CN108277429A - 一种高硅电工钢的生产方法 - Google Patents

一种高硅电工钢的生产方法 Download PDF

Info

Publication number
CN108277429A
CN108277429A CN201710006627.1A CN201710006627A CN108277429A CN 108277429 A CN108277429 A CN 108277429A CN 201710006627 A CN201710006627 A CN 201710006627A CN 108277429 A CN108277429 A CN 108277429A
Authority
CN
China
Prior art keywords
drainage device
silicon
steel
molten steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710006627.1A
Other languages
English (en)
Other versions
CN108277429B (zh
Inventor
张智义
陈春梅
高振宇
李亚东
胡洪旭
张仁波
刘文鹏
李文权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN201710006627.1A priority Critical patent/CN108277429B/zh
Publication of CN108277429A publication Critical patent/CN108277429A/zh
Application granted granted Critical
Publication of CN108277429B publication Critical patent/CN108277429B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开一种高硅电工钢的生产方法。冶炼两种硅含量分别为2.0%~3.5%、4.5%~7.0%的钢水,钢水过热度10~30℃;连铸结晶器内设引流装置,引流装置开口向下,悬置在钢液中,引流装置与结晶器间隙为10~40mm,引流装置内加入高硅钢水,低硅钢水流入引流装置与结晶器之间,拉速0.4~0.9m/min,铸坯的低硅坯壳与高硅坯芯厚度比为1﹕2~1﹕5,引流装置内充入惰性气体,使其内部液面较外部液面低10~20mm;热轧卷厚0.8~1.8mm。冷轧前预热至200~450℃,退火温度600~1000℃,保温时间10~200min。成品具有良好的电磁性能和铁损性能。

Description

一种高硅电工钢的生产方法
技术领域
本发明涉及一种电工钢生产方法,特别涉及一种高硅电工钢的生产方法。
背景技术
硅钢铁损主要包括涡流损耗和磁滞损耗,钢的电阻率随着硅含量的增加而增加,产生的涡流电流减少,从而涡流损耗降低。磁滞损耗主要与钢的晶粒尺寸与取向有关,是由磁畴磁化过程磁致伸缩造成的。1928年舒尔茨发现,当硅含量为6.5%时,磁致伸缩近似为零。所以铁损更低。高硅钢具有较好的磁性能,钢的强度和硬度随含量增加而增加,但随硅含量超过4.5%后,随硅含量的增加强度和硬度迅速降低,延伸率达到5%以上时几乎为零,难以冷轧。
1977年成田贤仁等研究加入镍、铝和锰使钢的脆性降低,经600~700℃退火后,可以实现冷轧。但高硅钢热轧板坯加热氧化严重和冷轧脆性还是没有解决,不能批量生产。
1993年日本钢管公司采用化学气相沉积快速渗硅法生产高硅钢,可以生产出最大宽度为400mm钢卷,但受生产效率所限,批量供货困难,且生产成本较高。
发明内容
本发明的目的提供一种批量生产高硅电工钢的方法。该产品铁损性能较常规产品性能更优。较适合应用于高速高频电机等对高频电磁性要求较高的产品。
一种高硅电工钢,其化学成分按质量百分比为:C<0.010%,Si:4.5%~7.0%,Als:0~0.3%,Mn:0.10%~0.60%,P≤0.02%,S≤0.02%,N≤0.0050%,其余为Fe和不可避免的残余元素。该高硅电工钢的生产工艺路线是:铁水脱硫-转炉冶炼-RH精炼-连铸-热轧-酸洗-冷轧-连续炉退火-涂层-性能检验-包装,具体工艺如下:
(1)冶炼两种成分的钢水,一种硅含量为2.0%~3.5%,另一种硅含量为目标成分,即4.5%~7.0%,钢中的其他成分与目标成分相同。
(2)采用连铸方式将钢水铸成坯,钢水过热度10~30℃;连铸结晶器内设置引流装置,引流装置一端开口且开口向下,使钢水顺畅流动。引流装置内部为空腔,引流装置悬置在钢液中,引流装置外壁与结晶器之间形成10~40mm的间隙,引流装置内壁下部开口大于内壁上部开口;引流装置顶部设有引流口和通气管;通过通气管向引流装置内充入惰性气体,以此控制引流装置内外面液面差,使内部液面较外部液面低10~20mm;通过引流口向引流装置内加入目标成分钢水;低硅钢水经长口流入引流装置与结晶器之间,拉速为0.4~0.9m/min,在铸坯表面形成低硅的坯壳,低硅坯壳与高硅坯芯厚度比控制在1︰2~1︰5之间。表面采用低硅电工钢保护高硅电工钢热轧加热过程中的氧化程度;另外表面延伸率较高的低硅电工钢在轧制过程可以有效避免边裂产生,提高加工性能;
(3)热轧加热温度1100~1200℃,加热温度过高易使钢中析出物大量固溶于钢中,在随后的热轧弥散析出,阻碍成品再结晶晶粒长大。如加热温度过低不利于热轧板再结晶。初轧至中间坯厚度为20~45mm后进入精轧机组轧制至0.8~1.8mm后卷取。精轧开轧温度1100~950℃,为减少热轧板变形组织含量及减轻边裂发生,尽量提高精轧开轧温度。终轧温度控制在750~900℃,控制较高的终轧温度可以使已析出的析出物尽量长大到100微米以上,降低对再结晶晶粒长大影响程度。卷取温度700~780℃,采用较高的卷取温度可以使热轧后变形晶粒继续再结晶;
(4)酸洗后冷轧至0.2~0.5mm,冷轧前需将钢卷预热,预热温度控制在200~450℃之间,热轧板经预热后再冷轧可以减轻冷轧脆性,减少断带率,提高成材率;
(5)冷轧后退火,退火温度600~1000℃,采用真空或H2保护,保温时间10~200min。采用高温长时间退火可使芯部硅向表层扩散,使钢板成分均匀。
有益效果:
(1)采用低硅电工钢保护高硅电工钢热轧加热氧化,提高成材率;
(2)表面延伸率较高的低硅电工钢在轧制过程可以有效避免边裂产生,提高加工性能;
(3)采用带温冷轧,可以减轻断带,现有技术也采用带温轧制,本专利由于表面低硅坯壳具有较好的塑性,可以降低裂纹的产生;
(4)冷轧后采用高温扩散退火,使成分均匀,又可以消除加工应力。
附图说明
图1本发明引流装置的结构示意图。
图中,1为引流装置,2为引流口,3为通气管,4为空腔,5为结晶器。
具体实施方式
以下结合附图,对本发明作进一步的说明。
本发明涉及的技术问题采用下述技术方案解决:一种高硅电工钢的生产方法,具体生产工艺为:
(1)冶炼两种成分的钢水,一种硅含量为2.0%~3.5%,另一种硅含量为目标成分,即4.5%~7.0%,钢中的其他成分与目标成分相同。
(2)采用连铸方式将钢水铸成坯,钢水过热度10~30℃;连铸结晶器5内设置引流装置1,所述引流装置1一端开口且开口向下,引流装置1内部为空腔4,所述引流装置1悬置在钢液中,引流装置1外壁与结晶器5之间形成10~40mm的间隙,所述引流装置1内壁下部开口大于内壁上部开口;所述引流装置1顶部设有引流口2和通气管3;通过通气管3向引流装置1内充入惰性气体,以此控制引流装置1内外面液面差,使内部液面较外部液面低10~20mm;在所述引流装置1内加入目标成分钢水;低硅钢水经长口流入引流装置与结晶器之间,拉速为0.4~0.9m/min,在铸坯表面形成低硅的坯壳,低硅坯壳与高硅坯芯厚度比控制在1︰2~1︰5之间;
(3)热轧加热温度1100~1200℃,初轧至中间坯厚度为20~45mm后进入精轧机组轧制至0.8~1.8mm后卷取。精轧开轧温度1100~950℃,终轧温度控制在750~900℃,卷取温度700~780℃。
(4)酸洗后冷轧至0.2~0.5mm,冷轧前需将钢卷预热,预热温度控制在200~450℃之间;
(5)冷轧后退火,退火温度600~1000℃,采用真空或H2保护,保温时间10~200min。
以下实施例用于具体说明本发明内容,这些实施例仅为本发明内容的一般描述,并不对本发明内容进行限制。
其中表1为实施例钢的化学成分;表2为实施例钢的连铸工艺;表3为本发明实施例钢的轧制及退火工艺;表4为实施例钢的性能。
表1本发明实施例钢板的化学成分(wt%)
表2本发明实施例钢板的铸造工艺
表3本发明实施例钢板的轧制及退火工艺
表4本发明实施例钢板的成品性能
实施例 P10/400/(W·kg-1) J2000/400/T
1 8.32 1.45
2 7.89 1.43
3 7.22 1.42
按照本发明提供的生产方法,由于表面低硅坯壳的保护,使板坯加热烧损降低40%~68%,热轧板没有发现大于10mm的边裂,后工序没有由于边裂发生的断带;生产出的高硅电工钢P10/400在8.32W/kg以下,J2000/400在1.42T以上,具有良好的电磁性能和铁损性能。

Claims (1)

1.一种高硅电工钢的生产方法,钢板的生产工艺为:铁水脱硫-转炉冶炼-RH精炼-连铸-热轧-酸洗-冷轧-连续炉退火-涂层-性能检验-包装,其特征在于,
冶炼两种成分的钢水,一种为低硅钢水,其中硅的质量百分含量为2.0%~3.5%,另一种为高硅钢水,其硅的质量百分含量为目标成分,即4.5%~7.0%,两种成分钢水中的其他成分相同;
采用连铸方式将钢水铸成坯,钢水过热度10~30℃;连铸结晶器(5)内设置引流装置(1),所述引流装置(1)一端开口且开口向下,所述引流装置(1)内部为空腔(4),所述引流装置(1)悬置在钢液中,所述引流装置(1)外壁与结晶器(5)之间形成10~40mm的间隙,所述引流装置(1)内壁下部开口大于内壁上部开口;所述引流装置(1)顶部设有引流口(2)和通气管(3);通过通气管(3)向引流装置(1)内充入惰性气体,以此控制引流装置(1)内外面液面差,使内部液面较外部液面低10~20mm;通过引流口(2)向所述引流装置(1)内加入目标成分钢水;低硅钢水经长水口流入引流装置(1)与结晶器(5)之间,拉速为0.4~0.9m/min,在铸坯表面形成低硅的坯壳,低硅坯壳与高硅坯芯厚度比控制在1︰2~1︰5之间;
热轧加热温度1100~1200℃,初轧至中间坯厚度为20~45mm后进入精轧机组轧制至0.8~1.8mm后卷取,精轧开轧温度1100~950℃,终轧温度控制在750~900℃,卷取温度700~780℃;
酸洗后冷轧至0.2~0.5mm,冷轧前将钢卷预热,预热温度控制在200~450℃之间;
冷轧后退火,退火温度600~1000℃,采用真空或H2保护,保温时间10~200min。
CN201710006627.1A 2017-01-05 2017-01-05 一种高硅电工钢的生产方法 Active CN108277429B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710006627.1A CN108277429B (zh) 2017-01-05 2017-01-05 一种高硅电工钢的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710006627.1A CN108277429B (zh) 2017-01-05 2017-01-05 一种高硅电工钢的生产方法

Publications (2)

Publication Number Publication Date
CN108277429A true CN108277429A (zh) 2018-07-13
CN108277429B CN108277429B (zh) 2020-01-07

Family

ID=62800281

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710006627.1A Active CN108277429B (zh) 2017-01-05 2017-01-05 一种高硅电工钢的生产方法

Country Status (1)

Country Link
CN (1) CN108277429B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724808A (zh) * 2019-10-09 2020-01-24 马鞍山钢铁股份有限公司 一种由3.01~4.5mm的热轧卷冷轧生产电工钢的方法
CN111850402A (zh) * 2020-07-08 2020-10-30 鞍钢股份有限公司 一种短流程生产高强耐蚀电磁铁芯钢板的方法
CN114453430A (zh) * 2022-01-20 2022-05-10 安阳钢铁股份有限公司 一种防止高磁感取向硅钢冷轧断带的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882291A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 一种高硅冷轧无取向电工钢及其制备方法
EP2775007A1 (en) * 2013-03-08 2014-09-10 Voestalpine Stahl GmbH A process for the production of a grain-oriented electrical steel
CN104789860A (zh) * 2015-05-07 2015-07-22 马钢(集团)控股有限公司 一种电工钢及其生产方法
CN105463310A (zh) * 2015-12-07 2016-04-06 本钢板材股份有限公司 一种无取向硅钢生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882291A (zh) * 2012-12-21 2014-06-25 鞍钢股份有限公司 一种高硅冷轧无取向电工钢及其制备方法
EP2775007A1 (en) * 2013-03-08 2014-09-10 Voestalpine Stahl GmbH A process for the production of a grain-oriented electrical steel
CN104789860A (zh) * 2015-05-07 2015-07-22 马钢(集团)控股有限公司 一种电工钢及其生产方法
CN105463310A (zh) * 2015-12-07 2016-04-06 本钢板材股份有限公司 一种无取向硅钢生产方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724808A (zh) * 2019-10-09 2020-01-24 马鞍山钢铁股份有限公司 一种由3.01~4.5mm的热轧卷冷轧生产电工钢的方法
CN110724808B (zh) * 2019-10-09 2021-01-26 马鞍山钢铁股份有限公司 一种由3.01~4.5mm的热轧卷冷轧生产电工钢的方法
CN111850402A (zh) * 2020-07-08 2020-10-30 鞍钢股份有限公司 一种短流程生产高强耐蚀电磁铁芯钢板的方法
CN111850402B (zh) * 2020-07-08 2021-12-24 鞍钢股份有限公司 一种短流程生产高强耐蚀电磁铁芯钢板的方法
CN114453430A (zh) * 2022-01-20 2022-05-10 安阳钢铁股份有限公司 一种防止高磁感取向硅钢冷轧断带的控制方法

Also Published As

Publication number Publication date
CN108277429B (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
CN104372238B (zh) 一种取向高硅钢的制备方法
JP5675950B2 (ja) 優れた磁気特性を有する高効率無方向性珪素鋼の製造方法
WO2017054699A1 (zh) 一种双面搪瓷用热轧高强度中厚板及其制造方法
CN102517522B (zh) 液压件用钢及其制造方法
CN109913768B (zh) 一种电渣重熔热作模具钢及其制备方法
CN102747281B (zh) 罩式退火if钢的生产方法
CN1813074A (zh) 制备非取向电工钢带的改进方法
CN103687966A (zh) 方向性电磁钢板的制造方法
CN101736193B (zh) 低碳钢板及其制备方法
CN104294155A (zh) 一种超低碳取向硅钢及其制备方法
CN103074546A (zh) 冰箱冷凝管用冷轧带钢及其制造方法
WO2022262020A1 (zh) 无取向硅钢及其生产方法
CN108277429A (zh) 一种高硅电工钢的生产方法
JP2017502165A (ja) 非調質鋼及びその製造方法
CN112210716A (zh) 一种高效变频压缩机用无取向硅钢及其制造方法
CN107177788B (zh) 一种二次冷轧镀锡板及其生产方法
JP2020534439A (ja) インラインでTi微量合金化熱間圧延高強度鋼の析出強化効果を向上させる生産方法
CN109055788A (zh) 一种消除5系铝合金板材表面横纹的制备工艺
CN103484764B (zh) Ti析出强化型超高强热轧薄板及其生产方法
CN108588559A (zh) 屈服强度230MPa以上的冷轧搪瓷钢
CN105803313A (zh) 一种薄规格热镀锌钢板及其生产方法
CN104694820B (zh) 一种抗拉强度500MPa以上低合金钢热轧钢带及其制备方法
CN104928577A (zh) 一种具有高扩孔率和优良涂搪性能的钢板及其制造方法
CN109182907B (zh) 一种无头轧制生产半工艺无取向电工钢的方法
CN102676913B (zh) 药芯焊丝用冷轧带钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant