NOx增加200ppm。这是因为一些NH3到达铂族金属底层催化剂(即ASC催化剂)并在接触底层催化剂时被气体中存在的一些氧化剂氧化成NOx。通过交换的分子筛(例如顶层载量含有占催化剂总重量的大约0.1.至大约20.0重量%铜,优选大约0.1至大约10.0重量%铜和最优选0.1重量%至大约6.0重量%铜)的较高顶层载量使这种效应最小化。此外,该TWC-ASC***更适合氧化可能较低的气体。
实施例2
进行试验以比较过渡金属载量对小孔分子筛催化剂的减排能力的影响。使用铜作为过渡金属。将含有三效催化剂(TWC)的对比***与具有2.5%铜载量的包括三效催化剂和NH3氧化催化剂的本发明的***(TWC-AOC***)和具有4.2%铜载量的包括三效催化剂和NH3氧化催化剂的本发明的***(TWC-AOC***)进行比较。具体而言,使用Cu/SAPO-34作为NH3氧化催化剂。
气流的空间速度为在TWC催化剂处100,000hr-1和在NH3氧化催化剂处50,000hr-1。TWC催化剂入口处的废气如下构成:1410ppm C3H8作为C1,0.45%CO,0.15%H2,2700ppm NO,0.25%O2,10%CO2,10%H2O,余量包含N2。TWC催化剂处的废气的λ值经计算为0.9905,而在注入含氧气体后,NH3氧化催化剂处的气体的λ值经计算为大约1.022。作为含氧气体的一部分加入0.5%氧。使用载铂的涂布整料基底。
图4显示在550℃和600℃下来自这些***的NH3排放,而图5显示NOx排放。如图4和5中所示,与对比TWC***相比,较高铜载量带来改进的NH3氧化以及额外的NOx逃逸。经确定,过量游离铜会提高NOx逃逸。在一些***中,一定量的NOx逃逸是可容许的;在这些***中,本领域技术人员容易平衡附加的游离铜催化剂的益处(例如防止催化剂的氮氧化物转化的水热劣化)与提高但仍容许的NOx逃逸量。
实施例3
进行试验以比较温度对小孔分子筛催化剂的减排能力的影响。使用铜作为过渡金属。将含有三效催化剂(TWC)的对比***与具有4.2%铜载量的包括三效催化剂和NH3氧化催化剂的本发明的***(TWC-AOC***)进行比较。具体而言,使用Cu/SAPO-34作为NH3氧化催化剂。
气流的空间速度为在TWC催化剂处100,000hr-1和在NH3氧化催化剂处50,000hr-1。TWC催化剂入口处的废气如下构成:1410ppm C3H8作为C1,0.45%CO,0.15%H2,2700ppm NO,0.25%O2,10%CO2,10%H2O,余量包含N2。TWC催化剂处的废气的λ值经计算为0.9905,而在注入含氧气体后,NH3氧化催化剂处的气体的λ值经计算为大约1.022。作为含氧气体的一部分加入0.5%氧。使用载铂的涂布整料基底。
图6显示在450℃、500℃、550℃和600℃下来自这些***的NH3排放,而图7显示NOx排放。如图6和7中所示,NH3氧化催化剂即使在较高温度下也能显著减少出口NH3,同时也减少NOx排放。
相应地,载有过渡金属的小孔分子筛(即小孔分子筛负载的过渡金属)耐受富燃应用所需的长期高温老化并在高温低氧条件下高度选择性地将NH3转化成N2。现有***和催化剂在富燃条件中通常造成显著的NH3逃逸并且在高温下不高效。
尽管在本文中已经显示和描述了本发明的优选实施方案,但要理解的是,仅作为实例提供这样的实施方案。本领域技术人员在不背离本发明精神的情况下会想到许多变动、修改和替代。因此,所附权利要求旨在涵盖落在本发明的精神和范围内的所有这样的变动。

Claims (9)

1.催化剂制品,包含:
(a)含有氨氧化催化剂的活性涂层,其中所述氨氧化催化剂包含负载有至少一种交换的过渡金属和游离过渡金属的小孔分子筛,其中交换的过渡金属与游离过渡金属相同或不同,其中氨氧化催化剂对氧化废气流中的氨有效;和
(b)基底,所述活性涂层涂覆于其上,
其中所述活性涂层是在基底上的单层。
2.根据权利要求1的催化剂制品,其中所述至少一种过渡金属选自铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、铈(Ce)、镍(Ni)、铜(Cu)、锌(Zn)、镓(Ga)、钼(Mo)、银(Ag)、铟(In)、钌(Ru)、铑(Rh)、钯(Pd)、铼(Re)、铱(Ir)、铂(Pt)和锡(Sn)及其混合物。
3.根据权利要求1的催化剂制品,其中所述活性涂层进一步包含负载有选自铜和铁的金属的第二小孔分子筛。
4.根据权利要求1的催化剂制品,其中所述活性涂层进一步包含氧化铝、二氧化硅、TiO2、ZrO2、CeO2和SnO2中的至少一种。
5.权利要求1的催化剂制品,其中所述至少一种过渡金属选自铬(Cr)、铈(Ce)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)和铜(Cu)及其混合物。
6.用于处理废气中的NH3的***,包括:
(a)第一催化剂制品,包含:
i.氨氧化催化剂组合物,其包含负载有选自下组的过渡金属的小孔分子筛:Cu、Fe、Ce、Mn、Ni、Zn、Ga、Mo和Cr,其中氨氧化催化剂对氧化废气流中的氨有效;和
ii.所述氨氧化催化剂涂覆于其上的第一基底,其中所述氨氧化催化剂和所述基底不含铂族金属,
(b)第二催化剂制品,其包含:
i.a.铂族金属;和
ii.a.所述铂族金属涂覆于其上的第二基底,
其中第一催化剂制品位于第二催化剂制品的下游。
7.根据权利要求6的***,其中所述铂族金属位于在第二基底上的第一层中,并且所述第二基底进一步包含位于第二基底上的非铂族金属作为第二层。
8.根据权利要求6的***,其中第二催化剂制品对于以下的一种或多种有效:存储NOx、抑制H2S、存储HC。
9.根据权利要求6的***,其中所述第二催化剂制品是氨源。
CN201810181205.2A 2011-04-08 2012-01-23 用于减少来自富燃废气的氨排放的催化剂 Pending CN108380207A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/083,154 US8101146B2 (en) 2011-04-08 2011-04-08 Catalysts for the reduction of ammonia emission from rich-burn exhaust
US13/083,154 2011-04-08
CN201280024430.6A CN103547358A (zh) 2011-04-08 2012-01-23 用于减少来自富燃废气的氨排放的催化剂

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280024430.6A Division CN103547358A (zh) 2011-04-08 2012-01-23 用于减少来自富燃废气的氨排放的催化剂

Publications (1)

Publication Number Publication Date
CN108380207A true CN108380207A (zh) 2018-08-10

Family

ID=44309102

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810181205.2A Pending CN108380207A (zh) 2011-04-08 2012-01-23 用于减少来自富燃废气的氨排放的催化剂
CN201280024430.6A Pending CN103547358A (zh) 2011-04-08 2012-01-23 用于减少来自富燃废气的氨排放的催化剂

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201280024430.6A Pending CN103547358A (zh) 2011-04-08 2012-01-23 用于减少来自富燃废气的氨排放的催化剂

Country Status (8)

Country Link
US (2) US8101146B2 (zh)
EP (1) EP2694193A1 (zh)
JP (2) JP6328046B2 (zh)
KR (2) KR20190131130A (zh)
CN (2) CN108380207A (zh)
BR (1) BR112013025988A2 (zh)
RU (1) RU2593293C2 (zh)
WO (1) WO2012138405A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128446A1 (zh) * 2019-12-26 2021-07-01 南京工大环境科技有限公司 一种降低尾气氨排放的集成式催化转化***及其方法

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0808091A2 (pt) * 2007-02-27 2014-07-15 Basf Catalysts Llc Catalisador, sistema de tratamento de gás de exaustão, processo para a redução de óxidos de nitrogênio, e, artigo de catalisador.
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US20090196812A1 (en) 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
WO2009121008A2 (en) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CN101981272B (zh) 2008-03-28 2014-06-11 埃克森美孚上游研究公司 低排放发电和烃采收***及方法
BRPI0920139A2 (pt) 2008-10-14 2015-12-22 Exxonmobil Upstream Res Co sistema de combustão, método de controle de combustão, e, sistema de combustor.
MX341477B (es) 2009-11-12 2016-08-22 Exxonmobil Upstream Res Company * Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos.
US8293199B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US8293198B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
WO2011112949A1 (en) * 2010-03-11 2011-09-15 Johnson Matthey Public Limited Company DISORDERED MOLECULAR SIEVE SUPPORTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NOx
WO2012003079A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
EA029523B1 (ru) 2010-07-02 2018-04-30 Эксонмобил Апстрим Рисерч Компани Интегрированная система производства энергии и снижения выбросов co
CN102959202B (zh) 2010-07-02 2016-08-03 埃克森美孚上游研究公司 集成***、发电的方法和联合循环发电***
CA2801488C (en) 2010-07-02 2018-11-06 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
US9242239B2 (en) * 2011-04-08 2016-01-26 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
GB2492175B (en) * 2011-06-21 2018-06-27 Johnson Matthey Plc Exhaust system for internal combustion engine comprising catalysed filter substrate
WO2013095829A2 (en) 2011-12-20 2013-06-27 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9987619B2 (en) 2012-06-01 2018-06-05 Johnson Matthey Public Limited Company Selective catalytic reduction wall flow filter incorporating a vanadate
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
GB201221025D0 (en) * 2012-11-22 2013-01-09 Johnson Matthey Plc Zoned catalysed substrate monolith
US8992869B2 (en) 2012-12-20 2015-03-31 Caterpillar Inc. Ammonia oxidation catalyst system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
WO2014137648A1 (en) 2013-03-08 2014-09-12 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
CN109590018B (zh) * 2013-03-15 2022-06-03 庄信万丰股份有限公司 用于处理废气的催化剂
GB2517034B (en) * 2013-05-31 2016-02-17 Johnson Matthey Plc Catalyzed filter for treating exhaust gas
RU2629762C2 (ru) * 2013-05-31 2017-09-01 Джонсон Мэтти Паблик Лимитед Компани Каталитический фильтр для обработки отработавшего газа
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9057301B2 (en) * 2013-07-02 2015-06-16 General Electric Company Emissions control in stationary rich burn engines
JP6278561B2 (ja) * 2013-07-10 2018-02-14 国立大学法人広島大学 結晶性アルミノシリケート及びその製造方法
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
JP6508633B2 (ja) * 2013-12-06 2019-05-08 ダンマークス テクニスク ユニバーシテットDanmarks Tekniske Universitet アンモニアの酸化のための触媒
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US9149768B1 (en) * 2014-03-27 2015-10-06 General Electric Company Emission control in rich burn natural gas engines
US9267412B2 (en) * 2014-04-15 2016-02-23 General Electric Company Exhaust aftertreatement system with catalytic deactivation monitoring
JP6585079B2 (ja) * 2014-05-09 2019-10-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 高多孔度基材上に含浸された白金を有するアンモニアスリップ触媒
GB2530129B (en) * 2014-05-16 2016-10-26 Johnson Matthey Plc Catalytic article for treating exhaust gas
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
CA2949265C (en) * 2014-05-27 2022-07-05 Danmarks Tekniske Universitet Catalysts for selective oxidation of ammonia in a gas containing hydrogen
US10252217B2 (en) * 2014-06-05 2019-04-09 Basf Corporation Catalytic articles containing platinum group metals and non-platinum group metals and methods of making and using same
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9649596B2 (en) * 2014-07-02 2017-05-16 Johnson Matthey Public Limited Company Perovskite with an ovlerlayer SCR component as an ammonia oxidation catalyst and a system for exhaust emission control on diesel engines
CN106795817B (zh) * 2014-10-16 2020-04-07 康明斯排放处理公司 双燃料发动机的后处理***
WO2016079507A1 (en) * 2014-11-19 2016-05-26 Johnson Matthey Public Limited Company Combining scr with pna for low temperature emission control
US9347358B1 (en) * 2014-11-26 2016-05-24 General Electric Company Silencer for mid-bed air injection mixing
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
CN107532497A (zh) * 2015-02-27 2018-01-02 巴斯夫公司 排气处理***
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US20160273437A1 (en) * 2015-03-17 2016-09-22 General Electric Company Systems and methods for monitoring the health of a mid-bed oxidant injection system
JP6292159B2 (ja) * 2015-04-13 2018-03-14 トヨタ自動車株式会社 排ガス浄化用触媒
US9937489B2 (en) * 2015-06-18 2018-04-10 Johnson Matthey Public Limited Company Exhaust system without a DOC having an ASC acting as a DOC in a system with an SCR catalyst before the ASC
KR102527239B1 (ko) * 2015-06-18 2023-05-02 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Nh3 과용량-허용 scr 촉매
CN105214723B (zh) * 2015-07-23 2018-05-04 清华大学苏州汽车研究院(吴江) 含铜的氨氧化催化剂及其制备方法
KR102593060B1 (ko) 2015-09-04 2023-10-25 바스프 에스이 통합형 scr 및 암모니아 산화 촉매 시스템
BR112018072056A2 (pt) * 2016-04-29 2019-02-12 Johnson Matthey Public Limited Company sistema de escape para um motor de combustão interna, substrato monolítico de fluxo de parede catalítica, métodos para fabricar um substrato monolítico catalisado e para tratar gases de escape de um motor de combustão interna, motor de ignição por compressão, e, veículo
GB201614677D0 (en) * 2016-08-30 2016-10-12 Johnson Matthey Plc Oxidation catalyst for a diesel engine exhaust
US11339701B2 (en) 2016-10-24 2022-05-24 Basf Corporation Integrated SCR catalyst and LNT for NOx abatement
EP3323785A1 (en) * 2016-11-18 2018-05-23 Umicore AG & Co. KG Crystalline zeolites with eri/cha intergrowth framework type
RU2770069C2 (ru) * 2017-03-29 2022-04-14 Джонсон Мэтти Паблик Лимитед Компани Катализатор предотвращения проскока аммиака (asc) с металлом платиновой группы в множестве слоев
JP6601449B2 (ja) * 2017-04-04 2019-11-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR102577389B1 (ko) 2017-06-09 2023-09-15 바스프 코포레이션 촉매 물품 및 배기가스 처리 시스템
WO2018224651A2 (en) 2017-06-09 2018-12-13 Basf Se Catalytic article and exhaust gas treatment systems
JP2020533164A (ja) * 2017-09-07 2020-11-19 ビーエーエスエフ コーポレーション 骨格外アルミニウムを減じたゼオライト
JP2020536727A (ja) 2017-10-12 2020-12-17 ビーエーエスエフ コーポレーション NOx吸収体およびSCR触媒の組み合わせ
CN109701618B (zh) * 2017-10-26 2021-08-03 中国石油化工股份有限公司 Aei复合分子筛及其合成方法
CA3081933A1 (en) 2017-11-10 2019-05-16 Basf Corporation Catalyzed soot filter with reduced ammonia oxidation
EP3721990A4 (en) 2017-12-08 2021-09-01 Johnson Matthey (Shanghai) Chemicals Limited NEW MULTI-REGION TWC FOR TREATMENT OF EXHAUST GAS FROM A PETROL ENGINE
US11642658B2 (en) 2018-07-27 2023-05-09 Johnson Matthey Public Limited Company PGM nanoparticles TWC catalysts for gasoline exhaust gas applications
CN109289906B (zh) * 2018-09-26 2020-09-25 中国科学院生态环境研究中心 一种氨气净化催化剂及其制备方法和用途
CN109225316B (zh) * 2018-10-08 2020-03-31 中自环保科技股份有限公司 一种尾气处理催化剂及其制备方法和用途
CN111001434B (zh) * 2018-10-08 2021-03-16 中自环保科技股份有限公司 一种当量燃烧天然气车集成催化剂体系及其制备方法
US10914217B2 (en) * 2019-01-31 2021-02-09 Hyundai Motor Company Ammonia production catalyst and after treatment system
RU2699228C1 (ru) * 2019-05-20 2019-09-04 Алексей Юрьевич Кочетков Гетерогенный катализатор окисления неорганических и/или органических соединений
US11167272B2 (en) * 2019-07-15 2021-11-09 Ford Global Technologies, Llc Exhaust treatment system including nickel-containing catalyst
CN111068764B (zh) * 2019-11-29 2023-04-28 天津大学 用于柴油车尾气的nh3-sco催化剂及其制备方法
CN110961144A (zh) * 2019-12-14 2020-04-07 中触媒新材料股份有限公司 一种具有cha/lev拓扑结构共生复合分子筛及其制备方法和scr应用
CN111022160A (zh) * 2019-12-31 2020-04-17 广西玉柴机器股份有限公司 一种燃气发动机的催化器结构
IT202100007202A1 (it) * 2021-03-24 2022-09-24 Fpt Ind Spa Sistema di propulsione per veicoli pesanti comprendente un sistema di post trattamento di gas esausti
EP4363707A1 (en) * 2021-06-30 2024-05-08 Innio Jenbacher GmbH & Co OG An internal combustion engine and a method for operating an internal combustion engine
CN216617683U (zh) * 2022-02-16 2022-05-27 烟台杰瑞石油装备技术有限公司 涡轮发动机进气冷却***以及涡轮发动机设备
US11686236B1 (en) * 2022-02-18 2023-06-27 Saudi Arabian Oil Company Device for the reduction of ammonia and nitrogen oxides emissions
CN114575971B (zh) * 2022-03-01 2022-12-23 东风商用车有限公司 利用纯氨气的后处理***及其方法
WO2023198574A1 (de) * 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Abgassystem für überwiegend stöchiometrisch betriebene verbrennungsmotoren aufweisend einen katalysator zur verminderung der ammoniakemissionen
DE102022126366A1 (de) 2022-10-11 2024-04-11 Ws Reformer Gmbh Verwendung eines Katalysators zur Entfernung von Ammoniak aus einem wasserstoffreichen Brenngas und Verfahren zur Entfernung von Ammoniak aus einem wasserstoffreichen Brenngas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514591A1 (en) * 1991-05-20 1992-11-25 Corning Incorporated Multi-stage three way catalyst system
US20080072578A1 (en) * 2006-09-21 2008-03-27 Kumar Sanath V Treatment Systems and Methods for Internal Combustion Engine Exhaust Streams
CN101454065A (zh) * 2006-05-31 2009-06-10 尤米科尔股份公司及两合公司 降低柴油发动机废气中含氮污染气体的催化剂
CN101668589A (zh) * 2007-02-27 2010-03-10 巴斯福催化剂公司 铜cha沸石催化剂
US20100111796A1 (en) * 2008-11-03 2010-05-06 Basf Catalysts Llc Integrated SCR and AMOX Catalyst Systems
CN101711185A (zh) * 2007-02-27 2010-05-19 巴斯夫催化剂公司 用于选择性氨氧化的双功能催化剂
CN101983103A (zh) * 2008-01-31 2011-03-02 巴斯夫公司 利用具有cha晶体结构的非沸石的含金属分子筛的催化剂、***和方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020170C1 (de) 2000-04-25 2001-09-06 Emitec Emissionstechnologie Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement
JPS5386694A (en) * 1976-12-28 1978-07-31 Kurita Water Ind Ltd Ammonia oxidation catalyst
US5024981A (en) * 1989-04-20 1991-06-18 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
JPH07328440A (ja) * 1994-06-14 1995-12-19 Ishikawajima Harima Heavy Ind Co Ltd アンモニア分解用触媒
JP3513536B2 (ja) * 1995-01-27 2004-03-31 トヨタ自動車株式会社 排気浄化方法及び排気浄化装置
US5783160A (en) 1995-01-27 1998-07-21 Toyota Jidosha Kabushiki Kaisha Method for purifying combustion exhaust gas
JP3499350B2 (ja) * 1995-12-08 2004-02-23 トヨタ自動車株式会社 内燃機関の排ガス浄化方法
FI107828B (fi) 1999-05-18 2001-10-15 Kemira Metalkat Oy Dieselmoottoreiden pakokaasujen puhdistusjärjestelmä ja menetelmä dieselmoottoreiden pakokaasujen puhdistamiseksi
US7481983B2 (en) 2004-08-23 2009-01-27 Basf Catalysts Llc Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia
JP2007021482A (ja) * 2005-06-14 2007-02-01 Sumiko Eco-Engineering Co Ltd アンモニア分解触媒及びアンモニア処理方法
KR100765413B1 (ko) 2005-07-06 2007-10-09 희성촉매 주식회사 암모니아 산화촉매 및 이를 이용한 슬립 암모니아 또는폐암모니아 처리장치
EP1904229A4 (en) * 2005-07-06 2014-04-16 Heesung Catalysts Corp NH3 OXIDATION CATALYST AND APPARATUS FOR PROCESSING NH3 EMISSION OR RESIDUE
US20070149394A1 (en) 2005-12-22 2007-06-28 Foster Wheeler Energy Corporation Catalyst, a method of using a catalyst, and an arrangement including a catalyst, for controlling NO and/or CO emissions from a combustion system without using external reagent
US8389432B2 (en) * 2006-09-25 2013-03-05 Umicore Ag & Co. Kg Structured automotive catalyst with improved thermal ageing stability
JP5777339B2 (ja) 2007-04-26 2015-09-09 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company 遷移金属/ゼオライトscr触媒
US7727499B2 (en) 2007-09-28 2010-06-01 Basf Catalysts Llc Ammonia oxidation catalyst for power utilities
DE102008008786A1 (de) * 2008-02-12 2009-08-13 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Verminderung von Dibenzo-Dioxin- und Dibenzo-Furan-Emissionen aus übergangsmetallhaltigen Katalysatoren
US8393140B2 (en) 2008-05-02 2013-03-12 GM Global Technology Operations LLC Passive ammonia-selective catalytic reduction for NOx control in internal combustion engines
GB0812544D0 (en) 2008-07-09 2008-08-13 Johnson Matthey Plc Exhaust system for a lean burn IC engine
US10632423B2 (en) 2008-11-03 2020-04-28 Basf Corporation Bimetallic catalysts for selective ammonia oxidation
US8091342B2 (en) 2009-01-28 2012-01-10 GM Global Technology Operations LLC Technique for production of ammonia on demand in a three way catalyst for a passive selective catalytic reduction system
GB2507902B (en) 2009-04-17 2015-03-11 Johnson Matthey Plc Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides
JP2010284640A (ja) * 2009-05-12 2010-12-24 Central Res Inst Of Electric Power Ind アンモニア分解触媒
WO2011118777A1 (ja) * 2010-03-26 2011-09-29 株式会社 キャタラー 排ガス浄化システム
KR101481600B1 (ko) * 2013-05-02 2015-01-14 희성촉매 주식회사 선택적 촉매 환원 (scr) 시스템에서의 암모니아 산화촉매

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514591A1 (en) * 1991-05-20 1992-11-25 Corning Incorporated Multi-stage three way catalyst system
CN101454065A (zh) * 2006-05-31 2009-06-10 尤米科尔股份公司及两合公司 降低柴油发动机废气中含氮污染气体的催化剂
US20080072578A1 (en) * 2006-09-21 2008-03-27 Kumar Sanath V Treatment Systems and Methods for Internal Combustion Engine Exhaust Streams
WO2008036908A2 (en) * 2006-09-21 2008-03-27 Basf Catalysts Llc Treatment systems and methods for internal combustion engine exhaust streams
CN101668589A (zh) * 2007-02-27 2010-03-10 巴斯福催化剂公司 铜cha沸石催化剂
CN101711185A (zh) * 2007-02-27 2010-05-19 巴斯夫催化剂公司 用于选择性氨氧化的双功能催化剂
CN101983103A (zh) * 2008-01-31 2011-03-02 巴斯夫公司 利用具有cha晶体结构的非沸石的含金属分子筛的催化剂、***和方法
US20100111796A1 (en) * 2008-11-03 2010-05-06 Basf Catalysts Llc Integrated SCR and AMOX Catalyst Systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021128446A1 (zh) * 2019-12-26 2021-07-01 南京工大环境科技有限公司 一种降低尾气氨排放的集成式催化转化***及其方法

Also Published As

Publication number Publication date
JP6797625B2 (ja) 2020-12-09
WO2012138405A1 (en) 2012-10-11
US20110182791A1 (en) 2011-07-28
KR20140032398A (ko) 2014-03-14
US8101146B2 (en) 2012-01-24
US9757719B2 (en) 2017-09-12
JP6328046B2 (ja) 2018-05-23
KR20190131130A (ko) 2019-11-25
RU2593293C2 (ru) 2016-08-10
CN103547358A (zh) 2014-01-29
US20160101413A1 (en) 2016-04-14
RU2013149864A (ru) 2015-05-20
BR112013025988A2 (pt) 2016-12-20
KR102047049B1 (ko) 2019-11-20
JP2014515701A (ja) 2014-07-03
JP2017080734A (ja) 2017-05-18
EP2694193A1 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CN108380207A (zh) 用于减少来自富燃废气的氨排放的催化剂
JP2017080734A5 (zh)
JP5815232B2 (ja) ディーゼルエンジンの排ガス中の窒素酸化物の選択接触還元
US9511350B2 (en) ZPGM Diesel Oxidation Catalysts and methods of making and using same
JP6474809B2 (ja) アンモニアスリップ触媒
US9216384B2 (en) Method for improving lean performance of PGM catalyst systems: synergized PGM
US9555400B2 (en) Synergized PGM catalyst systems including platinum for TWC application
US8551411B2 (en) Exhaust system for lean-burn internal combustion engine comprising Pd-Au-alloy catalyst
CN108348855A (zh) 具有烟灰催化剂和scr催化剂的催化过滤器
KR101529416B1 (ko) 배기 가스 정화용 촉매
US20140271393A1 (en) Methods for Variation of Support Oxide Materials for ZPGM Oxidation Catalysts and Systems Using Same
US9242239B2 (en) Catalysts for the reduction of ammonia emission from rich-burn exhaust
KR102521432B1 (ko) 백금 족 금속 및 비-백금 족 금속을 함유하는 촉매 물품 및 그의 제조 방법 및 사용 방법
JP2020501060A (ja) ディーゼル車用h2−scrを使用する低温nox還元
RU2635092C2 (ru) Каталитическая композиция
US8227373B1 (en) Exhaust gas purification catalysts and methods of making the same
US20030115855A1 (en) Exhaust gas purifying catalyst and exhaust gas purifying system
JP2022527615A (ja) 選択的アンモニア酸化触媒
JP4852595B2 (ja) 排ガス浄化触媒
KR101716174B1 (ko) 디젤엔진 백연 방출 억제를 위한 촉매조성물
JP3925015B2 (ja) 内燃機関の排ガスの浄化装置,浄化方法及び浄化触媒
JPH06198135A (ja) 自動車排気浄化装置
JPH08192052A (ja) 燃焼排気ガス浄化触媒及び燃焼排気ガス浄化装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination