CN108076415B - 一种多普勒音效的实时实现方法 - Google Patents

一种多普勒音效的实时实现方法 Download PDF

Info

Publication number
CN108076415B
CN108076415B CN201611018808.8A CN201611018808A CN108076415B CN 108076415 B CN108076415 B CN 108076415B CN 201611018808 A CN201611018808 A CN 201611018808A CN 108076415 B CN108076415 B CN 108076415B
Authority
CN
China
Prior art keywords
delay
time
sound
formula
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611018808.8A
Other languages
English (en)
Other versions
CN108076415A (zh
Inventor
陈锴
卢晶
邱小军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201611018808.8A priority Critical patent/CN108076415B/zh
Publication of CN108076415A publication Critical patent/CN108076415A/zh
Application granted granted Critical
Publication of CN108076415B publication Critical patent/CN108076415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Abstract

本发明公开了一种多普勒音效的实时实现方法,该方法从声音的传播机理出发,计算虚拟声源到听音者虚拟位置的传播时延,并根据该时延将信号实时通过队列缓存和时变的采样滤波器,从而实现实时的多普勒音效,其中,时变滤波器来自于预设的时延滤波器组。本发明所公开的一种多普勒音效的实时实现方法能够实时的模拟或重现任意时刻任意位移变化的多普勒音效,不会发生数据的缺失,因为整个过程是线性处理,所以也不会引入信号的畸变和失真,具有较大的灵活性,运算复杂度低,非常适用于3D音效仿真和声场还原的应用场合,具有较大的应用前景。

Description

一种多普勒音效的实时实现方法
技术领域
本发明涉及电声技术领域,具体涉及一种多普勒音效的实时实现方法。
背景技术
多普勒效应是一种常见的声学现象,对听音者而言,声信号的频率会随着虚拟声源相对运动速度发生改变。具体来说,虚拟声源以一定速度靠近听音者,被听音者感知到的声信号的频率会比原声信号的频率有所提高,而虚拟声源以一定速度远离听音者,被听音者感知到的声信号的频率会比原声信号的频率有所降低。在3D音效中,为了更加真实的重现或者重构自然界中的声音,多普勒音效的实时实现成为3D音效技术的关键技术。传统的多普勒音效的实时实现往往通过变调或频移处理,其中,直接改变采样率的变调处理会带来音频数据的缺失,破坏原始数据的连续性,而数字频移处理灵活性较差,会带来较大的额外运算量,并且会引入信号畸变和失真。
发明内容
为了解决音效中的多普勒音效重现和重构的问题,本发明提出一种多普勒音效的实时实现方法。
本发明的技术方案如下:
初始化3D音效中声速、听音者头部的虚拟位置、虚拟声源的虚拟位置和虚拟声源的声信号;
设定听音者的虚拟位置随时间变化的轨迹信息,设定虚拟声源的位置随时间变化的轨迹信息;
在某时间点,计算虚拟声源到听音者头部的虚拟位置的距离,该距离除以声速得到直达声传输时延,该直达声传输时延除以采样周期得到直达声传输时延采样周期数;该直达声传输时延采样周期数由整数和非负纯小数(即大于等于0的纯小数)组成,其中:
1)整数部分,对应信号以采样周期为最小单位的时延,通过数据缓存队列实现;
2)非负纯小数部分,对应信号在采样周期内的时延,通过时延滤波器实现;
根据上述直达声传输时延采样周期数的组合,选择相应的数据缓存队列和时延滤波器实现时变滤波器;
时延滤波器来自于预设的时延滤波器组,时延滤波器组中的每一个滤波器对应一个非负纯小数时延采样周期数的处理需求。
以数据帧或者以单个采样点为最小处理单元,将当前声信号通过已选择的时变滤波器得到该时间点的输出信号;
将处理得到的各个时间点的信号按时间顺序连接起来,然后加上因声传播所带来的增益,获得具有多普勒音效的声信号。
一种多普勒音效的实时实现方法,包括:
根据虚拟声源位置到听音者头部中心的虚拟位置的物理距离d,计算直达声的传输时延τ,即
Figure BSA0000136181800000021
其中,c是声速。
则,从虚拟声源x(n)到达人头部的声信号y(n)为
y(n)=A·x(n)*sinc(n·Ts-τ), (2)
其中,A是因声学传播所产生的声压级衰减,*是时域卷积,Ts是信号的采样周期,sinc(n·Ts-τ)是采样函数sinc(t)经过时延τ后得到的采样时延表示,采样函数sinc(t)的表达式是
Figure BSA0000136181800000022
进一步的,传输时延τ可分解为
τ=(p+q)·Ts, (4)
式中,p是整数,而q是非负纯小数,即满足
0≤q<1. (5)
进一步的,将式(4)带入到式(2),可得
y(n)=A·x(n-p)*sinc((n-q)·Ts). (6)
因此,对任意的时延τ,都可以通过式(6)求得输出信号y(n)。
由于q是连续取值,所以实时计算式(6),运算量较大,将q的取值进行等间距离散化为
Figure BSA0000136181800000023
Figure BSA0000136181800000031
式中,K是正整数,表示q离散化的精度,k是整数且满足0≤k<K。K取值的大小决定了虚拟声源位移的分辨率,也决定了音频转换的连续性,即K越大,时延分辨率越高,音频转换的连续性越好,输出的音质和多普勒音效的感知效果越好。
进一步的,令
Figure BSA0000136181800000032
则hk(n)是对应不同的离散化的q的滤波器系数,将式(8)带入式(6),则有
y(n)≈A·x(n-p)*hk(n). (9)
式中,任一k的取值都对应一个滤波器hk(n),时延滤波器组中的每一个滤波器对应一个非负纯小数时延采样周期数的处理需求,因此,总共有K个滤波器hk(n)。这K个滤波器hk(n)作为滤波器组进行保存,称为时延滤波器组。在实时计算过程中,***根据不同的离散化后的q在时延滤波器组中选择相应的滤波器,而避免了计算式(6)中滤波器系数所带来的额外运算量,满足实时处理的需求。
进一步的,根据式(9),当虚拟声源靠近,τ逐渐变小,即p逐渐变小,且q采样周期变化,与x(n)相比较,y(n)的计算过程会跳过部分x(n)的采样点,从而使得声信号的频率升高;根据式(9),当虚拟声源远离,τ逐渐变大,即p逐渐变大,且q采样周期变化,与x(n)相比较,y(n)的计算过程会重复部分x(n)的采样点,从而使得声信号的频率降低。
优选的,根据虚拟声源到听音者双耳虚拟位置的物理距离di,计算双耳对应直达声的传递时延τi,其中,i=0,1,分别表示左右耳,即
Figure BSA0000136181800000033
基于式(10),对虚拟声源到达左右耳的虚拟位置分别进行类似式(4)和式(9)处理,优化处理效果。
本发明的有益效果
本发明公开了一种多普勒音效的实时实现方法,该方法从声音的传播机理出发,计算虚拟声源到听音者虚拟位置的传播时延,并根据该时延将信号实时通过队列缓存和时变的采样滤波器,从而实现实时的多普勒音效,其中,时变滤波器来自于预设的时延滤波器组。本发明所公开的一种多普勒音效的实时实现方法能够实时的模拟或重现任意时刻任意位移变化的多普勒音效,不会发生数据的缺失,因为整个过程是线性处理,所以也不会引入信号的畸变和失真,具有较大的灵活性,运算复杂度低,非常适用于3D音效仿真和声场还原的应用场合,具有较大的应用前景。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一种多普勒音效的实时实现方法的流程图;
图2是本发明一种多普勒音效的实时实现方法的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,其为本发明一种多普勒音效的实时实现方法的流程图。
在步骤[101]中,初始化时延滤波器组(8),信号的采样率设定为48kHz,K的长度设置为100,每个滤波器的长度设置为100,则时延滤波器组(8)的总数据量为10000个数据存储单位。
在步骤[102]中,初始化声速c、听音者运动轨迹(1)、虚拟声源运动轨迹(2)和原始音源(9)。
在步骤[103]中,计算当前时间点数据(采样数据点或者采样数据帧)对应的虚拟声源位置与听音者虚拟位置的距离(4),进而根据声速和信号采样周期,计算因该距离产生的直达声传播时延以及该时延所对应的采样周期数(5)。
在步骤[104]中,将时延对应的采样周期数分成整数部分p(6)和纯小数部分q(7)两个部分。
在步骤[105]中,整数部分时延通过数据队列缓存实现,即y1(n)=x(n-p)。
在步骤[106]中,根据纯小数部分q的取值,在时延滤波器组(8)中选择得到合适的滤波器系数hk(n)(12),将其与缓存的输出信号卷积,即y2(n)=hk(n)·y1(n)。
在步骤[107]中,根据听音者的位置和虚拟声源位置的距离,计算增益A,并通过增益计算(13)作用于信号,即y(n)=A·y2(n)。
在步骤[108]中,将当前数据处理结果y(n)输出。然后返回步骤[103],准备处理下一时间点的数据。
以上对本发明实施例所提供的一种多普勒音效的实时实现方法进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,因此,本说明书内容不应理解为对本发明的限制。

Claims (2)

1.一种多普勒音效的实时实现方法,其特征在于:
在某时间点,计算虚拟声源到听音者头部的虚拟位置的距离,该距离除以声速得到直达声传输时延,该直达声传输时延再除以采样周期获得直达声传输时延采样周期数;该直达声传输时延采样周期数由整数和非负纯小数组成;根据直达声传输时延采样周期数的组合,将声源信号通过数据缓存队列和选择相应的时延滤波器实现时变滤波器,然后通过因声传播所带来的增益处理,从而实现多普勒音效的实时实现的目的;
所述直达声传输时延采样周期数的整数部分,对应信号以采样周期为最小单位的纯时延,通过数据缓存队列实现;
所述直达声传输时延采样周期数的非负纯小数部分,对应信号在采样周期内的时延,通过时延滤波器实现;
所述多普勒音效的实时实现方法,具体包括:
根据虚拟声源位置到听音者头部中心的虚拟位置的物理距离d,计算直达声的传输时延τ,即
Figure FSB0000186825380000011
其中,c是声速;
则,从虚拟声源x(n)到达听音者头部的声信号y(n)为
y(n)=A·x(n)*sinc(n·Ts-τ) 式(2)
其中,A是因声学传播所产生的声压级衰减,*是时域卷积,Ts是信号的采样周期,sinc(n·Ts-τ)是采样函数sinc(t)经过时延τ后得到的采样时延表示,采样函数sinc(t)的表达式是
Figure FSB0000186825380000012
进一步的,传输时延τ分解为
τ=(p+q)·Ts 式(4)
式中,p是整数,而q是非负纯小数,即满足
0≤q<1 式(5)
进一步的,将式(4)带入到式(2),得
y(n)=A·x(n-p)*sinc((n-q)·Ts) 式(6)
因此,对任意的时延τ,都通过式(6)求得输出信号y(n);
将q的取值进行等间距离散化
Figure FSB0000186825380000021
Figure FSB0000186825380000022
式中,K是正整数,表示q离散化的精度,k是整数且满足0≤k<K;
进一步的,令
Figure FSB0000186825380000023
则hk(n)是对应不同的离散化的q的滤波器系数,将式(8)带入式(6),则有
y(n)≈A·x(n-p)*hk(n) 式(9)
式中,任一k的取值都对应一个滤波器hk(n),时延滤波器组中的每一个滤波器对应一个非负纯小数时延采样周期数的处理需求,因此,总共有K个滤波器hk(n),这K个滤波器hk(n)作为滤波器组进行保存,称为时延滤波器组;在实时计算过程中,***根据不同的离散化后的q在时延滤波器组中选择相应的滤波器;
进一步,根据虚拟声源到听音者双耳虚拟位置的物理距离di,计算双耳对应直达声的传递时延τi,其中,i=0,1,分别表示左右耳,即
Figure FSB0000186825380000024
基于式(10),对虚拟声源到达左右耳的虚拟位置分别进行式(4)和式(9)处理。
2.如权利要求1所述的多普勒音效的实时实现方法,其特征在于:时延滤波器来自于预设的时延滤波器组,时延滤波器组中的每一个滤波器对应一个非负纯小数时延采样周期数的处理需求。
CN201611018808.8A 2016-11-16 2016-11-16 一种多普勒音效的实时实现方法 Active CN108076415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611018808.8A CN108076415B (zh) 2016-11-16 2016-11-16 一种多普勒音效的实时实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611018808.8A CN108076415B (zh) 2016-11-16 2016-11-16 一种多普勒音效的实时实现方法

Publications (2)

Publication Number Publication Date
CN108076415A CN108076415A (zh) 2018-05-25
CN108076415B true CN108076415B (zh) 2020-06-30

Family

ID=62160292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611018808.8A Active CN108076415B (zh) 2016-11-16 2016-11-16 一种多普勒音效的实时实现方法

Country Status (1)

Country Link
CN (1) CN108076415B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714697A (zh) * 2018-08-06 2019-05-03 上海头趣科技有限公司 三维声场多普勒音效的仿真方法及仿真***
CN110459220A (zh) * 2019-08-26 2019-11-15 杭州涂鸦信息技术有限公司 一种语音唤醒方法和***以及可读存储介质、计算机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130992A (zh) * 2011-01-21 2011-07-20 宇龙计算机通信科技(深圳)有限公司 一种音效处理方法及终端

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334464C (zh) * 2003-06-19 2007-08-29 中国科学院声学研究所 一种利用插值滤波器进行声纳基阵信号仿真的方法
KR101304797B1 (ko) * 2005-09-13 2013-09-05 디티에스 엘엘씨 오디오 처리 시스템 및 방법
JP4584203B2 (ja) * 2006-07-31 2010-11-17 株式会社コナミデジタルエンタテインメント 音声シミュレーション装置、音声シミュレーション方法、ならびに、プログラム
CN103716748A (zh) * 2007-03-01 2014-04-09 杰里·马哈布比 音频空间化及环境模拟
KR101512992B1 (ko) * 2007-05-22 2015-04-17 코닌클리케 필립스 엔.브이. 오디오 데이터를 처리하기 위한 디바이스 및 방법
TW201325268A (zh) * 2011-12-01 2013-06-16 Univ Nat Central 虛擬實境音源定位裝置
JP5949234B2 (ja) * 2012-07-06 2016-07-06 ソニー株式会社 サーバ、クライアント端末、およびプログラム
US9977644B2 (en) * 2014-07-29 2018-05-22 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for conducting interactive sound propagation and rendering for a plurality of sound sources in a virtual environment scene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130992A (zh) * 2011-01-21 2011-07-20 宇龙计算机通信科技(深圳)有限公司 一种音效处理方法及终端

Also Published As

Publication number Publication date
CN108076415A (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
CA3125228C (en) Method and apparatus for compressing and decompressing a higher order ambisonics representation for a sound field
JP3976360B2 (ja) 立体音響処理装置
CN102395098B (zh) 生成3d声音的方法和设备
KR101325644B1 (ko) 변환 영역에서의 효율적인 바이노럴 사운드 공간화 방법 및장치
US20230100071A1 (en) Rendering reverberation
CN101253555B (zh) 多声道音频信号处理装置及多声道音频信号处理方法
US9431987B2 (en) Sound synthesis with fixed partition size convolution of audio signals
CN107039043B (zh) 信号处理的方法及装置、多人会话的方法及***
JP2006222867A (ja) 音響信号処理装置およびその方法
CN108076415B (zh) 一种多普勒音效的实时实现方法
JP2007534214A (ja) 多様なサンプルレートでの畳込みを用いてオーディオパフォーマンスを合成する方法、機器、およびシステム
KR101637407B1 (ko) 부가적인 출력 채널들을 제공하기 위하여 스테레오 출력 신호를 발생시키기 위한 장치와 방법 및 컴퓨터 프로그램
CN107995558B (zh) 音效处理方法及装置
JP2017111230A5 (zh)
CN110890100A (zh) 语音增强、多媒体数据采集、播放方法、装置及监控***
Wang et al. A stereo crosstalk cancellation system based on the common-acoustical pole/zero model
JP7447798B2 (ja) 信号処理装置および方法、並びにプログラム
JP5051782B2 (ja) 音声合成と空間化との結合方法
CN117242796A (zh) 渲染混响
JPH11289599A (ja) 信号処理装置、信号処理方法および信号処理プログラムを記録したコンピュータ読み取り可能な記録媒体
US20030014243A1 (en) System and method for virtual localization of audio signals
Otani et al. Auditory artifacts due to switching head-related transfer functions of a dynamic virtual auditory display
JP6361874B2 (ja) 伝達関数近似装置、そのプログラム及びその方法
JPH1042398A (ja) サラウンド再生方法及び装置
JP3409364B2 (ja) 音像定位制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant